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Abstract—With the diversification of HPC architectures be-
yond traditional CPU-based clusters, a number of new frame-
works for performance portability across architectures have
arisen. One way of implementing such frameworks is to use C++
templates and lambda expressions to design loop-like functions.
However, lower level programming APIs that these implementa-
tions must use are often designed with C in mind and do not
specify how they interact with C++ features such as lambda
expressions.

This paper discusses a change to the behavior of the OpenMP
specification with respect to lambda expressions such that when
functions generated by lambda expressions are called inside GPU
regions, any pointers used in the lambda expression correctly
refer to device pointers. This change has been implemented in a
branch of the Clang C++ compiler and demonstrated with two
representative codes. This change has also been accepted into
the draft OpenMP®specification for inclusion in OpenMP 5. Our
results show that the implicit mapping of lambda expressions
always exhibits identical performance to an explicit mapping
but without breaking the abstraction provided by the high level
frameworks.

I. INTRODUCTION

Over the last 10 years, High Performance Computing (HPC)

architectures have diverged from the traditional multi-node

CPU-based systems that had previously been prevalent.

Emerging architectures such as GPUs bring new programming

and portability challenges beyond the traditional performance

concerns of scientific applications. As such, to ensure the

performance portability of these codes, new frameworks are

being developed to abstract parallelization, allowing backends

for different performance APIs to be selected. Frameworks

implemented in this way include RAJA [1] from Lawrence

Livermore National Laboratory (LLNL) and Kokkos [2] from

Sandia National Laboratories.

One way of implementing these frameworks is using higher-

order functions, providing the programmer with a loop func-

tion that takes as arguments the iteration space and a function

to perform. Historically these frameworks were arduous to use

and usually required creating a class to hold the relevant local

variables being used in the loop [3]. Another alternative is to

develop a Domain Specific Language (DSL) on top of C++

or Fortran [4]. While these are not arduous to use, it requires

maintaining a preprocessor for the DSL and keeping this up

to date with any changes to the host language.

With the addition of lambda expressions in C++11, func-

tions being passed as parameters can be specified inline and

can automatically capture variables from the enclosing scope.

Loops specified in this way, using lambda expressions, appear

very similar to traditional C loops, and require much less

modification to the original code. Additionally, since lambda

expressions are part of the language a separate preprocessor

does not need to be maintained.

Currently, there is one major issue with this approach: most

HPC application programming interfaces are C based and only

support C++ as a corollary of the fact that C++ is largely

compatible with C. In particular, many of these interfaces

do not specify how lambda expression captures should be

handled. This is of particular concern when dealing with non-

uniform memory address spaces such as those found on GPUs

– the pointers captured by the lambda may not be in the same

memory space as required. This can be solved in some APIs

by using a unified memory space, such as the CUDA®Unified

Memory interface. However, when using these the programmer

loses control of when data transfers occur which may not be

acceptable for some applications. In particular, in many cases

programmers can easily identify optimized data movement

schemes, and in order to implement these it is necessary to

have full control of the data mapping [5]. When using a frame-

work such as OpenMP that does not support a unified memory

space, pointers inside lambda expressions will always refer

to the host unless the programmer expicitly specifies device

pointers must be captured, and specifying this is not possible in

all cases, in particular when using a higher level framework

such as RAJA where the programmer shouldn’t necessarily

have any knowledge of the underlying programming model.

This paper explores a change to how lambdas are handled

when generating offload code in the OpenMP®API, which

since version 4 has supported GPU offloading. Specifically,

this paper makes the following contributions:

• We explore a change to the way that pointers are mapped

in OpenMP target regions that addresses the issue of non-

uniform memory address spaces within OpenMP target

regions;

• We implement our design in a branch of the Clang

compiler that supports OpenMP 4 offload directives for

NVIDIA®GPUs;

• We validate our proposal on two applications that use

the RAJA framework, showing no performance difference

between implicit and explicit mapping of pointers when

using either a simplified lambda-based forall implemen-

tation or the RAJA framework.
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The behavior described in this paper has been accepted into

the draft OpenMP specification for inclusion in OpenMP 5, as

described in Section 2.22.7.1 [6].

The remainder of this paper is structured as follows: Section

2 provides a summary of similar work; Section 3 provides a

brief overview of OpenMP, lambda expressions and the RAJA

framework; Section 4 describes our implementation in the

Clang compiler; Section 5 contains an evaluation of our mod-

ified compiler against an explicitly mapped implementation

and a pure OpenMP 4 implementation; and finally, Section 6

concludes this paper.

II. RELATED WORK

The study of implicit data mapping techniques on systems

including multiple accelerators with on-chip separate mem-

ory space is subject to several studies. One of the earliest

comprehensive contributions is described as part of the Ope-

nACC standard [7]. The report includes support for automatic

deep copy, where the compiler adds mapping information for

complex nested data structures without help from the user.

Alternatively, users can explicitly identify fields to be mapped

to minimize the amount of data being copied. We are not

aware of specific studies based on this report that discuss the

performance implications of the proposed techniques. This is

instead the focus of our contributions.

Starting with version 4.0, OpenMP is capable of offloading

computations to GPUs thus raising performance challenges for

both on-device computation and host-device communication.

Some of the early experiences with OpenMP are outlined

by Karlin et al. [8] and Vergara Larrea et al. [9]. For some

time, the OpenMP standard has required explicit handling of

data between host and device using maps. This has proven

to significantly lower performance and productivity. Newer

versions of OpenMP support the management of data to occur

implicitly. More recent studies based on OpenMP propose

user-defined data mappers [10], which are composable and

re-usable across translation units. Our proposed techniques are

complementary to user-defined mappers, which could be used

to map lambda expressions by describing them as structured

data types.

Chen et al. focus on automatic deep copy for OpenMP pro-

grams [11]. This is as opposed to our proposal for automatic

shallow copy specifically targeting C++ lambda expressions.

The main relation with our contribution is a similar focus on

performance.

Kokkos [2] offers similar functionalities to RAJA, with

sophisticated support for expressing access patterns through

the concept of views. Kokkos has a definition of deep copy

for arrays and it refers to the first level of memory indirection,

rather than the ability to map nested data structures, such as

lists. Calls to deep copy routines must be inserted by the

application programmer.

In this paper we perform a performance analysis using

two well known HPC mini-applications, namely TeaLeaf and

LULESH. TeaLeaf is a mini-app solving the linear heat

conduction equation [12]. It contains multiple different solvers

for this equation, although this paper only considers the

Conjugate Gradient solver. The performance of TeaLeaf has

been extensively studied in previous work [13]–[15]. An

evaluation of TeaLeaf using the CUDA and OpenMP host

backends of RAJA has previously been performed [16], as

well as an evaluation of the performance portability of RAJA

and a preprocessor based framework called OPS [17]. Our

contribution adds to this an evaluation of the OpenMP target

offload backend on NVIDIA GPUs.

LULESH is a hydrodynamics code that solves a Sedov blast

problem, designed to remain representative of the numerical

algorithms and data motion used in larger C++ applica-

tions [18]. There are two versions of LULESH, this paper

considers the updated second version [19]. LULESH kernels

vary in terms of memory footprint and computational intensity

and are representative of a large range of kernels encountered

in practice. The performance of LULESH has been studied in

previous work by comparing the performance of the OpenMP

implementation with that of CUDA [20], [21] establishing that

OpenMP can make up for most of the performance differences.

Previous work has been focused on the computation time of

the different kernels [22], [23] and less so on the overhead

associated with the launch of kernels onto the GPU. Although

only a proxy application, LULESH kernels consist of intricate

data access patterns and dependencies which lend themselves

to OpenMP’s implicit mapping functionality.

To our knowledge, this is the first full report on the

performance implications of relying on C++11 lambda expres-

sions, and the analysis of the consequent overheads and their

optimization.

III. BACKGROUND

The OpenMP standard in recent years has added increased

support for offloading to target devices, such as GPUs. These

devices do not share memory with the host, and as such

memory transfers between devices must be done manually by

the programmer. However, the implementation is expected to

deal correctly with pointer addressing in target regions, making

sure that when a pointer is accessed on the device it points

to the device memory for that object, not the host memory.

The way this addressing should be performed is detailed in the

specification. However, the specification currently only makes

reference to the C++98 standard, and does not specify how

device addressing interacts with features of the newer C++11

and C++14 standards. In particular, this paper is concerned

with the interaction between OpenMP and lambda expressions.

A. Lambda Expressions

Lambda expressions are a feature added in the C++11 stan-

dard [24] that allow the programmer to provide function

literals that are unnamed. This is mostly useful for providing

functions as parameters to other functions without outlining

the function elsewhere in the code. The lambda expression

syntax in C++ allows the user to specify a ‘capture’ for

variables that are defined outside the lambda such that those

variables can be used inside. The compiler then generates a

structure that contains all of the captured variables and the
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double* x;

int y;

// Capture by reference by default

[&](int i){

x[i] = y * x[i];

};

// Conceptually generates the following type

struct __Closure {

double** __x; int* __y;

__Closure(double** x, int* y) : __x{x}, __y{y} {}

void operator()(int i) {

(*__x)[i] = *__y * (*__x)[i];

}

};

// Capture by value by default

[=](int i) {

x[i] = y * x[i];

};

// Conceptually generates the following type

struct __Closure {

double* __x; int __y;

__Closure(double* x, int y) : __x{x}, __y{y} {}

void operator()(int i) {

__x[i] = __y * __x[i];

}

};

Listing 1: Generated closure object for a simple lambda

expression

function provided, which is then passed at the point at which

the lambda expression is used.

This structure, referred to in the standard as the closure

type, contains any variables that are captured by-value or

by-reference into the lambda. If the variables are captured

by value, then they are represented in the closure type as

members with the same type as the captured value and are

copied into the closure object (the instance of the closure

type for a specific lambda) when that lambda is constructed.

If captured by reference, the variables are represented in the

closure type as members with the same type as a pointer to the

captured value, and these are initialized with the address of the

captured variable on construction of the lambda. Variables of

both types can exist in the closure object. If a default capture is

used, the variables are only captured if used inside the lambda

expression. A conceptual example of how the closure type is

formed is shown in Listing 1.

B. RAJA

RAJA is a performance portability abstraction framework

developed by LLNL that uses loop-style functions and lambda

expressions to allow performance portability with minimal

changes to the original code. When using the RAJA framework

different backends can be selected without modifying the

application code, allowing the use of different implementations

depending on the target hardware. The advantage of this

approach over using a programming model like OpenMP

directly is that the abstractions provided by RAJA allow

porting applications to new hardware that does not support

existing programming models by developing a single new

backend targeting the programming model used by the hard-

RAJA::forall<ExecPolicy>(0, 100, [=](int i) {

a[i] = b[i] + c[i];

});

Listing 2: Simple vector add in RAJA

template <typename Func>

void forall(size_t start, size_t end, Func body)

{

#pragma omp target teams distribute parallel for

for (size_t i = start; i < end; ++i) {

body(i);

}

}

Listing 3: Simplified forall implementation for OpenMP target

offload

ware. Application codes written on top of RAJA can then run

on the new hardware with very little modification.

Using RAJA, the programmer replaces their traditional C-

style for loops with a call to a loop function taking an exe-

cution policy, a start and end index, and a lambda expression,

as shown in Listing 2. The execution policy chooses which

backend implementation is used to generate code. The backend

implementations then call the function once for each loop

iteration, passing the loop variable to the function. A simpli-

fied implementation of the OpenMP target offload backend

is shown in Listing 3. However, according to the current

specification this implementation will not behave correctly as

written. The programmer providing the lambda has no way

to specify that the variables inside the lambda need to be

device pointers if the lambda is called from the GPU, since

the programmer cannot access properties of the closure object

generated by the lambda expression. This can be addressed

by adding a #pragma omp use_device_ptr(p) clause around the

forall function call specifying each pointer captured by the

lambda, which ensures that inside the relevant region the

pointers mentioned in the clause always refer to the device

memory space. However this breaks the abstraction that RAJA

is designed to provide and is impractical to program for

loops that access a large number of arrays, as each pointer

would need to be listed in the clause. This clause cannot

be put inside the forall function, as there is currently no

way in C++ to access the member variables of the closure

object that has been passed into the function. Functionality

to iterate over the members of an object has been proposed

as part of the Static Reflections working group of the C++

standards committee [25], however these proposals have yet

to be accepted into any draft standard, meaning their inclusion

into the published standard for C++ is a number of years away

at best.

IV. DESIGN

Our design performs a mapping of pointers directly inside

the closure object. This takes advantage of the requirement

in the C++ standard that only the variables used inside the

lambda are included in the closure object, meaning that even

if a generic capture is specified only the arrays used are copied.

However, this does have the disadvantage that applications

such as LULESH must explicitly specify which pointers are

to be captured from the Domain object. This can be done

using a feature added to the C++ standard in 2014 that allows
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RAJA::forall(0, numElem, [fx=&domain.fx(0)](int i) {

fx[i] = 0;

});

Listing 4: C++ 14 generic capture as used in LULESH

more complex closure captures to be specified, as shown in

Listing 4.

Recursively mapping the pointers could be ergonomically

advantageous for the porting of applications such as LULESH,

which in the reference implementation uses a large Domain

object containing pointers to each array used in the application.

However, if the Domain object is simply captured in a lambda

closure, the runtime must perform a mapping of every pointer

in the object. In the case of LULESH, this would require

performing 150 pointer mappings. As shown in Listing 5

each pointer mapping requires a load of the pointer in the

closure object, followed by two stores into an offloading

array. Additionally, when the runtime executes this mapping

it will require a lookup for the pointer in the table connecting

host addresses with their corresponding device address. For

LULESH this would be 150 loads followed by 300 stores and

150 table lookups for each kernel, including kernels that only

access a small number of arrays. An implementation of this

design was developed at an early stage of the project and

when tested on LULESH was demonstrated to have significant

performance issues.

We implement our design in the compiler by scanning

the list of types that the compiler generates for each offload

region. We find the closure objects in this list and scan them

for pointers, which are then passed to the runtime ensuring

that accesses to these pointers refer to the device memory

space and not the host. The runtime is also informed that the

pointer is a member of the closure object to ensure the pointer

mapping is correct. The IR generated by this process for a

simple kernel with a single pointer is shown in Listing 5. This

example shows the four offload arrays that need to be passed

to the runtime, and how they are prepared by the implicit

mapping added to the compiler.

Line 1 contains the array of sizes for the objects being

mapped to the device for the target region. In this case, the

first two elements are the start and end indices of the loop,

the third element is the closure object (of size 8 bytes since it

contains a single pointer), and the final element is the pointer;

a mapping of size 0 here means to just correct the address to

a device address instead of a host address.

Line 4 contains the array of mapping types for the values

described above. The exact meanings of these types are not

relevant here, except to note that the large value at the end of

the array is the mapping type for the pointer, in particular it

informs the runtime that the pointer should be mapped to and

from the device, and is a member of the previous element of

the array.

Lines 11 to 16 store a pointer to the lambda itself in the two

arrays that are passed to the runtime such that it knows where

the actual values to map are. Lines 18 to 23 perform the same

operation for the pointer inside the lambda itself. All four of

these arrays are then passed to the runtime call on lines 28 to

34.

IBM S822LC Server

2 × IBM POWER8 3.259 GHz 8-core processors
4 × NVIDIA P100 GPUs
256 GB DDR4 memory

TABLE I: System configuration

V. PERFORMANCE ANALYSIS

In this section we provide a performance analysis for our

implicit mapping scheme against an explicit mapping scheme

(using use_device_ptr) on two representative HPC mini-

applications, LULESH and TeaLeaf. In addition, we provide

results for pure OpenMP implementations without any abstrac-

tion for comparison; however the main contribution of this

paper is to demonstrate the performance implications of the

implicit mapping relative to the explicit mapping workaround

that was previously required. Note that this workaround is not

being proposed as an alternative, since it breaks the abstraction

that frameworks such as RAJA are attempting to provide.

The results in this section were obtained on an

IBM®POWER8® S822LC system using NVIDIA Tesla®P100

GPUs (see Table I). All the target regions are executed on a

single P100 GPU.

A. LULESH

From a data management perspective LULESH is a complex

application with a large number of arrays accessed in some

kernels on each iteration. Four kernels exhibiting different

characteristics have been selected.

The CalcLagrangeElements kernel is a simple kernel con-

taining only floating point operations and array assignments,

with no branches. This kernel is included to demonstrate the

flat effect that lambdas have on the performance of simple

operations. The CalcMonotonicQGradientsForElems kernel is

much larger, but still only contains simple floating point oper-

ations with no branches. The comparison of these two kernels

shows the effects of the size of the kernel on performance

when using lambdas. Larger kernels tend to lead to a larger

number of registers being allocated thus having a direct impact

on the runtime of that kernel on the GPU.

The other two kernels are included to test the performance in

specific circumstances. The CalcMonotonicQRegionForElems

kernel contains a large number of branches, both switch and if

statements, allowing the impact of using lambda expressions

on branching code to be tested. CalcSoundSpeedForElems is

included as it is the kernel that dominates the application

runtime; it is executed more frequently than the other kernels

in the application.

The results for CalcLagrangeElements and CalcMonoton-

icQGradientsForElems, seen in Fig. 1a and Fig. 1b show

that the difference between the implicit mapping and the

use_device_ptr workaround is negligible and can be attributed

to statistical error in the results. Since mapping affects the

setup and tear-down of the kernel onto the device, the strictest

performance test is running the experiment on small kernels.

The smaller the kernel the larger the potential overhead

incurred by the implicit mapping scheme. Our results show
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forall(0, 100, [=](int i) {

p[i] = 0;

});

1 @.offload_sizes = private unnamed_addr constant [4 x i64] [i64 4, i64 4, i64 8, i64 0]

2 ; the last value in the following array corresponds to a bit pattern specifying

3 ; that the pointer is a member of the lambda and must be mapped to and from the device

4 @.offload_maptypes = private unnamed_addr constant [4 x i64] [i64 800, i64 800, i64 673, i64 844424930131987]

5 ; ...

6 ; get the pointer from the lambda

7 %10 = getelementptr inbounds %class.anon, %class.anon* %loop_body, i32 0, i32 0

8 %11 = load i32*, i32** %10, align 8

9 ; store the lambda in the offload arrays at index 2

10 ; indices 0 and 1 will always contain the start and end loop counters respectively

11 %20 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_baseptrs, i32 0, i32 2

12 %21 = bitcast i8** %20 to %class.anon**
13 store %class.anon* %loop_body, %class.anon** %21, align 8

14 %22 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_ptrs, i32 0, i32 2

15 %23 = bitcast i8** %22 to %class.anon**
16 store %class.anon* %loop_body, %class.anon** %23, align 8

17 ; store p in the offload arrays

18 %24 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_baseptrs, i32 0, i32 3

19 %25 = bitcast i8** %24 to i32***
20 store i32** %10, i32*** %25, align 8

21 %26 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_ptrs, i32 0, i32 3

22 %27 = bitcast i8** %26 to i32**
23 store i32* %11, i32** %27, align 8

24 ; Prepare the two arrays for offloading

25 %28 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_baseptrs, i32 0, i32 0

26 %29 = getelementptr inbounds [4 x i8*], [4 x i8*]* %.offload_ptrs, i32 0, i32 0

27 ; call the kernel on the device with the offload arguments

28 %30 = call i32 @__tgt_target_teams(i64 -1,

29 i8*
30 @"__omp_offloading_28_d5e3b8__Z6forallIZ6kernelPiE3$_0EviiT__l3.region_id",

31 i32 4, i8** %28, i8** %29,

32 i64* getelementptr inbounds ([4 x i64], [4 x i64]* @.offload_sizes, i32 0, i32 0),

33 i64* getelementptr inbounds ([4 x i64], [4 x i64]* @.offload_maptypes, i32 0, i32 0),

34 i32 0, i32 0)

Listing 5: Generated IR for kernel call

that even in this case our implicit mapping scheme does not

lead to any additional overheads.

Repeating the comparison for small kernels with the ap-

plication implemented with RAJA and the application imple-

mented with pure OpenMP, we notice that the performance

difference between the two is consistently 25% of the applica-

tion runtime and does not change with the size of the problem

domain being evaluated. This decrease in performance is

due to the way RAJA is implemented; rather than using the

indicies passed to the forall function directly, RAJA constructs

C++ STL style iterators from the indicies and uses these to

provide a unified interface for iterator-based and index-based

iteration. However, this limits optimization opportunities for

the compiler as the code is more opaque.

These results demonstrate that for the simple case of small

kernels with no branches, there is no difference between the

added implicit lambda mapping and explicit use_device_ptr

mapping, and a measurable but constant performance differ-

ence between using lambdas and pure OpenMP.

The results for CalcMonotonicQRegionForElems, shown in

Fig. 1c, show a similar result to the simple kernels, with a

constant performance difference between the lambda and pure

OpenMP versions and no statistically significant difference

between the implicit mapping and use_device_ptr mapping

versions. This demonstrates that the addition of a large number

of branches and a larger kernel size does not affect the

performance of lambda-based implementations relative to pure

OpenMP.

Figure 1d shows the results for the CalcSoundSpeed kernel

diverge somewhat from the previously demonstrated results.

In this case, as the size of the problem domain increases,

the difference in performance between a lambda-based imple-

mentation and pure OpenMP implementation increases. This

is indicative of the overhead incurred when using lambda

expressions, since the lambda function is not currently being

inlined correctly. In the OpenMP case the body of the kernel

is directly contained in the loop body, and as such does not

need inlining. Further investigation on this matter is required.

B. TeaLeaf

TeaLeaf is a simpler application with a small number of

kernels, but since a small number of arrays are accessed in

each iteration it can be run at larger problem sizes on a

single GPU than LULESH. This implementation has also been

written with and without the use of the RAJA library to test the

overhead of RAJA relative to the simplified implementation

given in the design section. TeaLeaf includes a number of

solvers for linear heat conduction equations, however for

simplicity this paper only considers the conjugate gradient

solver [12][14].

As RAJA’s design of reductions predates the use of OpenMP

target offload as a backend for RAJA, the current reduction

implementation does not work correctly with these pragmas. In

particular it is not possible for RAJA to internally use OpenMP

reductions with function objects, as the implementation has

no way of accessing the variables within the closure object to

specify them as being reduction variables. As a result, the only

possible implementation currently is to manually use a critical
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(b) CalcMonotonicQGradientsForElems
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(c) CalcMonotonicQRegionForElems
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(d) CalcSoundSpeed

Implicit lambda mapping

Explicit mapping with use_device_ptr

Pure OpenMP

Fig. 1: LULESH kernel results

section to perform the reduction, leading to poor performance.

This is an issue that is being investigated by the developers of

RAJA.

As a result of this, a simplified reduction implementation

has been used here for all the kernels requiring reductions,

including in the case where RAJA is being used rather than

the simplified forall implementation. Because of this, the

comparison between RAJA and plain lambdas is only included

for the cg calc p kernel, since that kernel does not include a

reduction.

The reduction design for lambdas used in this paper is

simply to return the value to be added to the reduction variable

from the lambda, such that the reduction variable exists in the

OpenMP loop and normal OpenMP reductions can be used.

The reduction variable is then returned from the function. The

implementation of a sum reduction using this design and an

example of using it are shown in Listing 6.

The results for calc w show that for a simple reduction

kernel using the reduction design shown above, there is no

statistically significant difference between a lambda imple-

mentation using the implicit mapping, an explicit mapping or

pure OpenMP. Each case exhibits the same performance on

all problem sizes tested.

The results for calc p, shown in Fig. 3, show the perfor-

mance implications of using RAJA over a simplified lambda-

based implementation. These results show that when using a

simplified implementation, the performance is equivalent to

pure OpenMP. When using RAJA, the performance degrades
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Fig. 2: calc w reduction kernel

template <typename T, typename F>

T reduce_sum(int start, int end, F loop_body,

T start_value = {})

{

#pragma omp target teams distribute parallel for \

reduction(+:start_value) \

map(tofrom: start_value)

for (int i = start; i < end; ++i) {

start_value += loop_body(i);

}

return reduction_variable;

}

double sum_vec(double* a, int size) {

double sum = reduce_sum<double>(0, size, [=](int i){

return a[i]; // performs start_value += a[i]

});

return sum;

}

Listing 6: Sum reduction using lambdas

over time relative to OpenMP in a similar way to the results

for the CalcSoundSpeed kernel in LULESH.

The reason for the performance difference here between the

RAJA implementation and a simplified lambda loop imple-

mentation is due to the iterator-based indexing discussed in

Section V-A. These results show exactly the impact of this

strategy, which causes the runtime of RAJA-based loop kernels

to increase exponentially with the problem size compared to

a loop function simply using the passed indices directly. As a

result it may be worth adding specializations to RAJA to use

simple integer types when iterating over integer index-based

problem spaces, as this would bring the performance of these

loops in-line with the simple lambda forall implementation

described here.

VI. CONCLUSION

As supercomputing moves towards the era of exascale com-

putation with a diversification of architectures, it is becoming

increasingly important to ensure that codes are performance

portable. This performance portability requirement can be
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Fig. 3: calc p kernel results

tackled by lambda-based frameworks such as RAJA and

Kokkos which abstract across different platform API back-

ends. Unfortunately, many of these backends are focussed

on C support and as a result do not specify the interaction

between their features and some newer C++ features such as

lambda functions. Because of this these frameworks need to

be modified to be made aware of such features.

In this paper we implement an alternative to the mapping

behavior of lambda expressions in OpenMP target regions

that has been accepted into the draft OpenMP specification,

and explore the performance implications of such a change.

The new behavior maps pointers at the top level of a lambda

closure type onto the device such that when accesses are

performed inside the lambda, the pointers refer to the device

memory address region. We implement this behavior in a

branch of the Clang compiler that supports OpenMP target

offload directives for NVIDIA GPUs.

We implement key kernels from two applications using the

lambda-based abstraction framework RAJA and demonstrate

that the performance implications of such a mapping de-

sign are statistically insignificant compared to the abstraction

breaking explicit mapping previously required to obtain correct

behavior with lambda expressions in OpenMP target regions.

As a result, the experiments in this paper show that it is

possible to implement a mapping to obtain correct behavior

of lambda expressions containing pointers on OpenMP target

regions without performance penalties, allowing lambda-based

abstraction frameworks to implement OpenMP target offload

backends without breaking the abstractions provided by such

frameworks.

The results in this paper demonstrate that OpenMP can be

modified to be aware of lambda expressions in offload regions

with no performance penalty. This allows the development

of lambda-based abstraction frameworks with OpenMP target
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offload backends without forcing a break of the abstraction to

identify device pointers in lambdas, increasing the portability

of these frameworks and programmer productivity when using

them.

A. Future Work

The results presented in this paper show the promising nature

of the new implicit lambda pointer mapping behaviour in

OpenMP 5, facilitating the development of lambda-based

frameworks with OpenMP target offload backends.

Building on the work in this paper, we intend to apply

the work to applications with other lambda-based frameworks

such as Kokkos to demonstrate the implications of this map-

ping on these libraries. Further, we intend to extend the work

by porting an entire application to a lambda-based framework,

rather than just specific kernels, such that the performance of

a full lambda-based application can be evaluated.
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