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REVIEW AND META-ANALYSIS OF INTER-MODAL CROSS-ELASTICITY EVIDENCE 

 

Mark Wardman, Jeremy Toner, Nils Fearnley, Stefan Flügel and Marit Killi 

 

 

 

1.  INTRODUCTION 

 

This paper is concerned with cross-elasticities between modes, and primarily takes the form of a 

meta-analysis to explore the relationships between cross-elasticities and factors that are expected to 

influence them. Whilst there are many notable reviews and indeed meta-analyses covering own-

elasticities of demand (Webster and Bly, 1980; Goodwin, 1992; Oum et al., 1992; Goodwin et al., 

2004; Graham and Glaister, 2004; TRB, 2004; Transport Research Laboratory et al., 2004; Jevons et 

al., 2005; Hensher, 2008; Litman, 2010; Wardman, 2012, 2014; Wardman and Batley, 2014), in 

contrast cross elasticities have received far less attention despite being increasingly important to 

transport practitioners and policy makers.  

 

Reviews of cross-elasticities are contained in Wardman (1997a, 1997b), Goodwin (1992), de Jong 

and Gunn (2001), Transport Research Laboratory et al. (2004) and Wallis (2004).  These are all dated 

and tend to cover relatively few observations and a limited set of cross-elasticity types. More recent 

reviews are provided by Fearnley et al. (2017, 2018), covering a larger number of studies and a 

broader range of cross-elasticity terms.  We here build upon the latter reviews with considerably 

more data and greater detail surrounding variables and modes to report the most extensive review 

of inter-modal cross-elasticities yet undertaken. Whilst Fearnley et al. (2018) is novel in reporting a 

meta-regression model on cross-elasticity evidence1, it is restricted to public transport modes and a 

far smaller data set than here, and the meta-analysis reported in this paper provides insights from a 

far larger range of explanatory variables and is the first ever that covers all modes and all attributes.  

 

The main aims of conducting this meta-analysis were:  

 

 to provide an extensive review and synthesis of cross-elasticity evidence given that there are 

few previous studies and those that have been conducted are limited in scope, coverage and  

detail;  

 to identify and quantify variables related to study context and methodology that drive 

variations in cross-elasticities;  

 to provide a model that can be used both to benchmark emerging and existing evidence and 

to forecast cross-elasticities for a wide variety of contexts where no other evidence exists.  

  

                                                           
1 Holmgren (2007) contains  a meta-analysis of cross-elasticities of public transport demand with respect to petrol prices 

but it contains only 17 observations. 
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2. DATA ASSEMBLY 

 

2.1 Process and Scope 

 

This review covers a wide range of sources, from scientific publications to unpublished working 

documents. The initial library search included resources such as ISI, Google Scholar, World Transit 

Research database, Bureau of Infrastructure, Transport and Regional Economics (BITRE) Elasticities 

Database Online, Springer Link, Science Direct, and Tylor and Francis Online. Additionally, transport 

practitioners were contacted who it was felt might be aware of work in the area.  The identified 

references were also scanned in search of further sources of evidence. Although our focus was 

initially on local and urban travel (Fearnley et al., 2017), we subsequently extended this to include 

contributions relating to inter-urban and longer distance trips. 

 

An important process was checking for duplicates, particularly given the increasingly common practice 

of the same piece of research being published in different formats. A few such instances were 

discovered.  Observations were not included where it was not possible to calculate cross-elasticities 

based on how the results were presented, such as incomplete information, qualitative attribute 

changes or the variable covering multiple attributes. Some wrong sign cross-elasticities were retained 

in the assembled data set, on the grounds that their omission could bias the sample against low cross-

elasticities, and we return to this issue below.  

 

2.2 The Explanatory Variables 

 

Given that the purpose of this research was to explore and quantify variations in a range of different 

inter-modal cross-elasticities across studies, we therefore assembled evidence for each study on the 

following candidate explanatory variables: 

 

 The mode whose demand is affected and the competing mode which is altered; 

 The variable that is altered; 

 The method used to estimate the cross-elasticity, distinguishing short and long run effects; 

 Journey purpose and journey length; 

 Market shares of the affected and altered modes; 

 The dissemination channel; 

 The number of cross-elasticities per study; 

 The demand units in which the cross-elasticity is measured and the level of aggregation; 

 Year of data collection and reporting; 

 Country Gross Domestic Product at purchasing power parity (PPP) in US dollars. 
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2.3 Overview of Sources 

 

Tables 1 to 3 provide an overview of the data assembled, based on 1096 cross-elasticity estimates 

obtained from 93 studies.  The scope of this review is international and Table 1 lists the countries 

from where evidence has been sourced.  The UK provides the most studies (34%) and cross-

elasticities (44%), as in other international meta-analyses (Wardman et al., 2016), in part because of 

the UK’s commitment to evidence based economic appraisal over many years but also because of 

some of the authors’ familiarity with UK research and particularly its grey literature. The USA and 

Australia between them provide a further 36% of studies and 22% of cross-elasticities. In terms of 

the number of cross-elasticities, Denmark, Europe, Italy, Netherlands and Norway stand out despite 

having few studies. This is the result of using the outputs of model systems along the lines of the de 

Jong and Gunn (2001) elasticity review. 71% of the cross-elasticity observations came from 

published sources and 31% were from peer-reviewed journal articles.  

 

Table 1:  Studies and Cross-Elasticity Estimates per Country 

 

Country Number of 

studies 

Number of 

elasticities 

Country Number of 

studies 

Number of 

elasticities 

Australia 15 96 Netherlands 3 49 

Belgium 1 4 New Zealand 3 11 

Canada 2 9 Norway 3 146 

Denmark 1 36 South Korea 2 7 

Europe* 2 39 Spain 4 5 

France 2 6 Sweden 3 12 

Germany 2 8 Taiwan 1 8 

Italy 1 32 UK 32 477 

Japan 1 1 USA 18 148 

Malaysia 1 2 TOTAL 97** 1096 

 

Note: * Europe covers trans-national evidence. ** Of the 93 studies, one covered four countries and 

one covered two countries. 

 

The earliest study in our data set was published in 1962 covering data for our earliest year of 1961. 

Table 2 lists the number of studies and cross-elasticity estimates in each of four time periods. The 
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studies provide a good spread over a large time period, with a tendency for more cross-elasticities 

per study in more recent years.  

 

Table 2: Studies and Cross-Elasticity Estimates by Year of Publication 

 

Year Studies  Cross-Elasticities 

 - 1990  22 85 

1991 – 2000 21 159 

2001 – 2010 29 524 

2011 -    21 328 

Total 93 1096 

 

Table 3 presents the distribution of cross-elasticity estimates per study. Multiple observations per 

study can be obtained for a number of reasons, including different modes, attributes, journey 

purposes, distances and estimation methods, and distinguishing between short run and long run 

impacts. Having said that, 37% of studies yielded just one or two cross-elasticities. The largest 

category, of 41% of studies, yields between three and nine cross-elasticities. Dargay et al. (2010) 

provided the largest number (180) of observations of (deduced) cross-elasticities covering 

combinations of fare, total car cost and journey time for 12 different modal combinations and a 

range of journey purpose and distance segmentations.     

 

Table 3: Distribution of Cross-Elasticity Estimates  

 

Cross-elasticities per Study Studies Cross-Elasticities 

1 16 16 

2 18 36 

3-9 38 206 

10-15 7 85 

16-25 3 61 

26-50 6 219 

51+ 5 473 

Total 93 1096 

 

 

 

3 DATA CHARACTERISTICS  

 

3.1 Data Inspection and Cleaning 

 

Range and logic checks were conducted on the assembled data as part of an extensive data cleaning 

process. Where necessary, we returned to the original source documents to clarify coding. 
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In almost all reviews or meta-analyses, and indeed with quantitative analysis of primary data, 

judgements have to be made regarding the quality of the data being examined and whether some 

observations are sufficiently misleading that they should be removed from consideration. Given that 

this can be controversial, the assumptions and procedures involved must be clearly set out.  

 

The final assembled dataset contained 13 negative cross-elasticities which violate economic theory 

given that in the choice contexts under consideration the different modes are substitutes. All of 

these wrong sign cross-elasticities were for fuel price and were near to zero with, where available, 

low t ratios. We have taken these to represent a zero cross-elasticity in preference to removing them 

which effectively treats them as ‘average’. 
 

At the other extreme, there are cross-elasticities as high as 2.78. There might be concern that very 

large cross-elasticities in the data set could be misleading, although noting that these might 

legitimately arise where a mode has a very low market share. After some inspection and testing, the 

full data set of 1096 was retained for analysis2.  

 

3.2 Key Features of Assembled Data  

 

The variables that we collected information about are listed in Table 4 for which we provide 

summary measures. A key purpose of Table 4 is to set out the number of observations in each 

category and we leave the discussion of cross-elasticities to the insights provided by the meta-

analysis. 

 

Fuel cost is the largest attribute category and accounts for just over a third of observations. Very 

large samples have also been obtained for fare, which form 21% of the total, in-vehicle time (IVT), 

and overall journey time (JT), with worthwhile numbers for vehicle miles (VM), access and egress 

time (ACCEGR), wait time, headway and total car cost (TC).  INT denotes the need to interchange as 

opposed to TT which is the transfer time at an interchange and PARKTIME relates to time spent 

finding a parking space. The remaining category is a remnant of other car costs (RESTCOST) which 

covers congestion charge (N=2), toll charge (N=2) and parking cost (N=20). Cost related cross-

elasticities form 62% of the total. 

 

The modes are car, bus, rail, metro, light rail transit (LRT), air, walk, cycle and a generic public 

transport (PT) mode. We distinguish between the mode whose demand is affected and the mode 

whose attribute is altered, so that CAR_BUS indicates a cross-elasticity of demand for car with 

respect to some change in bus characteristics.   

 

Of the affected modes, the largest is rail (27%), followed by car (23%), bus (18%), PT (16%), air (6%), 

cycle, LRT and walk (3% each) and metro (1%). The relatively large number of observations covering 

rail, given it tends to account for modest shares of travel, is due to the availability of ticket sales data 

                                                           
2 Even removing the 43 cross-elasticities in excess of one made little difference to the results of the estimated 

meta-models.   
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to support econometric analysis. Car dominates the altered mode (52%), as might be expected given 

its strong market position and the generally ready availability of historic fuel price data, followed by 

rail (18%), bus (17%), PT (7%), air and LRT (3% each) and metro (1%).  

 

In terms of modal combinations, there are 35 in total, but 20 (57%) categories contain fewer than 10 

observations. Each of the combinations of the main modes of car, bus, rail and PT are though well 

represented, accounting for 876 (80%) of the cross-elasticity observations.    

 

With regard to the method used to obtain the cross-elasticity estimate, we distinguish between 

those deduced using the relationship between cross and own elasticities set out in equation 1 

below, four stage transport models, choice models, observed changes in demand and regression 

analysis. The latter distinguishes between dynamic econometric analysis of time-series demand data 

that returns explicitly short run (REGRESSION_SR) and long run (REGRESSION_LR) cross-elasticities, 

static models where no such distinction is made (REGRESSION_ND), and regression analysis of purely 

cross-sectional demand data (REGRESSION_CROSS) and aggregated Stated Preference (SP) data 

(REGRESSION_SP)3. The cross-elasticities obtained from discrete choice models distinguish between 

those estimated to Revealed Preference (RP) data alone (CHOICE_RP), SP data alone (CHOICE_SP) 

and jointly to RP and SP data (CHOICE_RPSP).   The observations are spread reasonably well across 

the four main methods of deduced (23%), time-series based regression (25%), conventional 

transport models (18%) and discrete choice models (30%). 

 

Taking the regression based results a little further, the periodicity of the demand data upon which 

the models were estimated can be allowed for. A distinction was made between those based on half 

annual and primarily annual (LONGER) data and those estimated to quarterly and monthly data and 

further assigned to long run (REG_LR_LONGER), short run (REG_SR_LONGER) and no distinction 

(REG_ND_LONGER) cross-elasticities.  

   

Evidence is obtained from a number of sources. Journals provide around a third of all observations 

with conference papers accounted for 23%. Unpublished papers, either by academics or consultants, 

provide just under 30% of the total. 

 

The journey purpose categories combine across a number of sub-categories which have too few 

observations to be retained separately.  The commuting category is made up of 171 observations 

coded as commuting plus 21 education, 6 commuting and education combined and 40 peak. Leisure 

is composed of 193 coded as leisure, 15 shopping or recreation, 9 holiday, 53 non-commuting, 11 

weekday and 31 off-peak. All contains 408 where the cross-elasticity covered all purposes and 14 

where it was non-business.  There is a reasonable spread across purposes; the all category is largest 

(39%) followed by leisure (28%), commuting (22%) and business (11%).    

 

No attempt was made to allocate a precise distance to each observation on the grounds that most  

cover a range and studies do not always indicate the distance to which the cross-elasticities relate. 

                                                           
3 This is where individual choice data has been aggregated into market shares for analysis purposes. 
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However, observations can be readily assigned to distance-based categories.  Urban and suburban 

trips make up 39% of the total. We distinguish between inter-urban trips (INTER) and long distance 

trips (LONG), which respectively form 29% and 7% of the sample.  The latter are inter-urban trips but 

of the sorts of distances where air is relevant. For urban and inter-urban trips, we additionally 

identified those that were to/from major metropolitan areas (INTER_METRO and 

SUBURBAN_METRO). Around 20% of the observations cover a range of distances (ALL_LENGTHS). 

 

Cross-elasticities are estimated at different levels of spatial aggregation. The largest category at 40% 

is the national level, such as cross-elasticities obtained from national model systems or where there 

is no form of disaggregation.  Cross-elasticities for cities and urban areas are the next largest 

category, forming 33% of the total. The flow category relates to specific movements, such as rail 

demand between stations, and accounts for 10% of the total whilst the regional level of aggregation 

forms only 5%. Only small proportions were recorded as relating to international travel or solely to 

metropolis. The other category covers the 8% of observations where the spatial definition was 

irrelevant, unclear or covered a combination of categories. 

 

Table 1 listed the number of studies and observations by country. These can be grouped by area of 

the world. Around three quarters cover Europe, 14% North America, 10% Australia and New Zealand 

and 2% Asia. The demand responsiveness measure could relate to trips or trip kilometres, with the 

former accounting for just over two-thirds of the total.  

 

Cross-elasticities are widely regarded to be sensitive to market shares. Indeed, Dodgson (1986) set 

out the following relationship:  

                                              𝜂𝑖𝑗 =  −𝜂𝑗𝑗 𝑉𝑗𝑉𝑖 𝛿𝑗𝑖                                                                                   (1) 

 

where ηij  is the cross-elasticity of demand for mode i with respect to some change in mode j, ηjj is 

the relevant own elasticity on mode j, Vj and Vi denote the respective volumes of demand on modes 

j and i and δji is the diversion factor that denotes the proportion of users of mode j who switch to or 

are attracted from mode i.   
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Table 4:  Summary Measures for Key Explanatory Variables 

 
 TRAVEL ATTRIBUTE   JOURNEY PURPOSE  

 FUEL  0.26 (0.02) [0.00:2.59] {383}  LEISURE  0.29 (0.02) [0.00:1.80] {312} 

VEHICLE MILES (VM) 0.05 (0.12) [0.00:0.24] {23} COMMUTE 0.22 (0.02) [0.00:2.78] {238} 

FARE 0.12 (0.01) [0.00:1.31] {231} BUSINESS 0.38 (0.05) [0.00:2.59] {124} 

IN-VEHICLE TIME (IVT) 0.46 (0.04) [0.00:2.78] {178} ALL 0.18 (0.01) [0.00:1.74] {422} 

ACCESS AND EGRESS (ACCEGR) 0.12 (0.02) [0.00:0.38] {31} ANALYSIS METHODS  

WAIT TIME  0.10 (0.04) [0.00:1.00] {26} DEDUCED  0.20 (0.02) [0.00:1.80] {253} 

JOURNEY TIME (JT) 0.31 (0.04) [0.00:1.80] {102} REGRESSION_SP 0.26 (0.07) [0.05:1.10] {16} 

TRANSFER TIME (TT) 0.10 (0.02) [0.07:0.16] {5}  REGRESSION_CROSS  0.44 (0.12) [0.12:1.00] {8} 

INTERCHANGE (INT) 0.06 (0.02) [0.00:0.24] {17} REGRESSION_SR 0.26 (0.04) [0.00:0.90] {39} 

 TOTAL CAR COST (TC) 0.22 (0.03) [0.05:0.79] {38} REGRESSION_LR 0.42 (0.05) [0.10:1.74] {48} 

HEADWAY 0.10 (0.02) [0.00:0.43] {36} REGRESSION_ND 0.20 (0.01) [0.03:1.20] {190} 

PARKTIME 1.11 (0.29) [0.82:1.40] {2} FOURSTAGE 0.40 (0.04) [0.00:2.78] {202} 

RESTCOST 0.10 (0.03) [0.00:0.49] {24}  CHOICE_RP  0.15 (0.01) [0.00:1.40] {233} 

MODE AFFECTED AND ALTERED  CHOICE_SP  0.29 (0.04) [0.03:0.82] {49} 

CAR_BUS  0.08 (0.01) [0.00:0.77] {85} CHOICE_RPSP  0.14 (0.03) [0.02:1.31] {51} 

CAR_RAIL 0.09 (0.01) [0.00:0.75] {88} OBSERVED  0.32 (0.10) [0.09:0.80] {7} 

CAR_LRT 0.04 (0.02) [0.01:0.13] {6} PERIOD INTERACTIONS  

CAR_METRO  0.24 (0.13) [0.02:0.55] {4} REG_LR_LONGER  0.51 (0.09) [0.10:1.74] {26} 

CAR_AIR 0.03 (0.01) [0.01:0.08] {10} REG_SR_LONGER  0.24 (0.05) [0.00:0.90] {26} 

CAR_PT 0.06 (0.01) [0.01:0.59] {58} REG_ND_LONGER  0.26 (0.03) [0.02:1.20] {141} 

BUS_RAIL 0.31 (0.04) [0.02:1.31] {63} SOURCE  

BUS_LRT 0.20 (0.04) [0.05:0.38] {8} JOURNAL   0.26 (0.02) [0.00:2.78] {342} 

BUS_METRO 0.16 (0.00) [0.16:0.16] {1} CONFERENCE 0.23 (0.02) [0.00:1.80] {254} 

BUS_AIR 0.01 (0.00) [0.00:0.02] {10} PUBLISHED 0.18 (0.02) [0.00:1.57] {183} 

BUS_CAR 0.26 (0.03) [0.00:1.43] {121} UNPUBLISHED ACADEMIC 0.26 (0.03) [0.00:2.11] {180} 

LRT_CAR 0.14 (0.04) [0.00:0.54] {14} UNPUBLISHED CONSULTANCY 0.28 (0.02) [0.00:1.30] {137} 

LRT_BUS 0.17 (0.03) [0.03:0.28] {9} JOURNEY LENGTH  

LRT_RAIL 0.02 (0.01) [0.01:0.06] {5} URBAN  0.16 (0.01) [0.00:1.40] {429} 

RAIL_CAR 0.33 (0.02) [0.02:0.18] {211} INTER 0.27 (0.02) [0.00:1.80] {314} 

RAIL_BUS 0.18 (0.02) [0.01:0.91] {68} LONG 0.17 (0.03) [0.00:1.74] {79} 

 RAIL_LRT 0.06 (0.02) [0.02:0.11] {6} INTER_METRO 0.20 (0.05) [0.00:0.81] {25} 

RAIL_AIR 0.21 (0.05) [0.03:0.48] {10} SUBURBAN_METRO 0.22 (0.03) [0.00:0.44] {34} 

METRO_CAR 0.14 (0.06) [0.02:0.39] {7} ALL_LENGTHS 0.41 (0.04) [0.00:2.78] {215} 

METRO_BUS 0.21 (0.00) [0.21:0.21] {1} AGGREGATION  

METRO_RAIL 0.10 (0.00) [0.10:0.10] {1} FLOW  0.31 (0.03) [0.00:1.74] {113} 

AIR_CAR 0.18 (0.04) [0.00:0.74] {20} NATIONAL 0.30 (0.02) [0.00:2.78] {433} 

AIR_BUS 0.01 (0.00) [0.00:0.02] {10} REGIONAL 0.25 (0.03) [0.00:0.73] {60} 

AIR_RAIL 0.31 (0.06) [0.02:1.74] {33} URBAN  0.16 (0.01) [0.00:1.40] {363} 

WALK_CAR 0.31 (0.12) [0.02:0.84] {9} INTERNATIONAL 0.11 (0.02) [0.02:0.37] {22} 

WALK_BUS 0.01 (0.01) [0.00:0.02] {5} METROPOLIS 0.04 (0.01) [0.01:0.11] {12} 

WALK_RAIL 0.00 (0.00) [0.00:0.00] {5} OTHER  0.29 (0.03) [0.00:1.20] {93} 

WALK_LRT 0.01 (0.01) [0.00:0.03] {5} WORLD AREA  

WALK_PT 0.06 (0.01) [0.03:0.09] {8} EUROPE  0.27 (0.01) [0.00:2.78] {814} 

CYCLE_CAR 0.34 (0.11) [0.08:0.80] {8} ASIA 0.22 (0.04) [0.02:0.19] {18} 

CYCLE_BUS 0.06 (0.01) [0.02:0.08] {6} AUSTRALIA/NEW ZEALAND 0.14 (0.02) [0.00:0.80] {107} 

CYCLE_RAIL 0.03 (0.02) [0.00:0.12] {6} NORTH AMERICA 0.18 (0.02) [0.00:1.40] {157} 

CYCLE_LRT 0.05 (0.01) [0.01:0.10] {5} MODE SHARE  

CYCLE_PT 0.12 (0.02) [0.05:0.24] {8}  EVIDENCE  0.21 (0.01) [0.00:1.74] {343} 

PT_CAR 0.46 (0.05) [0.00:2.78] {182}  CORRESPONDING AUTHOR 0.28 (0.02) [0.00:2.78] {425} 

DEMAND MEASURE    DATABASES  0.26 (0.03) [0.00:2.11] {169} 

 TRIPS    0.22 (0.01) [0.00:1.91] {758}  ‘GUESSTIMATES’  0.19 (0.02) [0.00:1.40] {159} 

PASS KM  0.31 (0.03) [0.00:2.78] {338}   

 

Note: Figures are mean elasticity, (standard error of mean), [minimum:maximum] and {number of 

observations}. 
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Considerable efforts were made to assemble evidence on Vj/Vi given its critical importance. Fearnley 

et al. (2017) pointed out that cross-elasticity estimates can be obtained from studies which do not 

provide any mode share information, particularly where cross-elasticities are not the main focus of 

the study. Only 343 (31%) of the cross-elasticities could be assigned market shares on the basis of 

the evidence in the report. The absence of market share information was addressed in a number of 

ways. Firstly, the corresponding author was contacted. This provided market share evidence for 425 

(39%) cross-elasticities, although of course some of these might have been ‘guesstimates’. Where 
this evidence was not forthcoming, online databases were searched for mode share information. 

This included EPOMM’s Modal Split Details4, UITP’s Mobility in Cities Database, and the Australian 

Government’s Bureau of Infrastructure, Transport and Regional Economics’ (BITRE) urban passenger 

transport statistics as well as the UK National Travel Survey. This procedure provided market share 

data for a further 169 (15%) cross-elasticities. For the remaining 159 (15%) cross-elasticity estimates, 

a light-touch ‘Delphi survey’ was employed in which three of the co-authors and two external 

experts provided their educated ‘guesstimates’, along with their degree of confidence, for each 

cross-elasticity estimate based on the available background information. The certainty score was 

used to calculate weighted average likely mode shares for each observation.  

 

The year of data collection was also recorded, with the midpoint used in the case of time-series data. 

The year of data collection formed the basis of the GDP per capita figure in purchase power parity 

US dollars.  

 

3.3 Summary Cross-Elasticity Evidence 

 

Table 5 reports summary cross-elasticity values for the combinations of the mode affected, the 

mode altered and the attribute5. Where the sample sizes become small, the reported mean value is 

for all or other remaining attributes. 

 

As far as modal effects are concerned, the cross-elasticities for car demand tend to be low; indeed, 

all the reported means are less than the overall mean of 0.24. In contrast, the cross-elasticities of 

both bus and rail with respect to car are relatively large and mainly above 0.24, although this is not 

so for light rail and metro. This pattern of cross-elasticities reflects the general dominance of car 

mode share. Variation in rail attributes tend to have a larger impact on bus demand than do changes 

in bus on rail demand.  

 

The cross-elasticities indicate that there is close to no competition between air and bus, in contrast 

with the cross-elasticities indicating quite strong interactions between air and rail. The competition 

between air and car is mixed; variations in car have much larger impacts on air than variations in air 

have on car, presumably reflecting relative market shares.   

 

                                                           
4 http://www.epomm.eu/tems/result_cities.phtml?more=1 
5 We have switched the Vehicle Miles (VM) cross-elasticities to be positive for ease of interpretation and in 

anticipation of the modelling where logarithms are taken. 
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Turning to the attributes, in two thirds of cases the JT cross-elasticity exceeds that for IVT, which is 

to be expected, and the JT and IVT cross-elasticities typically exceed the price cross-elasticities even 

for bus users who might be deemed relatively price sensitive. The headway cross-elasticities tend to 

be somewhat lower than the JT and IVT elasticities which is in line with the evidence for equivalent 

own-elasticities (Wardman, 2012) and with headway forming a lower proportion of generalised cost 

than JT and IVT.  

 

We would conclude that there are only a few clear patterns in the results in Table 5, which might be 

a function of confounding effects or the inherent variability of cross-elasticities. Superimposing other 

influential variables would not necessarily provide clearer insights, particularly since it would further 

stratify samples. This is where meta-analysis of the data in its entirety and seeking to identify and 

quantify key relationships has attractions.  The attractions of meta-analysis have been discussed 

elsewhere (Button, 1995; Wardman, 2012; Elvik, 2018)  and are not repeated here except to say that 

some have offered a cautionary note (Goodwin et al., 2004; Hensher, 2008; Button, 2018).  It is to 

such meta-analysis that we now turn.  
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Table 5: Summary of Cross Elasticity Values 

Mode 
Affected 

Mode Altered 

Car Bus Rail LRT Metro Air PT 

Car  - Fare 0.08 (0.013) [41] 
IVT 0.18 (0.073) [11] 
JT 0.04 (0.013) [10] 
Wait 0.10 (0.051) [7] 
Head 0.04 (0.027) [6] 
Other 0.03 (0.008) [10] 

Fare 0.08 (0.021) [37] 
IVT 0.11 (0.044) [17] 
JT 0.14 (0.027) [12] 
Head 0.06 (0.035) [9] 
Other 0.07 (0.028) [13] 

All 0.04 (0.019) [6] All 0.23 (0.13) [4]  Fare 0.04 (0.011) [5] 
Other 0.02 (0.004) [5] 
 

Fare 0.06 (0.020) [33] 
VM 0.03 (0.011) [12] 
JT 0.06 (0.012) [10] 
IVT 0.05 (0.010) [3] 

Bus Fuel 0.19 (0.019) [72] 
TC 0.19 (0.032) [17]  
IVT 0.32 (0.057) [14] 
JT 0.63 (0.126) [10] 
Other 0.43 (0.161) [8] 

 Fare 0.28 (0.052) [28] 
IVT  0.25 (0.068) [10] 
JT 0.65 (0.114) [10] 
Head 0.15 (0.053) [6] 
Other0.21 (0.104) [9] 

All 0.20 (0.043) [8] Fare 0.16 (0.0) [1] Fare 0.01 (0.004) [5] 
JT 0.01 (0.003) [5]  

 

Rail Fuel  0.27 (0.019) [137] 
Park Cost 0.08 (0.028) [19] 
IVT  0.44 (0.073) [15] 
TC 0.29 (0.042) [15] 
Fuel Eff  0.75 (0.129) [12] 
JT 0.94 (0.145) [10] 
Other 0.30 (0.040) [3] 

Fare 0.15 (0.036) [29] 
IVT 0.29 (0.05) [13] 
JT 0.24 (0.091) [10] 
Head 0.09 (0.017) [10] 
Other 0.13 (0.038) [6] 

 All 0.06 (0.017) [6]  Fare 0.28 (0.081) [5] 
JT 0.15 (0.037) [5] 

 

LRT Fuel 0.15 (0.044) [12] 
Other 0.08 (0.015) [2] 

Fare 0.21 (0.036) [5] 
Other 0.12 (0.046) [4] 

All 0.02 (0.010) [5]     

Metro Fuel 0.14 (0.057) [7] Fare 0.21 (0.0) [1] Fare 0.10 (0.0) [1]     

Air Fuel 0.14 (0.035) [7] 
TC 0.12 (0.053) [5] 
JT 0.34 (0.111) [5]  
IVT 0.14 (0.066) [3] 

Fare 0.01 (0.002) [5] 
JT 0.01 (0.004) [5] 

Fare 0.18 (0.024) [13] 
IVT 0.63 (0.198) [8] 
JT 0.35 (0.059) [5] 
Head 0.17 (0.073) [5] 
Other 0.11 (0.077) [2] 

    

Walk Fuel 0.11 (0.029) [4] 
Other 0.47 (0.182) [5] 

All 0.014 (0.004) [5] All 0.0 (0.0) [5] All 0.01 (0.005) [5]   All 0.06 (0.008) [8] 

Cycle All 0.34 (0.115) [8]  All 0.06 (0.010) [6] All 0.03 (0.018) [6] All 0.05 (0.015) [5]   All 0.12 (0.022) [8] 

PT Fuel 0.28 (0.037) [124]  
IVT  0.86 (0.087) [57] 
TC 0.01 (0.00) [1]  

      

 

Note: Figures reported are mean, (standard error) and [number of observations]. 
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4.  META-ANALYSIS OF CROSS-ELASTICITY DATA 

 

We here report the quantitative, regression based, analysis which aims to explain variations in cross-

elasticities across studies by reference to a range of key influential variables. In the process, we 

address issues of a methodological nature concerning how cross-elasticities are estimated and 

explore inter-temporal variations, areas where this approach is well-placed to provide valuable 

insights not always possible by other means. Once we have arrived at estimated relationships that 

are empirically justified and we are comfortable with, we demonstrate the usefulness of the meta-

model by ‘forecasting’ what cross-elasticities would be for a range of illustrative circumstances.   

 

4.1 Method of Analysis 

 

The explanation of variations in cross-elasticities across studies is here based on regression analysis. 

Given a mix of continuous and categorical variables, the standard regression model used to explain 

variations in cross-elasticities (CE) could take the following forms: 
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where there are n continuous variables (Xi)  and p categorical variables having qp categories (Zjk). We 

specify qp-1 dummy variables for a categorical variable of qp categories and their coefficient estimates 

are interpreted relative to the arbitrarily omitted base category.  

 

In the multiplicative model of equation 2, the i are interpreted as elasticities and the exponential of 

a jk denotes the proportionate effect on CE of a particular category relative to its omitted category.  

In the additive model of equation 3, the γi indicate the impact of a one unit change in Xi on CE and 

the λjk denote the additive effect of a particular category relative to the base category.   

 

The categorical dummy variable term (Zjk) can represent various studies in our dataset that provide 

more than one observation6.  It is prudent to consider such ‘study-specific effects’ since it is clearly 
not feasible to assemble data on all factors that might have influenced the cross-elasticities 

estimated in a specific study.  These could be genuine but otherwise omitted effects, representing a 

study in, say, a wealthy locality, or the use of short run rather than long run own-elasticities to 

deduce cross-elasticities, but they might not be, such as discerning the consequences of a lesser 

                                                           
6 There is no difference between a model which removes a study with one observation and one which retains 

it but with a study-specific dummy variables.   
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quality study or the poor specification of some variable such as study-specific market shares. Either 

way, we would rather identify and isolate their effects rather than risk them impacting upon the 

main coefficient estimates. 

 

A more parsimonious way of discerning such study-specific effects is to estimate a random effects 

model which assumes that all the study related unobserved heterogeneity can instead be 

represented by an additional error term related to the studies.   

 

A further consideration is that whilst equation 3 can be directly estimated by ordinary least squares, 

the multiplicative model of equation 2 cannot. Two means of estimating the parameters of equation 

2 are explored. One is the standard approach of taking a logarithmic transformation, whereupon the 

parameters can be estimated by ordinary least squares, and the other approach is to estimate the 

parameters directly using non-linear least squares.  

 

4.2  Comparison of Different Meta-Model Formulations 

 

As will be apparent from the previous discussion, four models have been explored7:  

 

 Model Type I:  Multiplicative model estimated as a logarithmic transformation of equation 2. 

 Model Type II: As Model I but with direct estimation of the parameters of equation 2.   

 Model Type III: Additive model as represented by equation 3. 

 Model Type IV: A random effects multiplicative model.   

 

Identification of what has become our preferred model was an iterative process that involved a 

considerable number of estimations. We initially explored the standard multiplicative model 

estimated as a logarithmic transformation of equation 2 (Model I) since this is a common 

formulation of econometric models in transport and indeed it dominates previous meta-analyses.  

 

At the outset, an issue to address with this functional form is the treatment of the 53 (4.8%) zero 

cross-elasticities in our sample of 1096. It is clearly unacceptable to simply remove them8.  Some of 

the zero cross-elasticities assembled will have resulted from rounding, particularly the 45% of them 

that were deduced, and hence using some low value instead of zero would seem justified. We 

experimented with various low positive values as replacements for the zeros; the variations in the 

parameter estimates and goodness of fit were negligible and we settled upon a value of 0.0025. 

Furthermore, Model II can handle zero cross-elasticities and replacing the 53 zeros with 0.0025 

resulted in a mean absolute variation across all the coefficient estimates of only 0.003! 

 

A wide range of variables were tested, both as main effects and interactions, settling upon an initial 

set of retained variables. We then investigated study-specific effects, commencing by suppressing 

                                                           
7 There is more emphasis here on comparing a range of model forms than in the previous meta-analysis studies discussed 

below.  
8 However, we have to accept that low cross-elasticities are more likely to be removed from reported models as not 

statistically significant and hence will be under-represented.  
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the constant term and specifying the full set of 77 dummy variables for studies that contained more 

than one observation. This indicated that study 39 was ‘average’ and this was subsequently used as 

the arbitrarily omitted base category whereupon the study-specific effects denote how each departs 

from the average. We then progressively removed those with the lowest t ratios, continuing until 

those significant at the 5% level remained.   

 

When we arrived at this model, we returned to the main independent variables and removed those 

that were now insignificant and explored whether previously omitted variables become significant 

when re-instated. This led to only a few amendments, whereupon we tested whether the more 

significant of the previously omitted study-specific variables became significant and removed any 

that were no longer significant, again with few modifications. 

 

We are confident from the many models estimated that we have arrived at a combination of main 

and study-specific effects that are jointly significant. This is our preferred Model I. It is statistically 

superior to the corresponding model that does not contain the study-specific effects given an F 

statistic of 17.57 compared to a critical value at 5% significance of around 1.6 for (20, 1038) degrees 

of freedom. It is also superior to the model containing the full set of 77 study-specific terms given an 

F statistic of 1.17 which for (56,982) degrees of freedom is less than the critical value of around 1.35. 

We can in any event point to similarities in the coefficient estimates regardless of the number of 

study-specific effects. On average, the model with no study-specific effects returns main coefficient 

estimates that are on average only 4% larger than for Model I whilst the corresponding figure for the 

model with the full set of study-specific effects is only 5% lower.   

 

Model I turned out be that preferred from amongst the four set out above and is reported in Table 6 

and discussed in detail in section 4.3. We now discuss how we arrived at this preference over 

Models II, III and IV whose details are reported in the Appendix. The latter all contain the same 

independent variables for ease of comparison except for Model IV where a random effect related to 

study replaces the study-specific dummy variables.  

 

The additive formulation of Model III has an adjusted R2 of 0.417 which is less than the 0.483 for the 

directly estimated multiplicative formulation of Model II for the same dependent variable. The 

additive formulation can therefore be discounted. 

 

Model I and Model II are the two versions of equation 2 which differ in terms of whether the error 

term is additive or multiplicative. When the appropriate adjustment is made to compare the 

goodness of fit measures (Gujarati, 2009), given the dependent variables are different, Model I has a 

revised adjusted R2 of 0.603 which is better than the 0.483 for the directly estimated Model II.  

Furthermore, Model I provides coefficient estimates that are generally far more significant, with 

average t ratios of 5.6 compared to 2.5 for Model II and all 58 coefficient estimates significant at the 

5% level compared to only 28 in the latter model.  Model I is therefore preferred to Model II.  

 

 



15 

 

The remaining comparison is of Model I with the random effects formulation of Model IV. The latter 

achieves a much lower adjusted R2 of 0.521 for the same dependent variable.  Nonetheless, the 

coefficient estimates of Model IV are on average only 16% different from Model I. More formally, a 

Hausman test comparing model IV with a full fixed effects specification causes us to reject the null 

hypothesis that random effects is preferred in favour of a fixed effects model (p < 0.004). Further 

modifications of Model IV to include study specific effects show only a very small increase in 

adjusted R2 and no substantial variation in the parameter estimates. 

 

4.3 Discussion of Preferred Model 

 

Model I is our preferred formulation for a more detailed discussion of the extent to which a range of 

influential variables impacts on cross elasticities, and it is to this discussion of the results presented 

in Table 6 that we now turn.  

 

Diagnostic Features 

 

At the outset of this modelling process, we did not anticipate being able to detect very many 

significant effects given the inherent variability of cross-elasticities and the challenges of estimating 

them.   We therefore consider it impressive that we have been able to recover such a large number 

of statistically significant effects which generally seem credible. In part, the large data set of 1096 

observations will have helped, extending considerably on the 171 in the cross-elasticity meta-

analysis reported by Fearnley et al. (2018).  Our sample compares favourably with the 444 

observations for one of the first meta-analyses of value of time (Wardman, 1998)9, the 258 for the 

first meta-analysis of noise valuations (Bristow et al., 2015), and the samples of 1633 and 427 for the 

most extensive meta-analyses of price elasticities (Wardman, 2014) and time based elasticities 

(Wardman, 2012) respectively. The Hensher (2008) meta-analysis of a range of elasticities covered 

319 observations whilst Holmgren (2007) assembled 186 public transport demand elasticities 

covering five variables and Kremers et al. (2002) identified 76 price elasticities.  Espey (1998) 

reported one of the first transport meta-analyses and covered 640 fuel price elasticities whilst Brons 

et al. (2002) was restricted to 204 air travel price elasticities.  

 

Given that cross-elasticities are variable and not always estimated with a great deal of precision, we 

find the adjusted R2 of 0.633 to be very encouraging10. Indeed, it compares favourably with other 

meta-analysis models having the same logarithmic functional form. For example, the most recent 

value of time meta-analysis (Wardman et al., 2016) covering European wide evidence obtained an 

adjusted R2 of 0.7011 and the meta-analyses of price elasticities (Wardman, 2014) and of time-

related elasticities (Wardman, 2012) both recovered adjusted R2 values of 0.64. Notably though, the 

noise valuation meta-analysis of Bristow et al. (2015) achieved a figure of 0.86 even though these 

are intrinsically variable valuation estimates. The meta-analysis of cross-elasticities between public 

                                                           
9 Subsequent published UK meta-analysis studies increased this to 1116, 1167 and 1749.  
10 This increased to 0.741 when outliers were omitted. 
11 As opposed to 0.78 when outlier observations were removed 
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transport modes reported in the predecessor paper of Fearnley et al. (2018) recovered an adjusted 

R2 of 0.43. Studies that specified linear-additive functions, where the goodness of fit is not directly 

comparable, achieved adjusted R2s of between 0.12 and 0.34 (Hensher, 2008), 0.27 (Kremers et al., 

2002), between 0.22 and 0.68 (Holmgren, 2007), 0.43 (Brons et al., 2002) and between 0.28 and 0.34 

(Espey, 1998).  
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Table 6: Estimated Parameters of Model I  

 

 Variable Coeff (t) Effect  Variable Coeff (t) Effect 

 CONSTANT -2.876 (16.4)  Journey Purpose including 

Interactions with Distance  

and Attribute 

Base = Leisure 

BUSINESS -0.426 (2.6) *0.65 

Attribute 

Base = fuel 

FARE 0.633 (6.2) *1.88 BUSINESS_LONG -1.242 (3.4) *0.29 

IVT 0.895 (8.6) *2.45 BUSINESS_TIME 0.722 (3.4) *2.06 

ACCEGR_TRANSFER 0.726 (4.8) *2.07 LEISURE_TIME 0.359 (3.6) *1.43 

JT 0.833 (6.0) *2.30 Distance Base = Urban LONG -1.498 (8.9) *0.22 

PARKTIME 2.757 (7.8) *15.75 Relative Demand LN_DEMAND_RATIO 0.355 (16.1)              A 

RESTCOST -1.077 (4.2) *0.34 Time Trend TREND_TIME -0.018 (4.8) *0.98   

Modal 

Combinations 

including distance 

interactions 

Base = Car_Bus 

BUS_RAIL 0.777 (4.6) *2.18 TREND_PRICE -0.015 (4.5) *0.98 

BUS_LRTMETRO 1.221 (5.3) *3.39 Study-Specific Effects Study1 (12) -1.266 (8.8) *0.28 

BUS_AIR -2.421 (6.9) *0.09 Study2 (5) -2.257 (4.2) *0.10 

BUS_CAR 0.565 (3.8) *1.76 Study3 (6) 1.574 (5.8) *4.82 

LRT_CAR 1.222 (2.7) *3.40 Study6 (10) 0.988 (3.2) *2.68 

LRTMETRO_BUS 0.853 (3.6) *2.35 Study12 (34) -2.037 (5.8) *0.13 

RAIL_CAR 0.904 (5.5) *2.47 Study17 (5) -1.762 (6.2) *0.17 

RAIL_BUS 0.851 (7.7) *2.34 Study18 (4) -1.460 (2.0) *0.23 

RAIL_AIR 1.460 (4.8) *4.30 Study24 (14) -1.146 (7.3) *0.32 

AIR_BUS -2.608 (11.6) *0.07 Study25 (2) 1.672 (2.4) *5.32 

AIR_RAIL 1.590 (8.8) *4.90 Study26 (48) -0.617 (5.5) *0.54 

WALK_BUSRAILPTLRT -1.084 (6.4) *0.34 Study51 (5) -1.169 (5.0) *0.31 

CYCLE_RAIL -1.221 (4.9) *0.30 Study55 (2) 2.405 (4.0) *11.08 

PT_CAR 0.788 (5.8) *2.20 Study58 (3) 1.906 (4.5) *6.73 

BUS_RAIL_INTER 0.555 (2.7) *1.74 Study63 (8) -1.025 (2.8) *0.36 

CAR_RAIL_INTER 1.033 (8.7) *2.81 Study65(36) 0.818 (6.9) *2.27 

RAIL_CAR_INTER 0.773 (5.2) *2.17 Study66 (22) 1.587 (5.1) *4.89 

Estimation Method 

Base = Deduction 

REGRESSION_CROSS 1.264 (4.2) *3.54 Study74 (7) -1.228 (3.2) *0.29 

REGRESSION_LR 0.855 (6.0) *2.35 Study78 (8) -1.470 (3.5) *0.23 

REGRESSION_ND 0.188 (2.0) *1.21 Study86 (12) -1.369 (5.6) *0.25 

FOURSTAGE 0.381 (3.2) *1.46 Study93 (7) 0.905 (5.1) *2.47 

CHOICE_SP 1.229 (7.3) *3.42 Goodness of Fit ESS / RSS 1815.04 / 968.68 

OBSERVED 1.271 (6.7) *3.56 Adj R2 0.633 

 

Note: Figures in brackets for each study denote the number of cross-elasticities it contained. The effect column is the exponential of the coefficient 

estimate and denotes the multiplicative effect on the cross-elasticity of the variable in question. A The coefficient for LN_DEMAND_RATIO is an elasticity. 
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Whilst all of the coefficient estimates are significant at the widely used 5% level, more noteworthy is 

that 48 (83%) of the 58 coefficient estimates are significant at the 0.1% level of significance.   

 

Since there are so many parameters in our estimated models, a natural concern would be that there 

are inevitably many large correlations of estimated coefficients which might then cast reservations 

upon the robustness of the relevant estimates and be suspected to cause an inflated goodness of fit.  

 

Of the 1653 pairwise correlations of estimated coefficients, it is very encouraging that only four 

exceeded 0.6. These were TREND_TIME and the constant term (-0.77), TREND_PRICE and the 

constant (-0.72), BUS_RAIL and BUS_RAIL_INTER (-0.66), and RAIL_CAR and BUS_CAR (0.64).  Indeed, 

very few were greater than 0.3.  

 

Looking beyond pairwise correlations, tolerance parameters can be estimated for each coefficient 

estimate to determine if multicollinearity across the full set of included variables is an issue. This 

involves multiple regression of each independent variable on all other independent variables. For 

each variable, the term 1-R2 is referred to as the tolerance level, where R2 is the specific regression 

goodness of fit. Whilst as with pairwise correlations there is no formal value that indicates a 

problem, a tolerance level less than 0.2 is considered to indicate strong multicollinearity (O’Brien, 

2007). In our dataset, the only tolerance levels less than 0.2 were for TREND_TIME (0.12) and 

TREND_PRICE (0.15). This is in line with the pairwise correlations and we return to this below.      

 

High levels of collinearity  amongst coefficient estimates is a problem that has to be lived with when 

it occurs; thankfully, despite so many coefficient estimates, we conclude that it is not here a cause 

for particular concern. 

 

The presence and impact of heteroscedasticity was also tested. We used the weighted estimation 

routine in SPSS which estimates a series of models where the observations are weighted by 1/Wλ 

across a pre-specified range of λ and the value of λ is identified which maximises the log-likelihood 

function. Using the cross-elasticity itself as W recovered a λ of -0.35. The adjusted R2 fell to 0.594 but 

the coefficient estimates in the weighted model differed only by 3.1% on average and the t ratios 

were only 2.9% lower on average.  We experimented with using year of data collection, the relative 

demand of the altered and affected modes and the number of cross-elasticity observations per study 

and each provided lower values of λ with on average negligible impacts on coefficient estimates and 
t ratios.  

 

We opted for the White standard errors in SAS that are heteroscedasticity consistent (White, 1980). 

This procedure does not impact on the coefficient estimates or the adjusted R2; the t ratios are on 

average 22% larger than otherwise although making no difference to what is significant at the 5% 

level. 

 

We now discuss in turn the results for variables which were found to have a significant effect on 

cross-elasticities. Main effects as indicated in Table 4 that were examined but were not statistically 
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significant at the usual 5% level were the source of the evidence, the level of aggregation, country 

and world area, the functional form used to estimate cross-elasticities in demand models, the level 

of GDP and the demand measure. Nor did the number of cross-elasticities per study have any effect.  

 

Attribute Type 

 

The base attribute was initially FUEL. The coefficient estimate for total car cost was found to be 

insignificant when it should indicate a larger cross-elasticity than for fuel given that the latter forms 

only a proportion of total car cost. We presume that a contributory factor here is that fuel is the 

main cost determinant of car travel and other costs are either ignored or misperceived. The 

coefficients for Wait time, VM, the number of interchanges and headway were also insignificant. 

Whilst transfer time was marginally insignificant, it had a coefficient very similar to the 

access/egress coefficient and hence the variables were merged (ACCEGR_TRANSFER).  

 

Fare cross-elasticities, all else equal, are relatively large. Given the base includes and is dominated 

by fuel price cross-elasticities, this is hardly surprising on the grounds that decisions makers are 

regarded to take more account of fare costs than fuel costs or total car costs. 

 

The journey time (JT) cross-elasticity should exceed the in-vehicle time (IVT) cross-elasticity but it is 

slightly smaller.  It may be that JT is itself dominated by IVT whilst some studies might have 

reported what was effectively IVT as JT.  Given that IVT and JT are essentially the same for car 

travel, we explored whether the difference between the two cross-elasticities was as expected  

when public transport modes were altered but no incremental effect was apparent. The 

multiplicative effects of IVT and JT on the cross-elasticities are relatively large.  

 

ACCEGR_TRANSFER also has a relatively large cross-elasticity, although lower than for IVT and JT 

which might reflect it forming a lower proportion of generalised cost whilst in some cases the 

variations in these terms can be relatively minor.  

 

PARKTIME has very large cross-elasticities, although this relates to only two observations and too 

much should not be made of this effect.  Cross-elasticities for RESTCOST are lower than for fuel cost.  

This is perhaps unsurprising given that it largely relates to parking cost and not everyone pays to 

park.   

 

It is not always clear whether fuel cost cross-elasticities took into account for fuel efficiency. Given 

that fuel efficiency varies over time, we tested whether the FUEL cross-elasticity was different when 

estimated to time-series data but there was no significant effect.   

 

Modal Combinations 

 

Cross-elasticities measure the degree of competition between specific modes and hence the 

appropriate terms are the combination of the mode impacted and the mode altered rather than 

mode impacted and mode altered separately.  
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Whilst market shares vary by mode, and our investigation of this issue is discussed below, equation 1 

indicates that cross-elasticity variation is not just dependent upon market share variation and hence 

additional modal effects are permissible and their investigation warranted. 

 

Our data set contains 35 modal combinations and, as is clear in Table 4, some have very few 

observations. We therefore combined CAR_LRT and CAR_METRO, BUS_LRT and BUS_METRO, 

LRT_BUS and METRO_BUS, and LRT_RAIL and METRO_RAIL, given that Metro and LRT are not 

dissimilar. We also merged the small samples of walk as an affected mode and the four public 

transport altered modes. As such there are 28 modal combination categories, and coefficient 

estimates for 14 of these are reported in Table 6.  

 

The base category was CAR_BUS. Relative to this, the modal combinations of CAR_RAIL and CAR_PT 

were not significant despite large sample sizes. This is presumably because they each offer broadly 

similar competition to car which is also why the combined CAR_LRT and CAR_METRO segment was 

not significant. CAR_AIR was also insignificant but based on a small sample size.  Given that car is 

seen by many as a very attractive means of transport, it is not surprising that most other cross-

elasticities in Table 6, all else equal, are larger.  

 

Turning to bus as the affected mode, there are significant incremental effects for all categories of 

Table 4.  The competition from rail on bus is larger than for car on bus, as might be expected, and 

around twice that of the base category of CAR_BUS. We would expect LRT and METRO to be here 

providing stronger competition to bus than rail and car and this is apparent in the much larger 

incremental effect. Competition from air on long distance bus is very weak and this is not surprising.  

 

The LRT_CAR cross-elasticity is one of the largest, all else equal, whilst bus is also providing strong 

competition to LRT.  LRTMETRO_Rail was insignificant, which may reflect the fact that rail networks 

are often remote from light rail and metro networks.    

 

The one rail affected cross-elasticity that was not significant was RAIL_LRT, reflecting the generally 

weak competition between these two modes but also perhaps the small sample size. Compared to 

the base of CAR_BUS, the RAIL_CAR and RAIL_BUS cross-elasticities are much larger. Where rail and 

air are available, there is particularly strong competition from air on rail (RAIL_AIR).  

 

The only separate term for Metro as an impacted mode is for the competition from car 

(METRO_CAR) and this was not significant. This contrasts with other cross-elasticities where car is 

the altered mode and may be because where it exists Metro is in a strong competitive position 

relative to car.  

 

There are three categories of air as an affected mode. We see, not unexpectedly, that there is little 

competition from bus on air (AIR_BUS), and indeed it is the lowest of our cross-elasticities, slightly 

lower than BUS_AIR.  AIR_CAR was not significant but, in line with the strong competition implied by 
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RAIL_AIR,  rail has a very strong impact on the demand for air travel (AIR_RAIL). The latter finding 

may reflect the investigation of high speed rail which can compete well with air travel.  

 

There was no impact from car on walking (WALK_CAR) relative to the base. However, the public 

transport modes offer even less competition to walking (WALK_BUSRAILPTLRT).  As for cycling, the 

categories have few observations and combining them did not help matters.  Only one significant 

effect was obtained, relating to CYCLE_RAIL which indicates a very low cross-elasticity which is 

hardly surprising given that rail tends to cater for longer distance urban trips.  The PT_CAR effect is 

in line with the BUS_CAR and RAIL_CAR effects.  

 

In addition to the modal combinations, for the main modes of car, bus and rail, where rail also here  

included the other rail-based modes, terms were specified solely for the mode affected and the 

mode altered. Of these six incremental effects, the only one that was near to significant, with a t 

ratio of 1.2, was that cross-elasticities for car as the mode impacted was 27% lower. These terms 

were therefore not retained. We find it reassuring that there were no additional significant mode 

impacted or mode altered affects over and above the modal combination effects.  We also explored 

whether the modal effects varied by whether the cross-elasticity was price or time-based but none 

were significant. 

 

Whether the modal combination effects varied with distance was also investigated.  Metro, LRT, PT, 

walk and cycle are specific to short distance whilst air is specific to long distance. We therefore 

allowed the cross-elasticities involving combinations of bus, rail and car to vary with distance band. 

The best specification was for INTER excluding LONG12.  

 

The interactions involving bus and car were not significant, which is perhaps unsurprising given that 

analysis of the longer distance bus market is not common whereupon there are few observations 

and this might have contributed to the absence of a significant incremental effect on RAIL_BUS. We 

did though recover three significant incremental effects for inter-urban travel in line with our 

expectation that competition between modes is stronger for less routinely/habitually made inter-

urban trips which tend to involve significantly greater time and cost commitments. 

 

Cross elasticities between bus and rail (BUS_RAIL_INTER) are around 70% larger but it is car and rail 

which become noticeably closer substitutes in the inter-urban market with cross-elasticities 117% 

larger for rail and car (RAIL_CAR_INTER) and 181% larger for car and rail (CAR_RAIL_INTER).   It was 

also hypothesised that there is more consideration of fuel costs for longer distance journeys but 

there was no significant incremental fuel price effect.   

 

When we removed the demand share variable (LN_DEMAND_RATIO) the adjusted R2 falls 

considerably, from 0.633 to 0.550, indicating that the modal combinations cannot of themselves 

discern the impact on cross-elasticities otherwise attributed to variations in demand share.   

 

                                                           
12 As discussed in section 3.2, long is inter-urban where air is relevant. 
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Estimation Method 

 

The base was taken to be the method of deduction using equation 1. Turning first to the regression 

based approaches, REGRESSION_SP was not significant but then it only relates to 16 observations. 

REGRESSION_CROSS relates to even fewer observations but is though significant. It noticeably has a 

large incremental effect, indeed the second largest of all the estimation methods. Whilst this is in 

line with the widely held view that such cross-sectional models recover inflated elasticities because 

of their failure to distinguish cause and effect, we would not expect such simultaneity to relate to 

the attributes of other modes. There is also a widely held view that cross-sectional models recover 

long run effects. Nonetheless, this is not a mainstream method and having isolated its effect it can 

be ignored.  

 

Of much more importance are the regression results based on the more widely accepted analysis of 

data with a time series dimension13. REGRESSION_LR has a larger impact than REGRESSION_ND 

which in turn is larger than the insignificant and hence omitted REGRESSION_SR.  These relationships 

are consistent with expectations, with the long run cross-elasticities 2.35 times the short run cross-

elasticities.  This is broadly in line with a ratio in the range 1.7 to 2.0 for own-price elasticities in the 

meta-analysis of Wardman (2014) and the range 1.9 to 2.4 for own-time elasticities in the meta-

analysis of Wardman (2012).  

 

We note that the insignificance of the REGRESSION_SR term implies correspondence with the 

DEDUCED cross-elasticities. This would seem to indicate that, in general, the deduced method of 

equation 1 used own-elasticities more akin to short run than long run. With hindsight we should 

have identified whether the deduced method used short-run, non-defined or long-run cross-

elasticities, although it would not have been readily apparent in all cases.  

 

FOURSTAGE has an effect between the long run and short run. This seems credible, since such 

models will include more than just a short term response but they do not explicitly address dynamic 

behavioural response.  

 

The CHOICE_RP and CHOICE_RPSP terms were both insignificant, therefore aligning themselves with 

short run effects from regression based approaches. It seems credible that choice models based on 

actual behaviour yield short run effects.  It is not surprising that CHOICE_SP indicates larger cross-

elasticities, which are here also somewhat larger than the REGRESSION_LR cross-elasticities, given 

the incentive in purely hypothetical exercises to exaggerate behavioural responses for strategic 

reasons. In support of this, the Wardman (2014) meta-analysis of own-price elasticities found SP 

choice based elasticities to be around twice those of equivalent RP values whilst the Wardman 

(2012) meta-analysis of time based own-elasticities found the ratio to be in the range 25% to 70% 

larger, although Kremers et al. (2002) and Hensher (2008) are less clear-cut in this regard. In the 

specific context of cross-elasticities, the Fearnley et al. (2018) meta-analysis reports SP cross-

elasticities to be twice the RP equivalents.  

                                                           
13 Almost all of these were from models with a constant elasticity specification.     
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The OBSERVED method yields what would seem to be an implausibly large incremental effect, 

although with a very small sample. It is though not a mainstream approach, and it may be that the 

impacts of other unaccounted for changes at the time have a confounding effect. It is sufficient here 

that we have isolated the large effect.   

  

For the cross-elasticities obtained from time series regression, a further distinction can be made by 

the periodicity of the demand data upon which the models were estimated. Three terms were 

defined (REG_LR_LONGER, REG_SR_LONGER and REG_ND_LONGER) as explained in section 3.2. The 

cross-elasticities might be expected to be larger where the time period is longer, particularly for 

short run cross-elasticities, but none of these interactions were significant.  

 

Journey Purpose 

 

We distinguish four journey purposes of commuting, business, leisure and all as discussed in section 

3.2. Leisure was taken as the arbitrary base. Surprisingly, given our ability to obtain statistically 

significant effects for a number of other variables and the importance of journey purpose in 

transport planning and behavioural analysis, along with the large number of observations for each 

journey purpose, we were only able to discern an effect for business travel.   

 

BUSINESS was found to have cross-elasticities around two-thirds of other purposes. Whilst business 

travellers can be reasonably expected to have a lower sensitivity to price, given that the company 

pays, they might also be expected to be more sensitive to time.  We therefore specified interaction 

effects for the various journey purposes and time-based cross-elasticities.   

 

Business travellers were indeed found to have a greater sensitivity to time variables 

(BUSINESS_TIME) and this very much offsets the BUSINESS term.  The time-based cross-elasticities 

were also found to be larger for leisure travel (LEISURE_TIME). This is attributed to commuters being 

more captive to their mode.  

 

The journey purpose effect might vary with journey distance. We therefore specified incremental 

effects for inter-urban and long distance for each journey purpose. The only significant effect was 

that those travelling long distance on business had very low cross-elasticities (BUSINESS_LONG) and 

are apparently more captive to their chosen modes.  

 

Journey Length 

 

It can be readily appreciated that cross-elasticities are different between urban and longer distance 

trips. Urban trips tend to be more routine and involve lower generalised costs, whereby habitual 

behaviour is more likely, whilst the car is often the overwhelmingly attractive option where 

available14 and users of other modes tend to be more captive. In contrast, longer distance trips are 

                                                           
14 Indeed, many routine urban trips by car would simply not be made if the car was not available.  
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less frequently made and involve larger investments of time and money, whereupon decisions might 

have a more considered basis.  

 

Apart from the inter-urban effects on the modal-combination variables (BUS_RAIL_INTER, 

CAR_RAIL_INTER, RAIL_CAR_INTER) and the interaction of business and long distance 

(BUSINESS_LONG), which have already been discussed,  the only other significant effect obtained 

was that  long distance trips (LONG) have very much lower cross-elasticities. On such trips, different 

modes are effectively not substitutes for each other, and mode specific factors are key to travel 

behaviour. 

 

As is apparent in Table 4, we also distinguished both suburban and inter-urban flows that were to 

major metropolis. No significant effects were discerned for interaction terms for such flows. Whilst 

the sample sizes are not large, we would point out that on such flows the market shares tend to be 

very much different, with a stronger performance of public transport and particularly rail, and the 

relative demand term might be discerning this.   

 

Relative Demand 

 

This is perhaps the most critical variable of all those investigated. It is widely regarded that cross-

elasticities are dependent upon market share and indeed equation 1 demonstrates this.  The 

absence of any discernible effect here could be seen as a serious shortcoming of our explanatory 

model and hence considerable effort was made to ensure that we had market share estimates for 

the affected and altered modes for each observation in our dataset.  

 

The term LN_DEMAND_RATIO is specified as the logarithm of the ratio of the demand of the altered 

mode and the affected mode. Hence its coefficient estimate should be positive, which it is, and it is 

estimated very precisely.   

 

Incremental effects were specified to represent where the market share information was 

subsequently obtained from corresponding authors, databases or as best guesstimates as discussed 

in section 3.2. The incremental coefficients and t ratios were 0.094 (2.2), 0.047 (0.9) and -0.054 (0.7) 

respectively, with the base coefficient estimate being 0.261 (6.2). The effects from databases and 

guesstimates can be discounted as far from significant and it turned out that once these were 

removed then the corresponding author effect became marginally insignificant.  In the light of this, 

and that the variations anyway are relatively minor, we have not retained any incremental effects 

and are left with an average across all categories of 0.355 (16.1).  The only other evidence we can 

compare against is Fearnley et al. (2018) which for a broadly comparable model in terms of the 

inclusion of modal combinations recovered a figure of 0.459 (t=5.9) although the latter related only 

to competition between public transport modes and has a much larger confidence interval.    

 

We also explored whether the relative demand impact was different for inter-urban and long 

distance trips but no significant incremental effects were apparent.  
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Whilst we would expect LN_DEMAND_RATIO to equal one if both ηjj and δji of equation 1 were being 

accurately discerned elsewhere in the model, this will not be the case. In particular, it might be 

expected that both ηjj and δji fall as mode j becomes relatively more attractive and Vj/Vi increases. 

This would serve to reduce the LN_DEMAND_RATIO coefficient to be less than one. A figure of 0.355 

seem credible and Table 7 illustrates how different levels of LN_DEMAND_RATIO would impact on 

the implied cross-elasticities. 

 

Table 7:  Impact of Vj/Vi Ratio on Implied Cross-Elasticities 

 

DEMAND_RATIO Multiplier 

10 2.26 

5 1.77 

2.5 1.38 

1 1.00 

0.4 0.72 

0.2 0.56 

0.1 0.44 

 

It could be argued that the LN_DEMAND_RATIO coefficient is less than one because other variables, 

and particularly the modal combinations, are also discerning market share effects. However, when 

we removed all the modal combinations, the LN_DEMAND_RATIO coefficient estimate increased 

only slightly to 0.401 (17.7) but the adjusted R2 was considerably lower at 0.469.     

 

Time Trends 

 

We have examined whether, all else equal, cross-elasticities vary over time, proxying for inter-

temporal influences that we are unable to include in our model. To support this, there is a 

reasonable spread of cross-elasticities across years; 1961 is the first year in our data set with 16% of 

observations up to 1990, 29% between 1991 and 2000, 43% between 2001 and 2010, and 12% post 

201015.  The time trend enters without logarithmic transformation and hence the exponential of its 

coefficient indicates the annual multiplicative effect on the cross-elasticity.  

 

If there are trend effects, it would seem sensible to allow for differences between time and price 

based cross-elasticities. Statistically significant negative effects were discerned for both, with the 

time (price) based cross-elasticities estimated to be falling by on average 1.8% (1.5%) per year.  

 

As far as lower price-based elasticities over time are concerned, this could stem from increasing real 

incomes. Trends to shorter working weeks, part time working, more labour saving devices and the 

increasing ability to undertaken worthwhile activities during travel time would contribute to lower 

time-based cross-elasticities. 

                                                           
15 The years here relate to the data upon which the cross-elasticities were estimated, as opposed to the year of 

publication covered in Table 2. 
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Some though may not find these arguments convincing, and cite the more hectic pace of life, travel 

conditions being more congested, crowded and unreliable, and a tendency for transport prices to 

increase in real terms.  It should though be pointed out that the estimated trends are not the 

spurious outcome of the correlations we have noted, since specifying a single time trend recovered a 

coefficient estimate of -0.016 (5.0) which is between the separate trends for time and price-based 

cross-elasticities and the tolerance parameter for this term was 0.61. 

 

Another potentially undesirable feature is that the variation is large over the entire period of the 

data set. Compared to 1961, the 2017 price-based elasticities would be 57% lower and the time-

based elasticities would be 64% lower. However, these reductions are much lower, at 23% and 26% 

respectively, relative to 2000 which would cover around a half of our data.    

 

The model can be used if so desired to predict cross-elasticities without allowing any time trend 

effect. To do this, the year can be set at its weighted average in the data set, which is 2000 (trend = 

40) for both time and price-based cross-elasticities.  

 

Study-Specific Effects 

 

Study-specific effects were specified because there may well be influences on estimated elasticities 

that we cannot observe or account for. In particular, meta-analysis has been subject to concerns and 

criticism that the selection of evidence to include has a material impact on the results obtained 

(Melo et al., 2009; Button, 2018) . The approach taken here is to err on the side of including 

evidence we have uncovered and then to let the analytical process address matters. This was 

apparent in our discussion in section 3.1 but critical to ‘letting the data decide’ is inspection of 

residuals, which is discussed below, and the inclusion of study-specific dummy variables that we 

here discuss16.    

 

Model I contains 20 significant study-specific effects which represent 26% of the 76 eligible studies 

and 23% of the cross-elasticity observations.  The estimated study-specific effects average -0.248 but 

this falls to -0.094 when weighted by sample size across all 93 studies. Thus a weighted average 

constant across all studies would equal -2.97017 and would make very little difference to the cross-

elasticities that would be obtained from the estimated model in predictive mode. Nonetheless, it is 

worth exploring whether these study-specific effects are discerning factors that we should be aware 

of.  12 studies with few observations can be discounted (Studies 2, 3, 17, 18, 25, 51, 55, 58, 63, 74, 

78 and 93), which in any event have a weighted average of -0.04, with a focus on the remaining 8 

studies where some interesting observations can be made. 

 

                                                           
16 We should point out that we also specified country-specific and area of the world-specific dummy variables but none 

were significant.  
17 The corresponding model without any study-specific effects returned a constant of -3.211 (18.5). 
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Study 1 (Acutt and Dodgson, 1996) used equation 1 to deduce cross elasticities. What is notable 

though is that the results are based on a Delphi survey of diversion factors and market shares. The 

same method is used in Study 24  (Dodgson, 1986) and the diversion factors were guessed.  

 

Study 6 (ARUP and OXERA, 2010)  provided cross elasticities of rail demand with respect to fuel 

price, distinguishing short and long run and different types of flow. The cross-elasticities are very 

high, averaging 0.64 for short run and 1.03 for long run. It should be pointed out that this major 

study estimated rail own elasticities to GVA, employment, car ownership, fare, journey time and late 

arrival time and none were deemed sufficiently reliable to be adopted in official forecasting practice 

in Great Britain.18  

 

The multiplier in Study 12 (Blanchard, 2009), which is a published undergraduate thesis, implies very 

low cross-elasticities.  All observations related to cross-elasticities of the demand for public transport 

modes with respect to fuel price in numerous United States cities. These may be seen to be atypical, 

with users generally captive to their chosen mode and cross-elasticities lower than might be 

expected on the basis of relative market shares.  

  

The study-specific multiplier in Study 26  (Douglas et al., 2003) seems to stem from essentially zero 

cross-elasticities between public transport modes and car for almost half the observations whilst the 

cross-elasticities involving rail and bus were less than 0.15. We note here the use of a joint RP-SP 

approach and Brisbane might not be regarded as an ideal context for RP data or indeed the 

derivation of cross-elasticities given the dominance of car.  

 

Study 65 relates to the Danish national model (Rich and Hansen, 2016). Whilst this was based on RP 

data, 9 of the 36 observations in our data set had cross-elasticities related to car as an alternative 

that all exceeded 0.6, split equally over public transport as a generic mode, walk and cycle, with 

mean values respectively of 0.91, 0.76 and 0.73.     

 

Study 66 (Rich and Mabit, 2011) is a four-stage transport model that covers European wide trips  

Given that the pan-European databases that underpin such models are less reliable than their 

national or study-bespoke equivalents, we might expect the results to be less reliable.   

 

The low multiplier for Study 86  (Wardman et al., 1997) seems to be attributable to eight low cross-

elasticities for car as the affected mode which averaged 0.05 for inter-urban trips. 

 

It would seem that the study-specific effects have discerned unaccounted for factors which on 

balance should not be allowed to impact on cross-elasticities forecast by the meta-model. The 

illustrative forecasts in section 5 do not therefore include the study-specific effects, although as 

already pointed out the net effect on the constant would be negligible. 

 

                                                           
18 Ironically, this study’s car cost cross-elasticities were adopted in version 5 of the Great Britain railway 

industry’s Passenger Demand Forecasting Handbook in 2013, although they were dropped from the 
subsequent version 6 released in 2018. 
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Quality Issues 

 

We here explore quality issues in a little more detail, over and above the study specific effects that 

have been isolated, given that a criticism levelled at meta-analysis is that it does not control for 

inevitable differences in the quality of the data assembled. For a number of reasons, we believe that 

the results of our meta-model are robust to issues of data and analysis quality.  

 

Firstly, when the 5% of ‘outlier’ observations where the standardised residual lies outside the range 

±1.96, which can be taken to represent the poorest quality observations, and even though this 

increased the adjusted R2 appreciably to 0.741, it made very little difference to the coefficient 

estimates with a mean (absolute) deviation relative to the initial estimates of -0.02 (0.13). 

 

Secondly, inspection of the outlier observations did not indicate any obvious quality related issues or 

indeed potential omitted variables over and above the insights from the study-specific effects19.   

 

Thirdly, it can be argued that quality issues will have a random effect on the estimated cross-

elasticities. Why should poor quality evidence produce systematically lower or higher cross-

elasticities? If quality is a random effect, it would in large samples as here be contained within the 

error term and not bias our coefficient estimates even in the absence of study specific effects.  

 

Fourthly, some observers would argue that the best quality evidence is that reported in papers 

published in peer-reviewed academic journals. No significant difference between cross-elasticities 

sourced from journal articles and other means of dissemination was detected.  

 

Finally, whilst the precision of cross-elasticity estimates could be taken as a measure of quality, and 

more emphasis placed upon more precise estimates, few studies report variances of the cross-

elasticity estimates. Sample size might then be suggested as a proxy for precision but this is either 

meaningless, as with deduced or four-stage model cross-elasticities, or not directly comparable, as 

between regression and choice models. We have though explored and allowed for heteroscedasticity 

and found it to have a minor effect. 

 

5. ILLUSTRATIVE IMPLIED CROSS-ELASTICITIES AND DEMAND FORECASTS 

 

The estimated meta-model is here used to provide illustrative ‘forecasts’ of price (fuel or fare) and 

IVT cross-elasticities for a range of circumstances20. These are set out in Table 8 and relate to the 

main modes of car, bus and rail, primarily for a variety of urban trip features but with extension to 

inter-urban trips, and for the three main journey purposes.   

 

                                                           
19 Recall that the study-specific effects do not cover the 16 (17%) studies where there is only one cross-elasticity 

observation and hence the residual would serve the purpose of identifying a ‘rogue’ observation. 
20 Of course, implied cross-elasticities can be calculated for other attributes in our meta-model but we restrict our 

discussion here to the most important. 



29 

 

A key factor in using our meta-model to provide cross-elasticity estimates is the relative demand of 

different modes. We here use summary figures from our data set, and for urban trips have selected 

the approximate 25th, 50th and 75th percentiles for each of  VC/VB, VR/VB and VC/VR. These figures are 

4, 7 and 14 for VC/VB, 0.4, 0.9 and 1.2 for VR/VB and 3, 10 and 16 for VC/VR
21. Of course, a more 

extreme set of values could be used, such as a very high ratio of VR/VB and a very low ratio of VC/VR 

for commuting trips into major metropolis. Forecasts are also provided for inter-urban trips but only 

for the mean ratios in our dataset which are 21 for VC/VB, 5 for VR/VB and 4 for VC/VR.  

 

The illustrative cross-elasticities are generally long run, based on the explicitly long run coefficient 

(REGRESSION_LR) and denoted LR in Table 8. Short run (SR) variants are also provided and these are 

based on the base estimation method in Table 6.  The final feature is that the cross-elasticity 

forecasts are provided for the most recent year in the data set of 2017 but, given previous 

discussions regarding the time trends, a set of figures for the midpoint year of 2000 is also provided.  

 

We are interested in forecasting CE of equation 2 but our estimated meta-model is a logarithmic 

transformation of it.  If we simply take the exponential of the predicted value of our estimated 

model, we will introduce a source of bias. This is because if the error term in our estimated model 

follows a normal distribution, then the cross-elasticity will follow a log-normal distribution and its 

mean value will include the variance of the error term. Ignoring this latter term, which must be 

positive, would lead to forecasts that are under-estimates. The degree of error is an empirical issue.  

A general procedure for correcting for the error (Wooldridge, 2013), which is not dependent upon 

the errors being normally distributed, is to regress the actual cross-elasticities on the exponentiated  

cross-elasticities predicted by the meta-model and to suppress the intercept. The resulting slope 

coefficient is used to scale the ‘naïve’ cross-elasticity forecasts implied by our estimated meta-

model.  Given that the estimated slope coefficient was 1.06 (t=38.8), the adjustment would make 

little difference here and therefore we have not applied it.  

 

The illustrative cross-elasticities exhibit an appreciable amount of variation, which is not only to be 

expected given the results of our meta-model but is in line with expectations surrounding cross-

elasticities. The market share effect is clearly apparent for urban trips, and particularly drives the 

inter-urban cross-elasticities where market shares are somewhat different, whilst the cross-

elasticities for IVT generally exceed those for price and the long run are noticeably larger than their 

short run counterparts. The cross-elasticities relating to car demand are generally low, especially so 

for urban trips, indicating that improvements to the cost and journey time of public transport modes 

might not be an efficient means of reducing the dependence upon car.  

 

The pattern of implied cross-elasticities appears to be sensible. The variation is large enough to be in 

line with expectations but without implying extreme cross-elasticities that would cast doubts upon 

the estimated meta-model; there is no guarantee of such desirable properties!  

 

                                                           
21 Given these summary ratios are obtained from different sets of cross-elasticity evidence, it would be most unlikely that 

they are ‘internally consistent’ in the sense of (VC/VB) /  (VR/VB) =  VC/VR . They are purely illustrative and other figures could 

have been used.  



30 

 

Table 8: Illustrative Forecast Cross-Elasticities 

  Price IVT 

 Vc/VB VR/VB VC/VR Bus:Car Bus:Rail Rail:Car Rail:Bus Car:Bus Car:Rail Bus:Car Bus:Rail Rail:Car Rail:Bus Car:Bus Car:Rail 

Commuting  Urban LR  2017 4 0.4 3 0.16 0.17 0.21 0.34 0.06 0.07 0.33 0.18 0.42 0.38 0.07 0.08 

Leisure Urban LR 2017 4 0.4 3 0.16 0.17 0.21 0.34 0.06 0.07 0.48 0.26 0.61 0.54 0.10 0.11 

Business Urban LR 2017 4 0.4 3 0.11 0.11 0.13 0.22 0.04 0.05 0.45 0.25 0.57 0.51 0.10 0.11 

Commuting  Urban LR 2017 7 0.9 10 0.20 0.22 0.32 0.26 0.05 0.05 0.41 0.24 0.65 0.28 0.06 0.05 

Leisure Urban LR 2017 7 0.9 10 0.20 0.22 0.32 0.26 0.05 0.05 0.58 0.35 0.93 0.40 0.08 0.07 

Business Urban LR 2017 7 0.9 10 0.13 0.15 0.21 0.17 0.03 0.03 0.55 0.33 0.87 0.38 0.08 0.07 

Commuting  Urban LR 2017 14 1.2 16 0.25 0.25 0.37 0.23 0.04 0.04 0.52 0.27 0.77 0.26 0.05 0.04 

Leisure Urban LR 2017 14 1.2 16 0.25 0.25 0.37 0.23 0.04 0.04 0.75 0.39 1.10 0.37 0.07 0.06 

Business Urban LR 2017 14 1.2 16 0.17 0.16 0.24 0.15 0.03 0.03 0.70 0.36 1.03 0.34 0.06 0.06 

Commuting  Urban LR 2000 7 0.9 10 0.26 0.29 0.41 0.33 0.07 0.06 0.55 0.33 0.88 0.38 0.08 0.07 

Leisure Urban LR 2000 7 0.9 10 0.26 0.29 0.41 0.33 0.07 0.06 0.79 0.47 1.26 0.55 0.11 0.10 

Business Urban LR 2000 7 0.9 10 0.17 0.19 0.27 0.22 0.04 0.04 0.75 0.44 1.19 0.52 0.11 0.09 

Commuting  Inter LR 2017 21 5 4 0.29 0.71 0.49 0.14 0.04 0.18 0.60 0.78 1.02 0.15 0.04 0.20 

Leisure Inter LR 2017 21 5 4 0.29 0.71 0.49 0.14 0.04 0.18 0.86 1.12 1.46 0.22 0.06 0.29 

Business Inter LR 2017 21 5 4 0.19 0.47 0.32 0.09 0.02 0.12 0.81 1.05 1.37 0.21 0.05 0.27 

Commuting  Urban SR 2017 7 0.9 10 0.08 0.09 0.13 0.11 0.02 0.02 0.17 0.10 0.28 0.12 0.02 0.02 

Leisure Urban SR 2017 7 0.9 10 0.08 0.09 0.13 0.11 0.02 0.02 0.25 0.15 0.40 0.17 0.04 0.03 

Business Urban SR 2017 7 0.9 10 0.05 0.06 0.09 0.07 0.01 0.01 0.23 0.14 0.37 0.16 0.03 0.03 

Note: The cross-elasticity headings denote mode affected:mode altered. The within-row demand ratios are simply combined as the set of lowest through to 

the set of highest given that there is no required consistency between them.   The  study-specific effects estimated are not  used in producing these  implied 

cross-elasticities.
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Whilst it is not the purpose of this paper to evaluate policy measures that impact on the competitive 

situation between different modes, but rather to provide the means by which this might be done, 

we here provide some illustrative demand forecasts based on some implied cross-elasticities.  

 

The results indicate that ‘carrot incentives’ can be expected to be minor in terms of reducing car 
demand. Let us take the commuting market with ‘typical’ VC/VB of 7 and VC/VR of 10. A 25% 

reduction in bus times, due to say bus priority measures, or a 25% reduction in bus fares, due to 

increased subsidy, would reduce car demand by only around 1.5% in the long run. The same would 

apply for equivalent improvements to trains. Indeed, if reductions in car demand in this market 

segment of just 10% were required, the required reduction in one of these variables would need to 

exceed 85%22. In major urban contexts where public transport performs better than these demand 

ratios would imply, yet where there is a greater need to reduce car use, the demand switching 

would be larger but not majorly so. 

 

As for ‘stick disincentives’ to reducing car use, suppose a congestion charge was introduced that 

increased peak period car costs by 33%, which is certainly within the bounds of realism. It would be 

forecast to increase rail and bus demand by modest amounts of around 10% and 6% respectively. 

However, it would take only around half this level of increase in car in-vehicle time to achieve the 

same transfer to the public transport modes. Nonetheless, these forecast demand switches would 

be lower in the urban contexts where congestion pricing might be introduced which is where public 

transport shares are larger.  

 

6.  CONCLUDING REMARKS 

 

Cross-elasticities are becoming increasingly important to policy makers and forecasters given greater 

interest in multi-modal transport planning in general and more specifically the challenges of limiting 

travel by less sustainable means.    

 

There have though been few published reviews of cross-elasticity evidence, in contrast to own-

elasticities, and most are now dated. We here report what is, as far as we are aware, by far the most 

extensive review and meta-analysis of cross-elasticity evidence.   

 

When we embarked upon this study, we feared that we might uncover little evidence and would 

struggle to discern significant explanators of cross-elasticities particularly given that they are 

inherently variable. What has though emerged is a robust meta-model whose parameters are stable 

across different formulations with a sample size and goodness of fit that compare favourably with 

other transport meta-analysis studies covering own-elasticities and valuations which might be 

regarded to be inherently easier to explain. Indeed, our preferred model contains 37 parameters 

over and above the 20 study-specific effects, and over 80% of the estimated coefficients are 

significant at the 0.1% level with all others significant at least at the conventional 5% level.  

                                                           
22 Although of course the cross-elasticities might be expected to be larger in such circumstances! 
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The large number of influences on cross-elasticities discerned by the meta-model are mostly in line 

with expectations. These covered attribute, the modes affected and altered, the estimation method, 

journey purpose, distance, time trend and relative market share. Notable findings are that: 

 

 The meta-model can produce cross-elasticity forecasts for 12 attributes23 and 35 

combinations of mode affected and mode altered. 

 Cross-elasticities do vary by estimation method, with long run elasticities exceeding those 

where no explicit account is taken of dynamic response, and there are concerns raised 

about cross-elasticities from SP choice models which exceed by some margin those having a 

basis in actual behaviour. These findings are consistent with evidence from other meta-

analysis studies.  

 The meta-model’s estimated cross-elasticities do, as would be hoped, depend upon the 

relative demand of relevant modes, with the precise combination of mode affected and 

mode altered providing an additional influence. 

 There is some variation by journey purpose. 

 Cross-elasticities for car demand are relatively low, given its dominant position, and there is 

evidence to support larger cross-elasticities for inter-urban trips which are less routinely 

made.   

 Cross-elasticities to time-based attributes tend to exceed those for price-based attributes. 

 There is evidence that cross-elasticities have been falling over time. 

 

The reported meta-model can be used to provide cross-elasticity estimates where none exist or to 

serve as benchmarks against which to evaluate emerging evidence. We have provided illustrative 

cross-elasticities, dependent upon attribute, mode, journey purpose, estimation method, year and 

whether a journey is urban or inter-urban, and these seem plausible across a wide range of different 

circumstances.  
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APPENDIX:  OTHER CANDIDATE META-MODELS 

 

  II III IV 

 

 

Standard Multiplicative Model 

Direct Estimation 

Additive 

Model 

Random Effects 

Multiplicative Log 

Transform 

  Coeff (t) Effect Coeff (t) Coeff (t) Effect 

 CONSTANT -2.516 (11.3)  -0.014 (0.4) -3.249 (11.0)  

Attribute 

Base = fuel 

FARE 0.348(2.4) *1.42 0.226 (6.6) 0.672 (5.0) *1.96 

IVT 0.669 (3.7) *1.95 0.162 (5.0) 0.823 (6.2) *2.28 

ACCEGR_TRANSFER 0.203 (0.6) *1.23 0.052 (2.2) 0.644 (3.3) *1.91 

JT 0.877 (3.5) *2.40 0.078 (2.1) 0.647 (3.2) *1.91 

PARKTIME 2.784 (2.5) *16.18 0.939 (5.1) 2.530 (3.3) *12.56 

RESTCOST -0.888 (1.9) *0.41 -0.143 (3.8) -1.176 (4.8) *0.31 

Modal Combinations including 

distance interactions 

Base = Car_Bus 

BUS_RAIL 0.895 (3.6) *2.45 0.053 (1.6) 0.806 (4.2) *2.24 

BUS_LRTMETRO 0.738 (1.6) *2.09 0.069 (1.5) 1.280 (3.8) *3.60 

BUS_AIR -3.804 (0.2) *0.02 -0.153 (3.3) -2.539 (7.9) *0.08 

BUS_CAR 0.799 (4.9) *2.22 0.147 (4.5) 0.529 (3.4) *1.70 

LRT_CAR 0.860 (1.7) *2.36 0.196 (3.3) 1.077 (3.4) *2.94 

LRTMETRO_BUS 0.586 (1.3) *1.80 0.018 (0.6) 0.837 (2.6) *2.31 

RAIL_CAR 1.098 (6.5) *3.00 0.234 (6.6) 0.647 (3.8) *1.91 

RAIL_BUS 0.502 (2.5) *1.65 0.050 (2.2) 0.818 (5.6) *2.27 

RAIL_AIR 0.260 (0.5) *1.30 0.099 (1.4) 1.359 (4.3) *3.89 

AIR_BUS -3.290 (0.2) *0.04 -0.179 (5.4) -2.735 (8.5) *0.06 

AIR_RAIL 0.936 (4.6) *2.55 0.183 (3.2) 1.153 (4.7) *3.17 

WALK_BUSRAILPTLRT -1.455 (0.9) *0.23 -0.082 (2.8) -1.000 (4.5) *0.37 

CYCLE_RAIL -0.813 (0.3) *0.44 -0.061 (2.1) -1.108 (2.7) *0.33 

PT_CAR 1.003 (6.8) *2.73 0.268 (7.0) 0.688 (4.0) *1.99 

BUS_RAIL_INTER 0.215 (0.9) *1.24 0.166 (3.1) 0.447 (1.7) *1.56 

CAR_RAIL_INTER 0.393 (1.5) *1.48 0.040 (1.7) 0.945 (5.2) *2.57 

RAIL_CAR_INTER 0.225 (1.9) *1.25 0.143 (4.0) 0.893 (5.8) *2.44 
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Estimation Method 

Base = Deduction 

REGRESSION_CROSS 0.670 (2.9) *1.95 0.274 (2.6) 1.552 (3.4) *4.72 

REGRESSION_LR 0.624 (5.2) 1.87 0.199 (4.6) 0.868 (4.6) *2.38 

REGRESSION_ND 0.235 (1.9) *1.26 0.046 (2.0) 0.365 (2.3) *1.44 

FOURSTAGE 0.508 (4.2) *1.66 0.140 (4.4) 0.350 (0.9) *1.42 

CHOICE_SP 0.799 (5.9) *2.22 0.219 (5.9) 1.106 (4.9) *3.02 

OBSERVED 0.900 (3.3) *2.46 0.225 (3.0) 1.203 (2.9) *3.33 

Journey Purpose including 

Interactions with Distance and 

Attribute 

Base = Leisure 

BUSINESS 0.337 (3.3) *1.40 0.081 (1.4) -0.489 (3.6) *0.61 

BUSINESS_LONG -1.260 (1.8)  *0.28 -0.255 (3.5) -0.997 (3.4) *0.37 

BUSINESS_TIME 0.254 (2.1) *1.29 0.196 (2.2) 0.733 (3.6) *2.08 

LEISURE_TIME 0.277 (3.7) *1.32 0.105 (2.9) 0.312 (2.4) *1.37 

Distance Base = Urban LONG -0.667 (3.4) *0.51 -0.245 (5.8) -0.369 (1.2) *0.69 

Relative Demand DEMAND_RATIO 0.127 (6.1)  0.048 (8.8) 0.372 (15.6)  

Time Trend TREND_TIME -0.008 (1.5) *0.99 0.001 (1.3) -0.010 (1.3) *0.99 

TREND_PRICE -0.009 (2.0) *0.99 -0.002 (4.1) -0.012 (1.6) *0.99 

Study Specific Effects Study1 (12) -1.391 (0.8) *0.25 -0.085 (2.7)  

Study2 (5) -1.407 (0.5) *0.24 -0.082 (2.0) 

Study3 (6) 0.540 (0.6) *1.72 0.040 (1.0) 

Study6 (10) 0.722 (5.1) *2.06 0.419 (3.3) 

Study12 (34) -1.284 (2.1) *0.28 -0.169 (5.9) 

Study17 (5) -1.430 (1.2) *0.24 -0.295 (6.6) 

Study18 (4) -0.771 (0.7) *0.46 -0.146 (2.8) 

Study24 (14) -2.032 (0.2) *0.13 0.046 (1.8) 

Study25 (2) 1.043 (1.2) *2.84 0.226 (1.4) 

Study26 (48) -0.447 (2.0) *0.64 -0.077 (2.8) 

Study51 (5) -1.029 (1.1) *0.36 -0.287 (7.4) 

Study55 (2) 2.173 (6.4) *8.79 0.771 (2.0) 

Study58 (3) 0.671 (0.8) *1.96 0.127 (2.2) 

Study63 (8) -1.240 (1.1) *0.29 -0.130 (1.7) 

Study65(36) 0.535 (3.2) *1.71 0.038 (1.0) 

Study66 (22) -0.061 (0.1) *0.94 0.134 (2.9) 

Study74 (7) -1.519 (1.1) *0.22 -0.266 (5.1) 

Study78 (8) -1.310 (1.5) *0.27 -0.262 (5.6) 
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Study86 (12) -0.282 (1.0) *0.75 -0.166 (4.3) 

Study93 (7) 0.523 (2.0) *1.69 0.132 (3.0) 

 RSS 61.75 69.72 1289.14 

 ESS 64.45 56.48 1494.58 

 Adj R2 0.483 0.417 0.521 

 

Note: Model Types are as defined in Section 4.2. DEMAND_RATIO is entered in logarithmic form in Models II and IV. 

 


