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Quantum Time Evolution in Terms of Nonredundant Probabilities

Stefan Weigert*

Institut de Physique, Université de Neuchâtel, Rue A.-L. Breguet 1, CH-2000 Neuchâtel, Switzerland
(Received 31 March 1999)

Each scheme of state reconstruction comes down to parametrize the state of a quantum system by
expectation values or probabilities directly measurable in an experiment. It is argued that the time
evolution of these quantities provides an unambiguous description of the quantal dynamics. This is
shown explicitly for a single spin s, using a quorum of expectation values which contains no redundant
information. The quantum mechanical time evolution of the system is rephrased in terms of a closed set
of linear first-order differential equation coupling �2s 1 1�2 expectation values. This new representation
of the dynamical law refers neither to the wave function of the system nor to its statistical operator.

PACS numbers: 03.65.Sq, 03.65.Ca

For a quantum system with statistical operator r̂, it is
straightforward to determine the expectation value of an
operator Â according to

�Â�r � Tr�Âr̂� . (1)

Methods of state reconstruction [1] solve the inverse
problem: the unknown state r̂ of the quantum system is
expressed as a function of the expectation values of prop-

erly chosen observables Q̂j , which constitute a quorum

Q. The resulting equivalences,

r̂ , ��Q̂j�, j [ I�, Q̂j
[ Q , (2)

with j taking on values from a discrete or continuous set I

of labels, are more than mathematical beauties—they have
been used in the laboratory to reconstruct correctly states
of various quantum systems [2]. For example, the state of
an ion in a Paul trap has been identified [3] by a method
realizing (2) on the basis of Wigner functions.

The purpose of this paper is to point out that the
parametrization (2) of a density matrix by expectation
values suggests a conceptually interesting way to describe
the time evolution of a quantum system without invoking
its density matrix or wave function. Instead, only expec-

tation values of Hermitian operators are used which can
be measured directly contrary to the wave function. The
argument will be given in general terms first, specifying
neither the system at hand nor a particular method of state
reconstruction. In the main part of this paper the example
of a single spin s is worked out explicitly. The discussion
at the end puts the results into perspective.

The von Neumann equation,

dr̂

dt
� 2

i

h̄
�Ĥ , r̂ � , (3)

describes the time evolution of a quantum system with

Hamiltonian operator Ĥ and statistical operator r̂. The

state r̂0 at time t0 is transported to r̂1 at time t1 along
a smooth path in state space. Suppose that the operators

�Q̂j� provide a quorum Q for all possible states of the
system at hand. Then, each state r̂t on the path between r̂0

and r̂1 is characterized uniquely by the set of expectation

values ��Q̂j�t�. In other words, the path r̂t in state space
has an unambiguous image in the space of expectations

��Q̂j��. This path is expected to arise as the solution of a
dynamical law in this space [4]:

d

dt
�Q̂j�t � D

j

Ĥ
���Q̂j�t�� , (4)

where the function D depends on both the Hamiltonian Ĥ

of the system and the quorum Q. Subsequently, time de-
pendent expectation values of arbitrary operators Â can be
expressed in terms of the ��Q̂j�t� simply by using Eq. (2)
to eliminate r̂t in favor of the elements of the quorum.

In the following, an explicit form of Eq. (4) will be de-
rived for a spin s using a nonredundant quorum. Quantum
mechanically, the spin is described by a vector operator
Ŝ 	 h̄ŝ, the components of which satisfy the commutation
relations of the algebra su�2�: �ŝx , ŝy� � iŝz , . . . . These
operators act irreducibly in a complex Hilbert space Hs

of dimension �2s 1 1�. The standard basis of the space
Hs is given by the eigenvectors of the z component of
the spin, Ŝz � nz ? Ŝ, and they are denoted by jm, nz�,
m � 2s, . . . , s [5].

Observables are represented by Hermitian operators,
Ây � Â, all of which are linear combinations of poly-
nomials in the operators ŝx , ŝy , and ŝz of degree 2s at
most. The ensemble of all Hermitian operators acting
on Hs can be considered as a vector space As of di-
mension Ns � �2s 1 1�2. It is convenient [6] to intro-
duce a basis of As consisting of Hermitian operators
K̂n � K̂y

n , n � 1, . . . , Ns which are orthogonal with re-
spect to a scalar product defined as a trace taken in Hilbert
space, Hs,

1

2s 1 1
Tr�K̂nK̂n0� � dnn0 . (5)

Then each (Hermitian) operator Â has an expansion

Â �
1

2s 1 1

NsX

n�1

anK̂n , an � Tr�ÂK̂n� ,

(6)

with a unique set of (real) coefficients an . For a spin 1
2,
the Pauli matrices sk , k � x, y, z, combined with the unit
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matrix provide a well-known example of such a basis. One
can write a general density matrix in the form

r̂ �
1

2 �1 1 �e ? �s� , (7)

where �e is any vector within a ball of radius one, the Bloch
sphere.

Here the purpose is to express the dynamical evolution
of a quantum spin in terms of specific expectation values
which are easily accessible in an experiment. Denote the
eigenstate of the operator n ? ŝ along the direction n �

�sinq cosw, sinq sinw, cosq � and with eigenvalue s by

jn� 	 exp�2iqm�w� ? ŝ� js, nz� , (8)

where m�w� � �2 sinw, cosw, 0�: the state jn� is obtained
from rotating the state js, nz� about the axis m�w� in the
xy plane by an angle q . In this way, a coherent state

jn� is attached to each point of the surface of the unit
sphere [7]. The ensemble of all coherent states provides
an overcomplete basis of the Hilbert space Hs.

The density matrix r̂ of a spin s is determined unam-
biguously if one performs appropriate measurements with
a traditional Stern-Gerlach apparatus. Now randomly se-
lect Ns unit vectors nn , n � 1, . . . , Ns, and measure the
relative frequencies ps�nn� � �nnjr̂jnn�, that is, the ex-
pectation values of the statistical operator r̂ in the coher-
ent states jnn� associated with the direction nn [8]. These
Ns positive numbers do fix (in almost all cases) a unique
(unnormalized) statistical operator—in other words, the
projection operators,

Q̂n � jnn� �nnj , n � 1, . . . , Ns , (9)

constitute a quorum Q for a spin s. This fact, when used
for state reconstruction, defines an optimal method since
exactly Ns numbers have to be determined experimentally
which equals the number of free (real) parameters of the
(unnormalized) Hermitian density matrix r̂.

The set of all unnormalized Hermitian density matrices
for a spin s is a subset (of the same dimension) among
all Hermitian operators acting on the Hilbert space Hs

so that the quorum Q also provides a basis of the space
of operators As. However, the operators Q̂n are not
orthogonal: Tr�Q̂nQ̂n0� � j�nn j nn0�j2 fi 0, except for
nn0 � 2nn . Nevertheless, there is a generalization of (6)
for a nonorthogonal basis,

Â �
1

2s 1 1

NsX

n�1

AnQ̂n , An
� Tr�ÂQ̂n� ,

(10)

where now the expansion coefficients An involve a second

set of operators Q̂n dual to the elements of the original
basis. The existence of the operators Q̂n is guaranteed [9]
if the Q̂n are linearly independent, and they are entirely
determined by the relations

1

2s 1 1
Tr�Q̂nQ̂n0

� � dn0

n , n, n0
� 1, . . . , Ns .

(11)

The quorum and its dual provide a biorthogonal basis of
the space As consisting of a covariant and a contravariant
basis which suggests the use of lower and upper labels. A
second expansion for Hermitian operators is available due
to the symmetry between Q and its dual:

Â �
1

2s 1 1

NsX

n�1

AnQ̂n
, An � Tr�ÂQ̂n� . (12)

Let us now consider the properties of the statistical op-
erator r̂ when expanded in the dual basis,

r̂ �
1

2s 1 1

NsX

n�1

PnQ̂n
, (13)

where the coefficients Pn � Tr�r̂Q̂n� 	 �nnj r̂jnn� sat-
isfy

0 # Pn # 1 , n � 1, . . . , Ns . (14)

Each of the Ns numbers Pn has a value less or equal to 1
due to the normalization of the density matrix, Tr�r̂� � 1,
and since r̂ is a positive operator, the Pn are non-nega-

tive throughout. This is a unique and essential feature of
the dual basis �Q̂n�—the expansion coefficients of r̂ with
respect to neither the original basis �Q̂n� nor a randomly
chosen set of orthogonal operators �K̂n� satisfying (5), have
this property. The interpretation of the coefficients Pn —to
measure the value s along the axis nn —is clearly compat-
ible with (14). It is important to note that, although each
of the Pn is a probability, they do not sum up to unity:

0 ,

NsX

n�1

Pn , Ns . (15)

This is due to the fact that they all refer to different orienta-

tions of the Stern-Gerlach apparatus, being thus associated
with the measurement of incompatible observables,

�Q̂n , Q̂n0� fi 0 , n, n0
� 1, . . . , Ns . (16)

The sum in (15) cannot take the value Ns since this would
require a common eigenstate of all the operators Q̂n which
does not exist due to (16). By an appropriate choice of
the directions nn (all in the neighborhood of one single
direction n0, say), the sum can be arbitrarily close to �2s 1

1�2 for states “peaked” about n0. Similarly, the sum of
all Pn cannot be zero since this would require the density
matrix to vanish. Considered as a sum of expectation

values, however, there is no need for the numbers Pn to
sum up to unity. Nevertheless, they are not completely
independent when arising from a statistical operator: its
normalization implies that

Tr� r̂� �
1

2s 1 1

NsX

n�1

Tr�Q̂n�Pn � 1 , (17)

which turns one of the probabilities into a function of the
Ns 2 1 � 4s�s 1 1�, leaving us with the correct number
of free real parameters needed to specify a density matrix.
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It is useful to visualize the description of a density ma-
trix by the numbers Pn in geometrical terms. Consider the
linear space As of dimension Ns, each axis being associ-
ated with one projector Q̂n and a coefficient Pn . Since
Tr�Q̂nQ̂n0� � j�nn j nn0�j2 fi 0, this is not an orthonor-
mal basis of As, and neither is its dual �Q̂n�. Accord-
ing to (13) and (14) each statistical operator determines a

point �P with components Pn in an Ns-dimensional par-
allelepiped [9]. Equation (17) may be understood as a

scalar product of �P and the vector �E with components
En � Tr�ÊQ̂n� � Tr�Q̂n�, where Ê denotes the unit op-

erator in As. Thus, the points �P which correspond to
normalized density matrices are necessarily located in the
intersection R [having dimension 4s�s 1 1�] of the par-
allelepiped with a hyperplane in As. However, not all
points in R are associated with a density matrix. To see
this, imagine the quantum system to be in an eigenstate
js, nn0

� of the projection operator Q̂n0
, say. Then, the cor-

responding probability Pn0
has the value 1, and all of the

others are smaller than 1. This is the only point of the unit
cube with Pn0

� 1 associated with a density matrix while
one constructs easily other points satisfying (17) but not
associated with a density matrix.

Let us turn to the dynamics of the quantum system ex-
pressed by the probabilities Pn . Their time derivative,
dPn
dt � �nn jdr̂
dtjnn�, is determined unambiguously
by Eq. (3). Using expansion (13) it is easy to express the
resulting equations in the form (4). A closed set of equa-
tions for the variables Pn�t� follows from plugging (13)
into the right-hand side of Eq. (3) and taking the expecta-
tion value in the state jnn�:

d

dt
Pn�t� �

i

h̄

NsX

n0�1

�nnj �Q̂n0

, Ĥ� jnn�Pn0�t� . (18)

Thus, the spin dynamics has been expressed entirely in
terms of the Ns variables Pn : this equation, the explicit
form of (4) for a single spin s, provides the main result of
this paper. The dynamics is consistent with (17): multiply
(18) by Tr�Q̂n� and sum over all values of n:

NsX

n�1

Tr�Q̂n�
d

dt
Pn �

NsX

n0�1

Tr�Q̂n0

, Ĥ�

Pn0 �
i

h̄
Tr����r̂, Ĥ���� � 0 , (19)

using (18) and expanding the identity as Ê �P
n Tr�Q̂n�Q̂n . Consequently, the time evolution of

the quantum system can be represented by a point mov-
ing in the domain R, with a trajectory determined by
(18). Equation (18) will be called the “expectation-value
representation” of the equation of motion (3).

Let us point out some properties of the time evolution
of the spin s when given in the expectation-value repre-
sentation. The dynamical law (18) is a closed set of linear

equations for the Ns real variables Pn : the time derivatives
dPn
dt at time t are expressed entirely in terms of the

probabilities Pn at that time. Introduce a real �Ns 3 Ns�
matrix M with entries

D
n0

n �
i

h̄
�nnj �Q̂n0

, Ĥ� jnn�

�
i

h̄
Tr���Ĥ�Q̂n , Q̂n0

���� � �Dn0

n ��
, (20)

using the cyclic property of the trace. Then, one can
rewrite the dynamics (18) and the constraint (17) as

d �P�t�

dt
� D �P�t� , �P�t0� ? �E � 1 . (21)

Therefore, the quantum dynamics of a spin s is equivalent
to that of a classical dynamical system with Ns degrees
of freedom, constrained to move in a certain region R
to be considered as its phase space. For an eigenstate of
the Hamiltonian Ĥ with eigenvalue ek and density matrix
r̂�k� � jek� �ekj, one has � r̂�k�, Ĥ� � 0; hence, the flow
generated by D in R is zero on a �2s�-dimensional hyper-
plane spanned by the eigenstates of the Hamiltonian.

The function D introduced in (4) is linear in the vari-
ables Pn which, in turn, are linear functions of the den-
sity matrix r̂. Therefore, the convexity of the state space,
r̂�l� � �1 2 l�r̂�a� 1 lr̂�b�, 0 # l # 1, turns into

�P�l�
� �P�a� 1 l� �P�b� 2 �P�a�� , (22)

tracing out a straight line in the space of expectations.
Conceptually, the “realization” introduced here differs

from other formulations of quantum mechanics “without
wave function” such as the familiar phase-space represen-
tation through Wigner functions for a particle [10], for ex-
ample. Both the continuous and the discrete version of a
Wigner function associated with finite-dimensional Hilbert
spaces [11] do not allow for a probabilistic interpretation
in the familiar sense. The occurrence of negative val-
ues is characteristic of “quasiprobability” distributions à

la Wigner, and it reflects the impossibility that position
and momentum simultaneously have definite values. The
expectation-value representation allows one to rephrase the
quantal dynamics entirely in terms of directly observable
and non-negative quantities, defined on �2s 1 1�2 points
of the sphere. This construction can be thought of as dis-
cretizing the phase space of the classical spin and associat-
ing probabilities (which, however, do not sum up to unity)
to the individual points.

Furthermore, there is a link to the “probability represen-
tation” for both quantum particles and spins [12] which
is based on positive smooth distributions on the classi-
cal phase space of the underlying system. It provides,
however, a highly redundant description, while the ex-
pectation-value representation works with nonredundant
information only.

From a general point of view, Eqs. (10) and (12)
provide the basis for a symbolic calculus comparable
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to the Wigner formalism [13] or to the coherent state
representation [14] of quantum mechanics. Once the vec-

tor �P�t0� associated with a quantum state r̂�t0� is known,
one can extract the time evolution of arbitrary observables

Â�t� from �P�t� without ever invoking r̂�t�. The details of
this calculus based on the expectation-value representation
will be developed elsewhere. Furthermore, it is not diffi-
cult to generalize the present approach to nonautonomous

quantum systems described by explicitly time dependent
Hamiltonian operators Ĥ�t�. Similarly, this representation
could be used to reexpress the nonunitary time evolution
of an open quantum system described by a Lindblad opera-
tor [15].

The difference between the statistical and the indi-

vidual interpretation of quantum theory [16] is particularly
blatant in the expectation-value representation. On the

one hand, a parametrization in terms of probabilities �P

strongly suggests that a state r̂ is associated with an
ensemble of identically prepared systems. On the other

hand, the vector �P will also be used to describe an
individual quantum system in a well-defined state such as
results from measuring an observable.

In summary, the expectation-value representation of
quantum mechanics, as derived from (13), is equivalent
to any other representation. It is based on expanding op-
erators in a specific basis of Hermitian but nonorthogonal
operators. The statistical operator r̂ of a quantum spin s is
represented by a point on a manifold in an Ns-dimensional
space parametrized by probabilities or, equivalently,
expectation values. Its time evolution [Eq. (18) or (21)]
is governed by a linear and autonomous classical flow.
Therefore, one can describe the quantum dynamics as a
smooth trajectory in the space of expectation values. With
all unobservable elements eliminated from the theory, the
expectation-value representation provides an appealing
explicit realization of Schrödinger’s remark [17] to
consider the wave function as a “Katalog der Erwartung.”

The author acknowledges both helpful discussions with
J.-P. Amiet and financial support from the Schweizerische

Nationalfonds.
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