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Abstract The aim of this paper is threefold. Firstly, we study stochastic evolution

equations (with the linear part of the drift being a generator of a C0-semigroup) driven

by an infinite-dimensional cylindrical Wiener process. In particular, we prove, under

some sufficient conditions on the coefficients, the existence and uniqueness of solu-

tions for these stochastic evolution equations in a class of Banach spaces satisfying

the so-called H -condition. Moreover, we analyse the Markov property of the solu-

tions.

Secondly, we apply the abstract results obtained in the first part to prove the ex-

istence and uniqueness of solutions to the Heath–Jarrow–Morton–Musiela (HJMM)

equations in weighted Lebesgue and Sobolev spaces.

Finally, we study the ergodic properties of the solutions to the HJMM equations. In

particular, we find a sufficient condition for the existence and uniqueness of invariant

measures for the Markov semigroup associated to the HJMM equations (when the

coefficients are time-independent) in the weighted Lebesgue spaces.

Our paper is a modest contribution to the theory of financial models in which the

short rate can be undefined.
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1 Introduction

The theory of stochastic integration in the class of so-called M-type 2 Banach spaces

was initiated independently by Neidhardt [44] in 1978 and Dettweiler [23] in 1983.

Using this stochastic integration theory, the first of the present authors developed

the theory of stochastic evolution equations in M-type 2 Banach spaces; see [5, 6].

In [5], the first author studied linear stochastic evolution equations (with the drift

being the infinitesimal generator of an analytic semigroup and the coefficients of

the stochastic part being linear operators) driven by a d-dimensional Wiener process

and proved the existence and uniqueness of solutions for such equations in some

real interpolation spaces. In [6], he generalized the results from [5] by proving the

existence and uniqueness of solutions for stochastic evolution equations (with the

linear part of the drift being the infinitesimal generator of an analytic semigroup

and the coefficients satisfying Lipschitz conditions) driven by an infinite-dimensional

Wiener process in M-type 2 Banach spaces.

One of the aims of this article is to study stochastic evolution equations driven by

an infinite-dimensional cylindrical Wiener process. We continue the line of research

originated in [5] and [6]. However, we consider different assumptions on the coef-

ficients. For example, we assume that the linear part of the drift is the infinitesimal

generator of a non-analytic C0-semigroup. The lack of analyticity of the semigroup

leads to some difficulties, and in this article, we show how to overcome this prob-

lem. For instance, the time-continuity of the solution cannot be a consequence of

the Da Prato–Kwapień–Zabczyk factorisation method, but one needs to use a more

sophisticated approach based on the maximal inequality from [14].

The notion of invariant measures is an important topic in the theory of stochastic

dynamical systems. Many authors (see, for instance, [24, 25, 22]) have studied the

question of the existence and uniqueness of invariant measures for stochastic evolu-

tion equations in Hilbert spaces. Recently, the first author, Long and Simão [10] paid

attention to the theory of invariant measures for stochastic evolution equations in Ba-

nach spaces. They found a sufficient condition about the existence and uniqueness

of invariant measures for stochastic evolution equations in Banach spaces, which we

introduce and use in this article.

It is now a widely accepted fact that mathematics has a lot of interesting appli-

cations in finance. One of these applications appears to be the theory of stochastic

evolution equations. The so-called HJMM model proposed by Heath–Jarrow–Morton

(HJM) [34] is an example of stochastic evolution equations in finance. This model

contains the dynamics of the forward rates. The HJMM model was studied in Hilbert

spaces by many authors; see, for instance, [3, 26, 27, 28, 30, 31, 43, 53, 54]. These au-

thors proved the existence and uniqueness of solutions to the HJMM model in some

appropriate Hilbert spaces such as the weighted Lebesgue space L2 and the weighted

Sobolev space W 1,2. Also some of these authors analysed ergodic properties of the

solutions.

Another aim of this article is to apply the abstract results from Sect. 3 to the HJMM

model. Thus, we focus on the question of the existence and uniqueness of solutions

to the HJMM model in the weighted Lebesgue spaces (Lp , p ≥ 2) and the weighted

Sobolev spaces (W 1,p , p ≥ 2). Also, we aim to study the existence and uniqueness

of invariant measures for the HJMM model in the weighted Lebesgue spaces. The
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weighted Lp and W 1,p spaces, with p > 2, are ‘locally’ smaller than the correspond-

ing weighted L2 and W 1,2 spaces. Thus, proving the existence of solutions taking

values in these spaces provides additional information about the properties of the so-

lutions. For instance, a solution with values in the weighted W 1,2 space is locally

Hölder-continuous with order strictly less than 1 − 1
2

, while a solution with values

in the weighted W 1,p space is locally Hölder-continuous with order strictly less than

1− 1
p

. This could have profound consequences in the numerical studies of the HJMM

model (to be investigated, for instance, in joint works with Boda Kang from the De-

partment of Mathematics at the University of York). Similar comments apply to the

invariant measures. Another motivation is that the use of Sobolev spaces with big

p should make it possible to extend the deep results about finite-dimensional reali-

sations, which are usually formulated in terms of the very small set D(A∞) to the

spaces W 1,p or W θ,p with large p in a similar way to what has been done in [8]. We

should point out that as it was proved in [15], the HJMM equations are not well-posed

in the space of continuous functions. Hence, one seeks for other type of spaces. So

far, the literature has exclusively concentrated on the use of Hilbert spaces (weighted

L2 or weighted Sobolev W 1,2 spaces), and our paper is the first attempt to study the

HJMM equations in the framework of a specific class of Banach spaces.

Let us now describe briefly the contents of this paper. In Sect. 2, we provide all the

necessary preliminaries about the theory of stochastic integration in Banach spaces.

In Sect. 3, we study stochastic evolution equations (with the linear part of the drift

being only the infinitesimal generator of a C0-semigroup and the coefficients satis-

fying Lipschitz conditions) in the class of Banach spaces satisfying the H -condition.

Firstly, we prove the existence and uniqueness of solutions for corresponding equa-

tions with globally Lipschitz coefficients. Next, using the previous existence result

and approximation, we prove the existence and uniqueness of solutions for corre-

sponding equations with locally Lipschitz coefficients. We also analyse the Markov

property of the solutions. Finally, we introduce a theorem proposed by Brzeźniak

et al. [10] about the existence and uniqueness of invariant measures for correspond-

ing equations with time-independent coefficients. In Sect. 4, we introduce the Heath–

Jarrow–Morton–Musiela (HJMM) equations, but not in detail. Then we apply the

abstract results from Sect. 3 to the HJMM equations. In particular, we prove the exis-

tence and uniqueness of solutions to the HJMM equations in the weighted Lebesgue

and Sobolev spaces, respectively. We also find a sufficient condition for the exis-

tence and uniqueness of invariant measures for the Markov semigroup associated to

the HJMM equations in the weighted Lebesgue spaces. We mentioned some impor-

tant features of our results above. Another important feature is that we are able to

consider the HJMM equations driven by a cylindrical Wiener process in a (possibly

infinite-dimensional) Hilbert space. For this purpose, we use the characterizations

of the so-called γ -radonifying operators from a Hilbert space to an Lp space and a

Sobolev space W 1,p found recently by the first author and Peszat in [14, 13].

2 Stochastic preliminaries

In this section, we provide all the necessary preliminaries about the theory of stochas-

tic integration in Banach spaces.
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Definition 2.1 A Banach space (X,‖ · ‖X) is called martingale-type 2 (or M-type 2)

if there exists a constant C > 0 depending only on X such that for any X-valued

martingale (Mn)n∈N,

sup
n∈N

E [‖Mn‖2
X] ≤ C

∑

n

E[‖Mn − Mn−1‖2
X].

For each p ≥ 2, the Lebesgue space Lp and the Sobolev space W 1,p are examples of

martingale-type 2 Banach spaces.

Remark 2.2 Another type of Banach space that has been frequently used in the re-

cent years is the UMD, i.e., having the unconditional martingale difference property,

Banach space; see [5, 16, 46]. Let us recall that a Banach space X is a UMD space

if for any p ∈ (1,∞), there exists a constant βp(X) > 0 such that for any X-valued

martingale (Mn)n∈N with M0 = 0, for any ε : N → {−1,1} and for any n ∈ N,

E

[∥

∥

∥

∥

n
∑

j=1

εj (Mj − Mj )

∥

∥

∥

∥

p

X

]

≤ βp(X )E[‖Mn‖p
X].

It is known, see e.g. [51, Proposition 2.4], that if a Banach space X is both UMD and

of type 2, then X is of martingale-type 2. From the point of view of applications, in

UMD spaces, one can precisely characterise the processes which are stochastically

integrable with respect to a cylindrical Wiener process, see [46], while the martingale-

type 2 spaces are more suitable for studying general SPDEs; see e.g. [13, 17]. For our

purposes, we consider the latter spaces in which all L2-integrable processes turn out

to be stochastically integrable (see [46, Theorem 3.6]).

It should be pointed out that many important spaces from functional analysis are

martingale-type 2 spaces, e.g. classical Sobolev or Besov spaces under certain as-

sumptions on their indices; see e.g. [5, 6]. This has important consequences in nu-

merical analysis and regularity theory. Recently, Hairer and Labbé [32] as well as

Liu et al. [40] introduced martingale-type 2 spaces in the theory of regularity struc-

tures (and in rough path theory) in order to apply methods from stochastic integration

(extending Hölder-type spaces).

Definition 2.3 Let (�,F ,F,P), where F = (Ft )t≥0, be a filtered probability space.

Assume that H is a separable Hilbert space endowed with an inner product 〈·, ·〉H .

A family (W(t))t≥0 of bounded linear operators W(t) : H → L2(�,F ,P) is called

an H -valued F-cylindrical canonical Wiener process if

(i) for all t ≥ 0 and h1, h2 ∈ H , E[W(t)h1W(t)h2] = t〈h1, h2〉H ;

(ii) for every h ∈ H , (W(t)h)t≥0 is a real-valued F-adapted Wiener process.

Definition 2.4 Let X be a separable Banach space and H a separable Hilbert space.

A bounded linear operator L : H → X is called γ -radonifying if the image L(γH )

by L of the canonical Gaussian measure γH on H extends to a Gaussian probability

measure on X. The space of all γ -radonifying operators from H into X is denoted

by γ (H,X).
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The following result is originally due to Neidhardt [44, Sect. 4]; see also

[11, 38, 39, 45].

Theorem 2.5 Let X be a separable Banach space with a norm ‖ · ‖X and H a sep-

arable Hilbert space. Assume that νL is the Gaussian probability measure on X gen-

erated by L ∈ γ (H,X). Then the mapping ‖ · ‖γ (H,X) defined by

‖L‖γ (H,X) =
(∫

X

‖x‖2
X dνL(x)

)
1
2

, L ∈ γ (H,X)

is a norm on the space γ (H,X) and γ (H,X) is a separable Banach space with

respect to this norm.

Theorem 2.6 [2, Lemma 8.4] Assume that H1,H2 are separable Hilbert spaces and

B1,B2 are separable Banach spaces. If h : H1 → H2 and b : B2 → B1 are linear

bounded operators and k : H2 → B2 is a γ -radonifying operator, then k ◦h and b ◦ k

are also γ -radonifying operators.

The next result is originally due to [44, Lemma 28]; see also [6, Theorem 2.3].

Theorem 2.7 Let (�,F ,F,P), where F = (Ft )t≥0, be a filtered probability space.

Assume that (X,‖ · ‖X) is a martingale-type 2 Banach space and H is a separa-

ble Hilbert space. Assume that (W(t))t≥0 is an H -valued F-cylindrical canonical

Wiener process. If ξ is a γ (H,X)-valued F-progressively measurable process on

[0, T ], T > 0, such that

E

[∫ T

0

‖ξ(t)‖2
γ (H,X)dt

]

< ∞, (2.1)

then the stochastic integral
∫ T

0 ξ(t) dW(t) is well defined and there exists a constant

C > 0 such that

E

[∥

∥

∥

∥

∫ T

0

ξ(t) dW(t)

∥

∥

∥

∥

2

X

]

≤ C

∫ T

0

E[‖ξ(t)‖2
γ (H,X)]dt,

i.e.,
∫ T

0 ξ(t) dW(t) belongs to the space L2(�,F ,P;X).

Theorem 2.8 [6, Theorem 2.4] Suppose that all the assumptions of Theorem 2.7 are

satisfied. Let ξ be a γ (H,X)-valued F-progressively measurable process on [0, T ],
T > 0, such that (2.1) holds. Then the process (φ(t))t∈[0,T ] defined by

φ(t) :=
∫ t

0

ξ(s) dW(s), t ∈ [0, T ],

is a martingale and has a continuous modification; in particular, it is F-progressively

measurable. Moreover, there exists a constant C > 0 (independent of ξ ) such that

E

[

sup
t∈[0,T ]

‖φ(t)‖2
X

]

≤ C

∫ t

0

E[‖ξ(s)‖2
γ (H,X)]ds.



964 Z. Brzeźniak, T. Kok

Definition 2.9 A Banach space (X,‖ · ‖X) is said to satisfy the H -condition if for

some q ≥ 2, the function ψ : X → R defined by

ψ(x) = ‖x‖q

X, x ∈ X,

is of class C2 on X (in the Fréchet derivative sense) and if there exist constants

K1,K2 > 0 depending on q such that for every x ∈ X,

|ψ ′(x)| ≤ K1‖x‖q−1
X and |ψ ′′(x)| ≤ K2‖x‖q−2

X ,

where ψ ′(x) and ψ ′′(x) are the first and second Fréchet derivatives of ψ at x ∈ X.

For each q ≥ p ≥ 2, the Lebesque space Lp and the Sobolev space W 1,p satisfy

the H -condition.

Proposition 2.10 [57] If a Banach space (X,‖ · ‖X) satisfies the H -condition, then

it is also a martingale-type 2 Banach space.

Theorem 2.11 [14] Let (�,F ,F,P), where F = (Ft )t≥0, be a filtered probability

space. Assume that (X,‖ · ‖X) is a Banach space satisfying the H -condition. Assume

that H is a separable Hilbert space and (W(t))t≥0 is an H -valued F-cylindrical

canonical Wiener process. Let (S(t))t≥0 be a contraction C0-semigroup on X. If

ξ is a γ (H,X)-valued F-progressively measurable process on [0, T ], T > 0, such

that (2.1) holds, then there exists a constant K > 0 depending on H , X and K1,K2

appearing in the H -condition such that

E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

S(t − r)ξ(r) dW(r)

∥

∥

∥

∥

2

X

]

≤ K

∫ T

0

E[‖ξ(t)‖2
γ (H,X)]dt. (2.2)

Definition 2.12 Let (X,‖ · ‖X) be a Banach space. A C0-semigroup (S(t))t≥0 on X

is called contraction-type if there exists a constant β ∈ R such that

‖S(t)‖ ≤ eβt , t ≥ 0.

Remark 2.13 If (S(t))t≥0 is a contraction-type C0-semigroup on a Banach space X,

then the family (T (t))t≥0 of operators defined by T (t) = e−βtS(t) is a contrac-

tion C0-semigroup on X. Therefore, the following corollary follows from Theo-

rem 2.11.

Corollary 2.14 Let (�,F ,F,P), where F = (Ft )t≥0, be a filtered probability space.

Assume that (X,‖ · ‖X) is a Banach space satisfying the H -condition. Assume that H

is a separable Hilbert space and (W(t))t≥0 is an H -valued F-cylindrical canonical

Wiener process. Let (S(t))t≥0 be a contraction-type C0-semigroup on X. If ξ is a

γ (H,X)-valued F-progressively measurable process on [0, T ], T > 0, such that (2.1)
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holds, then there exists a constant KT > 0 depending on T > 0 and K appearing in

(2.2) such that

E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

S(t − r)ξ(r) dW(r)

∥

∥

∥

∥

2

X

]

≤ KT

∫ T

0

E[‖ξ(t)‖2
γ (H,X)]dt.

3 Stochastic evolution equations in Banach spaces

3.1 Assumptions and definitions

Throughout this paper, we assume that

– (�,F ,F,P), where F= (Ft )t≥0, is a filtered probability space.

– (X,‖ · ‖X) is a separable Banach space satisfying the H -condition.

– (S(t))t≥0 is a contraction-type C0-semigroup on X with infinitesimal generator A.

– (H, 〈·, ·〉H ) is a separable Hilbert space.

– (W(t))t≥0 is an H -valued F-cylindrical canonical Wiener process.

– F and G are maps from R+ × X into X and γ (H,X), respectively (we impose

some sufficient conditions on them later).

– u0 ∈ L2(�,F0,P;X).

We consider the stochastic evolution equation in X given by

{

du(t) =
(

Au(t) + F
(

t, u(t)
)

)

dt + G
(

t, u(t)
)

dW(t), t > 0,

u(0) = u0.
(3.1)

Definition 3.1 An X-valued F-progressively measurable process (u(t))t≥0 is called

a mild solution to (3.1) if for every t ≥ 0,

∫ t

0

E[‖u(s)‖2
X]ds < ∞

and P-a.s.

u(t) = S(t)u0 +
∫ t

0

S(t − r)F
(

r, u(r)
)

dr

+
∫ t

0

S(t − r)G
(

r, u(r)
)

dW(r), t ≥ 0. (3.2)

3.2 Existence and uniqueness of solutions to Equation (3.1) with globally

Lipschitz coefficients

Assume that for each T > 0, ZT denotes the space of all X-valued, continuous,

F-adapted processes u on [0, T ] such that

‖u‖T :=
(

E

[

sup
t∈[0,T ]

‖u(t)‖2
X

])
1
2

< ∞.

For each T > 0, the space ZT is a Banach space with respect to the norm ‖ · ‖T .
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Lemma 3.2 Assume that G : R+ × X → γ (H,X) is a globally Lipschitz map on X,

i.e., for each T > 0, there exists a constant LG > 0 such that for all t ∈ [0, T ],

‖G(t, x1) − G(t, x2)‖γ (H,X) ≤ LG‖x1 − x2‖X, x1, x2 ∈ X. (3.3)

Moreover, we assume that for every x ∈ X, the map G(·, x) : [0,∞) → γ (H,X) is

Borel-measurable and for every T > 0,

sup
t∈[0,T ]

‖G(t,0)‖γ (H,X) < ∞. (3.4)

Then the mapping IG : ZT → ZT defined by

IG(u)(t) =
∫ t

0

S(t − r)G
(

r, u(r)
)

dW(r), u ∈ ZT , t ∈ [0, T ],

is well defined. Moreover, it is of linear growth and globally Lipschitz on ZT .

Proof Define

MT := sup
t∈[0,T ]

‖S(t)‖. (3.5)

Fix u ∈ ZT . We first show that for each t ≥ 0, the integral
∫ t

0 S(t −r)G(r,u(r)) dW(r)

is well defined. Fix t ≥ 0. Due to Theorem 2.6, the process S(t − r)G(r,u(r)),

r ∈ [0, t], is γ (H,X)-valued. Since G(·, x) : [0,∞) → γ (H,X) is a Borel-measur-

able function, the process S(t − r)G(r,u(r)), r ∈ [0, t], is F-progressively measur-

able. It follows from (3.3) and (3.4) that the map G is of linear growth, i.e., for each

T > 0, there exists a constant L̃G > 0 such that for all t ∈ [0, T ],

‖G(t, x)‖2
γ (H,X) ≤ L̃2

G(1 + ‖x‖2
X), x ∈ X. (3.6)

Therefore, by (3.5) and (3.6), we obtain

E

[∫ t

0

‖S(t − r)G(r,u(r))‖2
γ (H,X)dr

]

≤ M2
t L̃2

Gt + M2
t L̃2

GtE

[

sup
r∈[0,t]

‖u(r)‖2
X

]

.

Thus, in view of Theorem 2.7, the integral
∫ t

0 S(t − r)G(r,u(r)) dW(r) is well de-

fined. Now we show that IG is well defined. By Theorem 2.8, the process IG(u) is

continuous and F-adapted. Furthermore, by Corollary 2.14 and (3.6), we get

E

[

sup
t∈[0,T ]

‖IG(u)(t)‖2
X

]

≤ T KT L̃2
G + T KT L̃2

GE

[

sup
t∈[0,T ]

‖u(t)‖2
X

]

.

Hence IG(u) ∈ ZT and thus IG is well defined. It follows from the last inequality that

‖IG(u)‖2
T ≤ T KT L̃2

G(1 + ‖u‖2
T ),
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which implies that IG is of linear growth. By Corollary 2.14 and (3.3), we have

‖IG(u1) − IG(u2)‖2
T ≤ KT E

[∫ T

0

‖G(t,u1(r)) − G(t,u2(r))‖2
γ (H,X)dr

]

≤ KT T L2
GE

[

sup
r∈[0,T ]

‖u1(r) − u2(r)‖2
X

]

, u1, u2 ∈ ZT .

Therefore, we infer that

‖IG(u1) − IG(u2)‖T ≤ LG

√

KT T ‖u1 − u2‖T , u1, u2 ∈ ZT , (3.7)

which implies that IG is globally Lipschitz on ZT . �

Lemma 3.3 Assume that F : R+ ×X → X is a globally Lipschitz map on X, i.e., for

each T > 0, there exists a constant LF > 0 such that for all t ∈ [0, T ],

‖F(t, x1) − F(t, x2)‖X ≤ LF ‖x1 − x2‖X, x1, x2 ∈ X. (3.8)

Moreover, we assume that for every x ∈ X, the function F(·, x) : [0,∞) → X is

Borel-measurable and for every T > 0,

sup
t∈[0,T ]

‖F(t,0)‖X < ∞. (3.9)

Then the map IF : ZT → ZT defined by

IF (u)(t) =
∫ t

0

S(t − r)F
(

r, u(r)
)

dr, u ∈ ZT , t ∈ [0, T ],

is well defined. Moreover, it is of linear growth and globally Lipschitz on ZT .

Proof Fix u ∈ ZT . By (3.8) and (3.9), F is of linear growth, i.e., for each T > 0,

there exists a constant L̃F such that for all t ∈ [0, T ],

‖F(t, x)‖2
X ≤ L̃2

F (1 + ‖x‖2
X), x ∈ X. (3.10)

It follows from (3.5) and (3.10) that the integral
∫ t

0 S(t − r)F (r,u(r)) dr is well

defined P-a.s. for each t ≥ 0. Let us now show that IF is well defined. By

[37, Proposition 2.22], the process IF (u) is continuous and by [37, Corollary 2.7], it

has an F-progressively measurable modification. Moreover, by the Cauchy–Schwarz

inequality and (3.5) and (3.10), we obtain

E

[

sup
t∈[0,T ]

‖IF (u)(t)‖2
X

]

≤ T 2M2
T L̃2

F + T 2M2
T L̃2

FE

[

sup
t∈[0,T ]

‖u(r)‖2
X

]

.

Therefore IF (u) ∈ ZT and thus IF is well defined. Moreover, it follows from the last

inequality that

‖IF (u)‖2
T ≤ T 2M2

T L̃2
F (1 + ‖u‖2

T ),
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which implies that IF is of linear growth. Finally, we show that IF is globally

Lipschitz on ZT . By the Cauchy–Schwarz inequality and (3.5) and (3.8), we infer

that

‖IF (u1) − IF (u2)‖2
T

≤ TE

[

sup
t∈[0,T ]

∫ t

0

∥

∥

∥
S(t − r)

(

F
(

r, u1(r)
)

− F
(

r, u2(r)
)

)∥

∥

∥

2

X
dr

]

≤ T M2
T L2

FE

[

sup
t∈[0,T ]

∫ t

0

‖u1(r) − u2(r)‖2
X dr

]

≤ T 2M2
T L2

FE

[

sup
r∈[0,T ]

‖u1(r) − u2(r)‖2
X

]

, u1, u2 ∈ ZT ,

which implies that

‖IF (u1) − IF (u2)‖T ≤ MT LF T ‖u1 − u2‖T , u1, u2 ∈ ZT . (3.11)

This completes the proof. �

Theorem 3.4 Assume that F : R+ × X → X and G : R+ × X → γ (H,X)

are globally Lipschitz maps on X. Moreover, we assume that for every x ∈ X,

F(·, x) : [0,∞) → X and G(·, x) : [0,∞) → γ (H,X) are Borel-measurable maps

and for every T > 0,

sup
t∈[0,T ]

(

‖F(t,0)‖X + ‖G(t,0)‖γ (H,X)

)

< ∞.

Then there exists a unique X-valued continuous mild solution to Eq. (3.1).

Proof By the definition of a mild solution, it is sufficient to show that the inte-

gral equation (3.2) has a unique X-valued continuous solution. Define the map

� : ZT →ZT by

�(u)(t) = S(t)u0 +
∫ t

0

S(t − r)F
(

r, u(r)
)

dr

+
∫ t

0

S(t − r)G
(

r, u(r)
)

dW(r), u ∈ ZT .

It is obvious that the process S(·)u0 is F-adapted. Moreover, for every ω ∈ �, the

map S(·)u0(ω) : [0,∞) → X is continuous and E[‖u0‖2
X] < ∞. Thus the process

S(·)u0 belongs to ZT . Therefore, by Lemmas 3.2 and 3.3, � is well defined and of

linear growth. Moreover, by (3.7) and (3.11), we infer that

‖�(u1) − �(u2)‖T ≤ C(T )‖u1 − u2‖T , u1, u2 ∈ ZT ,

where C(T ) = MT LF T + LG

√
KT T . Hence, � is globally Lipschitz on ZT . If we

choose T small enough, say T0, such that C(T0) ≤ 1
2

, then by the Banach fixed point
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theorem, there exists a unique process u1 ∈ ZT0
such that �(u1) = u1. Therefore, the

integral equation (3.2) has a unique X-valued continuous solution u1 on [0, T0].
Define Z(k−1)T0,kT0

, k = 1,2,3, . . . , to be the space of all X-valued, continuous,

F-adapted stochastic processes u on [(k − 1)T0, kT0] such that

E

[

sup
t∈[(k−1)T0,kT0]

‖u(t)‖2
X

]

< ∞.

It is obvious that for each k, Z(k−1)T0,kT0
is a Banach space endowed with the norm

‖u‖(k−1)T0,kT0
=
(

E

[

sup
t∈[(k−1)T0,kT0]

‖u(t)‖2
X

])
1
2

.

As above, it can be easily shown that the equation

u(t) = S
(

t − (k − 1)T0

)

u
(

(k − 1)T0

)

+
∫ t

(k−1)T0

S(t − r)F
(

r, u(r)
)

dr

+
∫ t

(k−1)T0

S(t − r)G
(

r, u(r)
)

dW(r) (3.12)

has a unique X-valued, continuous solution uk on [(k − 1)T0, kT0] such that

uk(kT0) = uk+1(kT0).

Consequently, we have a sequence (uk)k∈N of solutions. Define a process u from

these solutions by

u(t) =
∞
∑

k=1

uk(t)1[(k−1)T0,kT0](t), t ∈ [0,∞).

We claim that this process is a unique X-valued continuous solution to the integral

equation (3.2). It is obvious that the process u is continuous and F-adapted. There-

fore, u is F-progressively measurable. Furthermore, for each t ≥ 0,

∫ t

0

E[‖u(r)‖2
X]dr < ∞.

Thus, the integrals in (3.2) are well defined for the process u. Let us now show that the

process u solves the integral equation (3.2). We have already proved that for k = 1,

the process u on [0, T0] solves (3.2). By induction, we assume that the process u on

[0, kT0] solves (3.2). Thus, we have

u(kT0) = uk(kT0) = S(kT0)u0 +
∫ kT0

0

S(kT0 − r)F
(

r, u(r)
)

dr

+
∫ kT0

0

S(kT0 − r)G
(

r, u(r)
)

dW(r). (3.13)
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We need to show that the process u on [0, (k + 1)T0] solves (3.2). Since uk+1 on

[kT0, (k + 1)T0] solves (3.12), we get, for each t ∈ [kT0, (k + 1)T0],

uk+1(t) = S(t − kT0)u
k+1(kT0) +

∫ t

kT0

S(t − r)F
(

t, uk+1(r)
)

dr

+
∫ t

kT0

S(t − r)G
(

t, uk+1(r)
)

dW(r).

Since uk(kT0) = uk+1(kT0) and by (3.13), we obtain

u(t) = S(t)u0 +
∫ kT0

0

S(t − r)F
(

r, u(r)
)

dr +
∫ kT0

0

S(t − r)G
(

r, u(r)
)

dW(r)

+
∫ t

kT0

S(t − r)F
(

t, uk+1(r)
)

dr +
∫ t

kT0

S(t − r)G
(

t, uk+1(r)
)

dW(r)

= S(t)u0 +
∫ t

0

S(t − r)F
(

r, u(r)
)

dr

+
∫ t

0

S(t − r)G
(

r, u(r)
)

dW(r), t ∈ [0, (k + 1)T0].

Therefore, the process u on [0, (k + 1)T0] solves (3.2). Hence, the process u is an

X-valued continuous solution to the integral equation (3.2).

Uniqueness. In principle, the uniqueness of solutions follows from our proof via

the Banach fixed point theorem. However, for completeness, we now present our

independent proof. Let u1 and u2 be two solutions to (3.2). Define the process z by

z(t) = u1(t) − u2(t), t ≥ 0. Thus

z(t) =
∫ t

0

S(t − r)
(

F
(

r, u1(r)
)

− F
(

r, u2(r)
)

)

dr

+
∫ t

0

S(t − r)
(

G
(

r, u1(r)
)

− G
(

r, u2(r)
)

)

dW(r), t ≥ 0.

By Theorem 2.8 and (3.3) and (3.5), we have

E

[∥

∥

∥

∥

∫ t

0

S(t − r)
(

G
(

r, u1(r)
)

− G
(

r, u2(r)
)

)

dW(r)

∥

∥

∥

∥

2

X

]

≤ CL2
GM2

t

∫ t

0

E[‖u1(r) − u2(r)‖2
X]dr.

Moreover, using the Cauchy–Schwarz inequality and (3.5) and (3.8), we have

E

[∥

∥

∥

∥

∫ t

0

S(t − r)
(

F
(

r, u1(r)
)

− F
(

r, u2(r)
)

)

dr

∥

∥

∥

∥

2

X

]

≤ tL2
F M2

t

∫ t

0

E[‖u1(r) − u2(r)‖2
X]dr, t ≥ 0.
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Taking into account the last two estimates, we infer that

E[‖z(t)‖2
X] ≤ (2tL2

F M2
t + 2CL2

GM2
t )

∫ t

0

E[‖z(r)‖2
X]dr, t ≥ 0.

Applying Gronwall’s lemma, we infer that for all t ≥ 0, E[‖z(t)‖2
X] = 0. Therefore,

for all t ≥ 0, z(t) = 0 and so u1 = u2. Thus, the process u is a unique X-valued

continuous solution to the integral equation (3.2). Therefore, the process u is a unique

X-valued continuous solution to (3.1). �

Theorem 3.5 Assume that for each ζ ∈ L2(�,F0,P;X), u(·, ζ ) denotes the solution

of (3.1) with the initial value ζ . Then for each T > 0, there exists a constant CT > 0

such that for all t ∈ [0, T ],

E[‖u(t, ζ )‖2
X] ≤ CT (1 +E[‖ζ‖2

X]), ζ ∈ L2(�,F0,P;X), (3.14)

and

E[‖u(t, ζ ) − u(t, δ)‖2
X] ≤ CT E[‖ζ − δ‖2

X], ζ, δ ∈ L2(�,F0,P;X). (3.15)

Proof Fix T > 0 and ζ ∈ L2(�,Fs,P;X). Then for all t ∈ [0, T ],

E[‖u(t, ζ )‖2
X] ≤ 3E[‖S(t)ζ‖2

X] + 3E

[∥

∥

∥

∥

∫ t

0

S(t − r)F
(

r, u(r, ζ )
)

dr

∥

∥

∥

∥

2

X

]

+3E

[∥

∥

∥

∥

∫ t

0

S(t − r)G
(

r, u(r, ζ )
)

dW(r)

∥

∥

∥

∥

2

X

]

, t ∈ [0, T ].

Using Theorem 2.8 and (3.5) and (3.6), we get, for each t ∈ [0, T ],

E

[∥

∥

∥

∥

∫ t

0

S(t − r)G
(

r, u(r, ζ )
)

dW(r)

∥

∥

∥

∥

2

X

]

≤ CT L̃2
GM2

T + CL̃2
GM2

T

∫ t

0

E[‖u(r, ζ )‖2
X]dr. (3.16)

By the Cauchy–Schwarz inequality and (3.5) and (3.10), we obtain, for each

t ∈ [0, T ],

E

[∥

∥

∥

∥

∫ t

0

S(t − r)F
(

r, u(r, ζ )
)

dr

∥

∥

∥

∥

2

X

]

≤ T 2L̃2
F M2

T + T L̃2
F M2

T

∫ t

0

E[‖u(r, ζ )‖2
X]dr. (3.17)

Moreover, by (3.5), we have

E[‖S(t)ζ‖2
X] ≤ M2

T E[‖ζ‖2
X], t ∈ [0, T ]. (3.18)
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It follows from (3.16)–(3.18) that there exist constants KT , K̃T > 0 such that

E[‖u(t, ζ )‖2
X] ≤ KT + K̃T

∫ t

0

E[‖u(r, ζ )‖2
X]dr, t ∈ [0, T ].

Applying Gronwall’s lemma, we obtain the desired result (3.14). Similarly, one can

show (3.15). �

3.3 Existence and uniqueness of solutions to Equation (3.1) with locally

Lipschitz coefficients

Lemma 3.6 Assume that F : R+ × X → X is a locally Lipschitz map on balls, i.e.,

for each T > 0 and R > 0, there exists a constant LF (R) > 0 such that if t ∈ [0, T ]
and ‖x1‖X,‖x2‖X ≤ R, then

‖F(t, x1) − F(t, x2)‖X ≤ LF (R)‖x1 − x2‖X.

Moreover, assume that F is of linear growth (uniformly in t), i.e., for all T > 0, there

exists a constant L̄F > 0 such that for all t ∈ [0, T ],

‖F(t, x)‖2
X ≤ L̄2

F (1 + ‖x‖2
X), x ∈ X. (3.19)

For each n ∈ N, define the map F n :R+ × X → X by

F n(t, x) =
{

F(t, x), ‖x‖X ≤ n, t ≥ 0,

F (t, n x
‖x‖X

), ‖x‖X > n, t ≥ 0.
(3.20)

Then for each n ∈ N, F n is globally Lipschitz on X with constant 3LF (n) (indepen-

dent of t). Moreover, F n is of linear growth, i.e.,

‖F n(t, x)‖2
X ≤ L̄2

F (1 + ‖x‖2
X), x ∈ X. (3.21)

Proof It follows from [7, Lemma 7] that for each n ∈ N, F n is globally Lipschitz

with constant 3LF (n) (independent of t). Moreover, it follows from (3.19) that F n is

of linear growth. �

Similarly, we have the following result.

Lemma 3.7 Assume that G : R+ × X → γ (H,X) is a locally Lipschitz map on

balls, i.e., for each T > 0 and R > 0, there exists a constant LF (R) > 0 such that if

t ∈ [0, T ] and ‖x1‖X,‖x2‖X ≤ R, then

‖G(t, x1) − G(t, x2)‖γ (H,X) ≤ LG(R)‖x1 − x2‖X.

Moreover, assume that G is of linear growth (uniformly in t), i.e., for all T > 0, there

exists a constant L̄G > 0 such that for all t ∈ [0, T ],

‖G(t, x)‖2
γ (H,X) ≤ L̄2

G

(

1 + ‖x‖2
X

)

, x ∈ X.
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For each n ∈ N, define the map Gn :R+ × X → γ (H,X) by

Gn(·, x) =
{

G(·, x), ‖x‖X ≤ n, t ≥ 0,

G(·, n x
‖x‖X

), ‖x‖X > n, t ≥ 0.
(3.22)

Then for each n ∈ N, Gn is globally Lipschitz on X with constant 3LG(n) (indepen-

dent of t). Moreover, Gn is of linear growth, i.e.,

‖Gn(t, x)‖2
γ (H,X) ≤ L̄2

G(1 + ‖x‖2
X), x ∈ X. (3.23)

The previous lemmas yield the following natural conclusion of Theorem 3.4.

Corollary 3.8 Assume the maps F : R+ × X → X and G : R+ × X → γ (H,X) are

of linear growth and locally Lipschitz on balls. Moreover, we assume that for each

x ∈ X, F(·, x) : [0,∞) → X and G(·, x) : [0,∞) → γ (H,X) are Borel-measurable

functions. Then for each n ∈N, the stochastic evolution equation

{

dun(t) =
(

Aun(t) + F n
(

t, un(t)
)

)

dt + Gn
(

t, un(t)
)

dW(t), t ≥ 0,

un(0) = u0,
(3.24)

where F n and Gn are the mappings defined in (3.20) and (3.22), respectively, has a

unique X-valued continuous mild solution.

Lemma 3.9 Assume that for each n ∈ N, un is the unique solution of (3.24). Then

for every T > 0, there exists a constant C(T ) > 0 (independent of n) such that for

each n ∈N,

E

[

sup
t∈[0,T ]

‖un(t)‖2
X

]

≤ C(T ). (3.25)

Proof Fix n ∈N and T > 0. Since un is the unique solution of (3.24), we have

un(t) = S(t)u0 +
∫ t

0

S(t − r)F n
(

r, un(r)
)

dr

+
∫ t

0

S(t − r)Gn
(

r, un(r)
)

dW(r) t ∈ [0, T ].

Thus, for each s ∈ [0, T ], we obtain

E

[

sup
t∈[0,s]

‖un(t)‖2
X

]

≤ 3E

[

sup
t∈[0,s]

‖S(t)u0‖2
X

]

+ 3E

[

sup
t∈[0,s]

∥

∥

∥

∥

∫ t

0

S(t − r)F n
(

r, un(r)
)

dr

∥

∥

∥

∥

2

X

]

+ 3E

[

sup
t∈[0,s]

∥

∥

∥

∥

∫ t

0

S(t − r)Gn
(

r, un(r)
)

dW(r)

∥

∥

∥

∥

2

X

]

.
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By Corollary 2.14 and (3.23), we have, for each s ∈ [0, T ],

E

[

sup
t∈[0,s]

∥

∥

∥

∥

∫ t

0

S(t − r)Gn
(

r, un(r)
)

dW(r)

∥

∥

∥

∥

2

X

]

≤ KT E

[∫ s

0

∥

∥Gn
(

r, un(r)
) ∥

∥

2

γ (H,X)
dr

]

≤ KT L̄2
GE

[∫ s

0

(1 + ‖un(r)‖2
X) dr

]

≤ KT T L̄2
G + KT L̄2

G

∫ s

0

E

[

sup
t∈[0,r]

‖un(t)‖2
X

]

dr. (3.26)

Using the Cauchy–Schwarz inequality, (3.5) and (3.21), we obtain

∥

∥

∥

∥

∫ t

0

S(t − r)F n
(

r, un(r)
)

dr

∥

∥

∥

∥

2

X

≤ t

∫ t

0

∥

∥S(t − r)F n
(

r, un(r)
) ∥

∥

2

X
dr

≤ tM2
t L̄2

F

∫ t

0

(

1 + ‖un(r)‖2
X

)

dr

≤ t2M2
t L̄2

F + tM2
t L̄2

F

∫ t

0

sup
t∈[0,r]

‖un(t)‖2
Xdr.

Therefore, we deduce that

E

[

sup
t∈[0,s]

∥

∥

∥

∥

∫ t

0

S(t − r)F n
(

r, un(r)
)

dr

∥

∥

∥

∥

2

X

]

≤ T 2M2
T L̄2

F + T M2
T L̄2

F

∫ s

0

E

[

sup
t∈[0,r]

‖un(t)‖2
X

]

dr. (3.27)

Moreover, by (3.5), we get

E

[

sup
t∈[0,s]

‖S(t)u0‖2
X

]

≤ MT ‖u0‖2
X, s ∈ [0, T ]. (3.28)

In view of (3.26)–(3.28), there exist constants NT > 0 and VT > 0 such that

E

[

sup
t∈[0,s]

‖un(t)‖2
X

]

≤ NT + VT

∫ s

0

E

[

sup
t∈[0,r]

‖un(t)‖2
X

]

dr, s ∈ [0, T ].

Applying Gronwall’s lemma, we get the desired result (3.25). �

Lemma 3.10 For each n ∈N, the random variable τn : � → [0,∞] defined by

τn(ω) = inf{ t ∈ [0,∞) : ‖un(t,ω)‖X ≥ n }, ω ∈ �,

where for each n ∈ N, un is the unique solution of (3.24), is a stopping time. More-

over, the sequence (τn)n∈N of these stopping times converges to infinity.
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Proof It was proved in [35, Problem 1.2.7] that for each n ∈ N, τn is a stopping

time. Thus we only prove that the sequence (τn)n∈N converges to infinity. For this

aim, we need to show that there exists �̄ ∈ F with P[�̄] = 1 such that for all

ω ∈ �̄, τn(ω) → ∞, i.e., for every T > 0, there exists k ∈ N such that for all n ≥ k,

τn(ω) ≥ T . Therefore, it is sufficient to show that for each T > 0,

P[{ω ∈ � : ∃ k ∈N with τn(ω) ≥ T ,∀ n ≥ k}] = 1.

Fix T > 0. For each n ∈ N, set

An :=
{

ω ∈ � : sup
t∈[0,T ]

‖un(t)‖X ≥ n
}

.

Then by (3.25) and the Chebyshev inequality, we have, for each n ∈N,

P[An] ≤ C(T )
1

n2
.

Therefore, since
∑∞

n=1
1
n2 < ∞, we have

∑∞
n=1 P[An] < ∞. Thus, by the Borel–

Cantelli lemma, we infer that P[
⋂∞

k=1

⋃∞
n=k An] = 0 and so

P

[ ∞
⋃

k=1

∞
⋂

n=k

(� \ An)

]

= 1.

Choose �̄ =
⋃∞

k=1

⋂∞
n=k(� \ An) and fix ω ∈ �̄. Then there is k ∈ N such that

ω ∈
⋂∞

n=k(� \ An), i.e., ω ∈ � \ An, ∀ n ≥ k. Therefore, for all n ≥ k,

sup
t∈[0,T ]

‖un(t,ω)‖X < n.

Thus there is k ∈ N such that for all n ≥ k and t ∈ [0, T ], ‖un(t,ω)‖X < n, which

implies that there is k ∈ N such that for all n ≥ k, τn(ω) ≥ T . This gives the desired

conclusion. �

Theorem 3.11 Assume the maps F :R+ ×X → X and G :R+ ×X → γ (H,X) are

of linear growth and locally Lipschitz on balls. Moreover, we assume that for each

x ∈ X, F(·, x) : [0,∞) → X and G(·, x) : [0,∞) → γ (H,X) are Borel-measurable

functions. Then there exists a unique X-valued continuous mild solution to (3.1).

Proof For each n ∈ N, let un be the unique solution of (3.24). Consider the sequence

(τn)n∈N in Lemma 3.10. Define the process u by

u(t) = un(t), if t ≤ τn.

In view of [6, Lemma 4.11], (τn)n∈N has the two properties that (i) τn ≤ τn+1 and

(ii) un(t,ω) = un+1(t,ω), t ≤ τn(ω),P-a.s. Therefore, the process u is well defined.

We claim that this process is a unique X-valued continuous mild solution to (3.1).
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Let us prove this. By the definition of a mild solution, it is sufficient to show that the

process u is a unique X-valued continuous solution to the integral equation (3.2). It is

obvious that u is continuous and F-adapted. Hence, it is F- progressively measurable.

Moreover, for each t ≥ 0,

∫ t

0

E[‖u(r)‖2
X]dr < ∞.

Thus, the integrals in (3.2) are well defined for the process u. Now we show that

the process u solves (3.2). Since un is the solution of (3.24), we have the integral

equation

u(t ∧ τn) = un(t ∧ τn)

= S(t ∧ τn)u0 +
∫ t∧τn

0

S(t ∧ τn − r)F n
(

r, un(r)
)

dr

+
∫ t∧τn

0

S(t ∧ τn − r)Gn
(

r, un(r)
)

dW(r), t ≥ 0. (3.29)

However, we have a problem here. The stochastic integral part of the equation is

not well defined because we integrate a process which is not adapted and hence

not progressively measurable. To overcome this problem, let us define the process

I by

I (t) :=
∫ t

0

S(t − r)Gn
(

r, un(r)
)

dW(r), t ≥ 0.

It is obvious that I is well defined. Consider the process

Iτn(t) =
∫ t

0

S(t − r)1[0,τn)(r)G
n
(

r ∧ τn, u
n(r ∧ τn)

)

dW(r), t ≥ 0.

It was shown in [11, Lemma A.1] that if the processes I and Iτn are continu-

ous, then

S(t − t − τn)I (t ∧ τn) = Iτn(t) for all t ≥ 0, P-a.s.

In particular,

I (t ∧ τn) = Iτn(t ∧ τn) for all t ≥ 0, P-a.s.

Therefore, (3.29) can be rewritten as

u(t ∧ τn) = S(t ∧ τn)u0

+
∫ t∧τn

0

S(t ∧ τn − r)F n
(

r, un(r)
)

dr + Iτn(t ∧ τn), t ≥ 0.
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Since r ≤ τn, ‖un(r)‖X ≤ n. Therefore, from the definitions of F n and Gn, we get,

for every r ≤ τn,

F n
(

r, un(r)
)

= F
(

r, un(r)
)

and Gn
(

r, un(r)
)

= G
(

r, un(r)
)

.

Also by the definition of u, u(r) = un(r) if r ≤ τn. Hence, we obtain

u(t ∧ τn) = S(t ∧ τn)u0 +
∫ t∧τn

0

S(t ∧ τn − r)F
(

r, u(r)
)

dr

+
∫ t

0

S(t − r)1[0,τn)(r)G
(

r ∧ τn, u(r ∧ τn)
)

dW(r).

We know that τn →∞ and so t ∧τn → t . Thus u(t ∧τn)→u(t) and S(t ∧ τn)→S(t).

Therefore, we deduce that

u(t) = S(t)u0 +
∫ t

0

S(t − r)F
(

r, u(r)
)

dr

+
∫ t

0

S(t − r)G
(

r, u(r)
)

dW(r), t ≥ 0.

Thus, the process u solves the integral equation (3.2). The uniqueness of the solution

follows from Theorem 3.4. Thus, the process u is a unique X-valued continuous mild

solution to (3.1). �

3.4 Markov property and invariant measures

In this section, we analyse the Markov property of the solution to Eq. (3.1). Because

our main interests lies in the existence of an invariant measure, we assume in this and

the following subsections that the coefficients in (3.1) are time-independent. It fol-

lows from the results proved in the previous sections that (3.1) has a unique X-valued

continuous mild solution under the Lipschitz assumptions on the coefficients. Sim-

ilarly, one can show that for every u0 ∈ L2(�,F0,P;X), Eq. (3.1) with the initial

value u(0) = u0 has a unique X-valued continuous (mild) solution u on [0,∞). We

denote this solution by u(·, u0). If u0 = x ∈ X, we denote the solution by u(·, x).

Assume that Bb(X) denotes the space of all bounded measurable functions from X

into R and B(X) the Borel σ -field of X.

Definition 3.12 The family (Pt )t≥0 of linear bounded operators on Bb(X) defined

by

(Ptϕ)(x) := E
[

ϕ
(

u(t, x)
)]

, t ≥ 0, ϕ ∈ Bb(X), x ∈ X,

see [50, Definition 1.7], is called the Markov semigroup corresponding to Eq. (3.1).

Remark 3.13 As discussed in [9, Sect. 2.4], for every φ ∈ Bb(X), the bounded func-

tion Ptφ is also measurable when it is well posed, i.e., when weak existence and

uniqueness in law hold for Eq. (3.1); see [47, Definition 18 in Corollary 23]. The
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latter generalizes to the infinite-dimensional setting the finite-dimensional result of

Stroock and Varadhan [52, Exercise 6.7.4]. Since our results imply weak existence

and pathwise uniqueness and since pathwise uniqueness implies uniqueness in law,

see [47] for the infinite-dimensional version of the Yamada–Watanabe theory, we in-

fer that this is the case for our problem. Moreover, one can show, see e.g. Ondreját

[47], that the family (Pt )t≥0 is indeed a Markov semigroup, i.e., we have

Pt+s = PtPs, t, s ≥ 0.

Definition 3.14 A Borel probability measure μ on X is called an invariant prob-

ability measure for (3.30) if it is an invariant probability measure for the Markov

semigroup, i.e., if for any time t ≥ 0,

∫

X

Ptφ dμ =
∫

X

φ dμ, ∀φ ∈ Cb(X),

where Cb(X) denotes the space of all bounded and continuous functions from X to R.

Remark 3.15 By Theorem 3.5, the transition semigroup (Pt )t≥0 is Feller, that is, for

any t ≥ 0, Pt : Cb(X) → Cb(X), where Cb(X) is the space of all continuous bounded

functions from X into R, is well defined. It is known that the semigroup is in general

not strongly continuous on the space Cb(X). However, if μ is an invariant probability

measure for the semigroup (Pt )t≥0, then for every p ∈ [1,∞), the semigroup (Pt )t≥0

has a unique extension to a C0-semigroup on the space Lp(X,μ). Such statements

can be found in many papers, see e.g. [18] and [42], but we could not find a proof.

However, the proof of such a claim is standard since (i) the set of bounded functions

in Lp(X,μ) is dense in Lp(X,μ); (ii) for every bounded function f ∈ Lp(X,μ) and

for every ε > 0, there exists a continuous bounded function fε : X → R such that

μ({x ∈ X : f (x) �= fε(x)}) < ε, see [4, Theorem 7.1.13]; (iii) the trajectories of the

process u(t), t ≥ 0, are continuous. Indeed, properties (i) and (ii) imply that the set

Cb(X) is dense in Lp(X,μ). See also Da Prato’s survey article [19] and Yosida’s

monograph [56, Theorem XIII.1].

Brzeźniak et al. [10] found some sufficient condition for the existence and unique-

ness of an invariant measure for (3.1) with time-independent coefficients. Before in-

troducing this, we present the following natural consequence of Theorem 3.11.

Corollary 3.16 Assume that the maps F : X → X and G : X → γ (H,X) are of

linear growth and locally Lipschitz on balls. Then there exists a unique X-valued

continuous mild solution to the equation

{

du(t) =
(

Au(t) + F
(

u(t)
)

)

dt + G
(

u(t)
)

dW(t), t ≥ 0,

u(0) = u0.
(3.30)

Theorem 3.17 [10, Theorem 4.1] Assume that all the assumptions of Corollary 3.16

are satisfied. If there exist constants ω > 0 and n0 ∈ N such that for all n ≥ n0 and
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x1, x2 ∈ X,

[An(x1 − x2) + F(x1) − F(x2), x1 − x2]X + K2(q)

q
‖G(x1) − G(x2)‖2

γ (H,X)

≤ −ω‖x1 − x2‖2
X,

where An is the Yosida approximation of A, K2 is a constant appearing in the

H -condition and [·, ·]X is the semi-inner product on X (see Definition 3.18 below),

then there exists a unique invariant probability measure for (3.30).

Definition 3.18 A semi-inner product on a complex or real vector space V is a map-

ping [·, ·]V : V × V →C (or R) such that

(i) [x + y, z]V = [x, z]V + [y, z]V , x, y, z ∈ V ;

(ii) [λx,y]V = λ[x, y]V , x, y ∈ V , λ ∈C (or R);

(iii) [x, x]V > 0 for x �= 0;

(iv) |[x, y]V |2 ≤ [x, x]V [y, y]V , x, y ∈ V .

Such a vector space V with the semi-inner product [·, ·]V is called a semi-inner prod-

uct space.

Lemma 3.19 [10] The mapping on X × X defined by

[x, y]X = 〈x, y∗〉, x, y ∈ X,

where y∗ ∈ X∗ (X∗ is the dual space of X) is such that we have ‖y∗‖ = ‖y‖X and

〈y, y∗〉 = ‖y‖X , is a semi-inner product. Such a y∗ ∈ X∗ exists by the Hahn–Banach

theorem.

Remark 3.20 Invariant measures are a subject related to semigroups, and an SDE

generates a semigroup only when the coefficients are time-independent. However,

there are some papers considering a generalization of an invariant measure for time-

dependent equations; see e.g. [48, 20, 21]. We plan to investigate this concept in

relation to the HJMM equation in the future.

4 Application to the Heath–Jarrow–Morton–Musiela (HJMM)
equations

4.1 The HJMM equations

The value of one dollar at time t ∈ [0, T ] with maturity T ≥ 0 is called the zero-

coupon bond, and is denoted by P(t, T ). This is a contract that guarantees the holder

one dollar to be paid at the maturity date T . Thus, this is the most basic interest rate
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contract. Because of some additional factors like changes of the economy in time,

the value of one dollar today could be better than the value of one dollar tomorrow

and even the value of one dollar next year. Therefore, the bond prices are unknown

in advance. Thus, it is assumed that for each T ≥ 0 and t ∈ [0, T ], P(t, T ) is an

R-valued random variable defined on a probability space (�,F ,P). Therefore, for

each T > 0, (P (t, T ))t∈[0,T ] is an R-valued stochastic process. Under the assump-

tion that for each t ∈ [0, T ], [0,∞) ∋ T �→ P(t, T ) is a differentiable function, the

function f defined by

f (t, T ) = − ∂

∂T
logP(t, T ), T > 0, t ∈ [0, T ],

is called the forward rate function. It contains all the original bond price information.

For each T > 0, the family (f (t, T ))t∈[0,T ] is a stochastic process, and called forward

rate process. For each t ∈ [0, T ], the function [t,∞) ∋ T �→ f (t, T ) is called the

forward curve. It is always assumed that the forward curves are locally integrable

with respect to Lebesgue measure. If in addition P(T ,T ) = 1, then one can write the

equality

P(t, T ) = e−
∫ T
t f (t,s) ds, T > 0, t ∈ [0, T ].

In the framework of Heath–Jarrow–Morton [34], it was assumed that for each

T > 0, the forward rate process (f (t, T ))t∈[0,T ] satisfies for t ∈ [0, T ] the stochastic

differential equation

df (t, T ) =
( d
∑

i

σi(t, T )

∫ T

t

σi(t, u) du

)

dt +
d
∑

i

σi(t, T ) dWi(t), (4.1)

where W(t) = (W1(t),W2(t), . . . ,Wd(t)), t ≥ 0, is a standard d-dimensional Brown-

ian motion and for each T > 0, (σi(t, T ))t∈[0,T ] is a real-valued stochastic process.

Filipović [26] extended the framework of Heath–Jarrow–Morton by considering a

Wiener process in a (possibly infinite-dimensional) Hilbert space instead of a stan-

dard finite-dimensional Brownian motion. Thus, he assumed that for an arbitrary but

fixed T > 0, the forward rate process (f (t, T ))t∈[0,T ] satisfies the stochastic differ-

ential equation

df (t, T ) =
〈

σ(t, T ),

∫ T

t

σ(t, u) du

〉

H

dt + 〈σ(t, T ), dW(t)〉H , t ∈ [0, T ],

where (W(t))t≥0 is a Wiener process in an infinite-dimensional Hilbert space H

endowed with an inner product 〈·, ·〉H and for each T > 0, (σ (t, T ))t∈[0,T ] is an

H -valued stochastic process.

Using the Musiela parametrization [43], an important connection between the

HJMM model and stochastic partial differential equations can be provided as fol-

lows. Define

r(t)(x) = f (t, t + x), T = t + x, x, t ≥ 0,
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where x is called time to maturity, and for each t ≥ 0, the function r(t) is a ran-

dom variable on (�,F ,P) taking values in the space of real-valued functions on

[0,∞) and called forward curve. Therefore, the family (r(t))t≥0 of forward curves

is a stochastic process taking values in the space of real-valued functions on [0,∞)

and called forward curve process. By the framework of Heath–Jarrow–Morton [34],

the forward curve process (r(t))t≥0 satisfies the stochastic partial differential equa-

tion

dr(t)(x) =
(

∂

∂x
r(t)(x) +

〈

α(t)(x),

∫ x

0

α(t)(y) dy

〉

H

)

dt

+ 〈α(t)(x), dW(t)〉H , t ≥ 0, (4.2)

where α is the function defined by

α(t)(x) = σ(t, t + x), t ≥ 0, x ∈ [0,∞).

Let g : [0,∞) × [0,∞) × R → H be a given function which is locally integrable

with respect to the second variable. Assume that the volatility α is defined by

α(t)(x) = g
(

t, x, r(t)(x)
)

, t, x ≥ 0,

i.e., the volatility α depends on the forward curve process (r(t))t≥0. Then (4.2) be-

comes

dr(t)(x) =
(

∂

∂x
r(t)(x) +

〈

g
(

t, x, r(t)(x)
)

,

∫ x

0

g
(

t, y, r(t)(y)
)

dy

〉

H

)

dt

+
〈

g
(

t, x, r(t)(x)
)

, dW(t)
〉

H
. (4.3)

This equation is known as the Heath–Jarrow–Morton–Musiela (HJMM) equation. In

this paper, we analyse, under some sufficient conditions on the function g, the exis-

tence and uniqueness of solutions to (4.3) in certain Banach spaces. Moreover, we

analyse the existence and uniqueness of invariant measures for (4.3).

4.2 Existence and uniqueness of solutions to the HJMM equations in weighted

Lebesgue spaces

In this section, we study the existence and uniqueness of solutions to the HJMM

equations in the weighted Lp spaces with p ≥ 2. The motivation for this is at least

threefold. Firstly, it is of purely theoretical curiosity to see to what extent the results

obtained in the L2-framework remain valid in the more general one. The second one,

to which our paper is the very first step, is to consider the HJMM equations in the

weighted fractional Sobolev spaces W θ,p with θ > 1
p

(allowing thus to have θ < 1).

Taking p large and θ just a bit bigger than 1
p

will allow us to use a space which in
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some sense is much closer to the space C of continuous functions. Also using either

weighted Lp or fractional Sobolev spaces W θ,p allows one to consider the HJMM

equations with coefficients satisfying less stringent regularity assumptions than in the

classical approach. Thirdly, if the functions σi(t, ·) are not regular enough, then the

natural state spaces for the solutions of the HJMM equations are the weighted Lp

spaces; see Example 4.10. Let us point out that in their monograph [50], Peszat and

Zabczyk used the weighted L2 spaces.

For each ν ∈ R and p ≥ 1, define L
p
ν to be the space of all (equivalence classes

of) Lebesgue-measurable functions f : [0,∞) → R such that

‖f ‖ν,p :=
(∫ ∞

0

|f (x)|peνxdx

)
1
p

< ∞.

For each ν ∈R and p ≥ 1, L
p
ν is a separable Banach space with the norm ‖ · ‖ν,p .

Lemma 4.1 For each ν > 0 and p ≥ 1, the space L
p
ν is continuously embedded into

the space L1. In particular,

‖f ‖1 ≤
(

p

νq

)
1
q

‖f ‖ν,p, f ∈ Lp
ν ,

where q ∈ [1,∞) is such that 1
p

+ 1
q

= 1.

The proof follows from the Hölder inequality.

Theorem 4.2 Let ν > 0 and p ≥ 2. Assume that g : [0,∞) × [0,∞) ×R → H is a

measurable function with respect to the second variable such that there exist functions

ḡ ∈ L
p
ν and ĝ ∈ L

p
ν ∩ L∞ such that for all t ∈ [0,∞),

‖g(t, x,u)‖H ≤ |ḡ(x)|, u ∈R, x ∈ [0,∞), (4.4)

and

‖g(t, x,u) − g(t, x, v)‖H ≤ |ĝ(x)||u − v|, u, v ∈ R, x ∈ [0,∞). (4.5)

Then for each r0 ∈ L2(�,F0,P;Lp
ν ), (4.3) with the function g has a unique

L
p
ν -valued continuous mild solution with the initial value r(0) = r0.

The proof is given below.

Lemma 4.3 For each ν ∈ R and p ≥ 2, the space L
p
ν satisfies the H -condition. In

particular, if ψ is the function defined by

ψ : Lp
ν ∋ f �→ ψ(f ) = ‖f ‖p

ν,p ∈R,
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then

‖ψ ′(f )‖ ≤ p‖f ‖p−1
ν,p and ‖ψ ′′(f )‖ ≤ p(p − 1)‖f ‖p−2

ν,p , f ∈ Lp
ν ,

where ψ ′(f ) and ψ ′′(f ) are the first and second Fréchet derivatives of ψ at f ∈ L
p
ν ,

respectively.

Proof Fix ν ∈R and p ≥ 2. Define the linear operator T : Lp
ν → Lp by

Tf (x) = f (x)e
ν
p

x
, f ∈ Lp

ν , x ∈ [0,∞).

It is obvious that the map T is well defined, bijective and

‖Tf ‖p = ‖f ‖ν,p, f ∈ Lp
ν . (4.6)

It is clear that any linear operator, so T , is twice Fréchet differentiable and for each

f ∈ L
p
ν , T ′(f ) = T and T ′′(f ) = 0. By [13, Proposition 2.1], for every p ≥ 2, the

space Lp satisfies the H -condition for any q ≥ p, i.e., for some q ≥ p (in particular,

q = p), the map φ : Lp ∋ f �→ φ(f ) = ‖f ‖p
p ∈ R is of class C2 and

‖φ′(f )‖ ≤ p‖f ‖p−1
p and ‖φ′′(f )‖ ≤ p(p − 1)‖f ‖p−2

p , f ∈ Lp. (4.7)

We can write ψ = φ ◦ T . Since T and φ are of class C2 , ψ is of class C2. Moreover,

it follows from (4.6) and (4.7) that

‖ψ ′(f )‖ ≤ p‖f ‖p−1
ν,p , f ∈ Lp

ν .

Similarly,

‖ψ ′′(f )‖ ≤ p(p − 1)‖f ‖p−2
ν,p , f ∈ Lp

ν ,

which finishes the proof. �

Lemma 4.4 For each ν > 0 and p ≥ 1, the shift semigroup (S(t))t≥0 on the space

L
p
ν is a contraction-type C0-semigroup, in particular,

‖S(t)‖ ≤ e
−νt
p , t ≥ 0.

Moreover, its infinitesimal generator A is characterized by

D(A) = {f ∈ Lp
ν : Df ∈ Lp

ν }

and

Af = Df, f ∈D(A),

where D is the weak derivative (of order one).
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This result can be proved along the lines of [56, Examples IX.2.1 and IX.5.1]. See

also [37, Lemma 5.3] for the first and [37, Lemma 5.8] for the second part.

For each ν ∈ R and p ≥ 1, define L
p
ν (H) to be the space of all (equivalence classes

of) Borel-measurable functions f : [0,∞) → H such that

‖f ‖L
p
ν (H) :=

(∫ ∞

0

‖f (x)‖p

H eνxdx

)
1
p

< ∞.

For each ν ∈ R and p ≥ 1, L
p
ν (H) is a separable Banach space endowed with the

norm ‖ · ‖L
p
ν (H). The following lemma gives a sufficient condition under which an

L
p
ν -valued operator defined on H is γ -radonifying.

Lemma 4.5 For each ν ∈ R and p ≥ 2, the bounded linear operator K : H → L
p
ν

defined by

K[h](x) = 〈κ(x),h〉H , h ∈ H,x ∈ [0,∞),

where κ ∈ L
p
ν (H), is a γ -radonifying operator, i.e., K ∈ γ (H,L

p
ν ). Moreover, there

exists a constant N > 0 independent of κ such that

‖K‖γ (H,L
p
ν ) ≤ N‖κ‖L

p
ν (H).

Proof Define the linear operator V : Lp
ν (H) → Lp(H) by

Vf = f e
ν
p , f ∈ Lp

ν (H).

It is obvious that V is well defined, bijective and

‖Vf ‖Lp(H) = ‖f ‖L
p
ν (H), f ∈ Lp

ν (H). (4.8)

Fix κ ∈ L
p
ν (H) so that V κ ∈ Lp(H). By [12, Proposition 2.1], the bounded linear

operator M : H → Lp defined by

M[h](x) = 〈φ(x),h〉H , h ∈ H,x ∈ [0,∞),

where φ ∈ Lp(H), is a γ -radonifying operator and, for a constant N > 0 independent

of φ,

‖M‖γ (H,Lp) ≤ N‖φ‖Lp(H).

Therefore, the operator K̄ : H → Lp defined by

K̄[h](x) = 〈V κ(x),h〉H , h ∈ H,x ∈ [0,∞),

is a γ -radonifying operator, and for a constant N > 0,

‖K̄‖γ (H,Lp) ≤ N‖V κ‖Lp(H).
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It follows from (4.8) that

‖K̄‖γ (H,Lp) ≤ N‖κ‖L
p
ν (H). (4.9)

For the linear operator T in the proof of Lemma 4.3, we can write K = T −1 ◦ K̄ .

Thus by Theorem 2.6, the map K is a γ -radonifying operator. Moreover, since

‖T −1‖ ≤ 1 and by (4.9), we infer that

‖K‖γ (H,L
p
ν ) ≤ ‖T −1‖‖K̄‖γ (H,Lp) ≤ N‖κ‖L

p
ν (H),

which completes the proof. �

Lemma 4.6 Let ν > 0 and p ≥ 2. Assume g : [0,∞)×[0,∞)×R → H is a function

satisfying the assumptions of Theorem 4.2. Then F : [0,∞) × L
p
ν → L

p
ν defined by

F(t, f )(x) =
〈

g
(

t, x, f (x)
)

,

∫ x

0

g
(

t, y, f (y)
)

dy

〉

H

, f ∈ Lp
ν , x, t ∈ [0,∞),

is well defined. Moreover, we have:

(i) For all t ∈ [0,∞) and f ∈ L
p
ν ,

‖F(t, f )‖ν,p ≤
(

p

νq

)
1
q

‖ḡ‖2
ν,p. (4.10)

(ii) F is globally Lipschitz on L
p
ν with a Lipschitz constant independent of time t .

Proof Fix t ≥ 0 and f ∈ L
p
ν . It follows from (4.4) that for each x ∈ [0,∞), the

integral
∫ x

0 g(t, y, f (y)) dy exists. Define the function h by

h(x) =
∫ x

0

g
(

t, y, f (y)
)

dy, x ∈ [0,∞).

This function is continuous. Indeed, by (4.4), we have for every sequence (xn)n∈N in

[0,∞) converging to x ∈ [0,∞) that as n → ∞,

|h(xn) − h(x)| ≤
∫ xn

x

∣

∣g
(

t, y, f (y)
)∣

∣dy ≤
∫ ∞

0

1[x,xn](y)|ḡ(y)|dy −→ 0.

Thus h is continuous and so it is measurable. Therefore, F(t, f ) is measurable. More-

over, by the Cauchy–Schwarz inequality, Lemma 4.1 and (4.4), we obtain

|F(t, f )(x)| ≤ ‖g(t, x, f (x)‖H

∥

∥

∥

∥

∫ x

0

g(t, y, f (y)) dy

∥

∥

∥

∥

H

≤ |ḡ(x)|
∫ ∞

0

|ḡ(y)|dy ≤
(

p

νq

)
1
q

‖ḡ‖ν,p|ḡ(x)|, x ∈ [0,∞).
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Taking into account the last inequality, we deduce that

∫ ∞

0

|F(t, f )(x)|peνxdx ≤
(

p

νq

)
p
q

‖ḡ‖2p
ν,p. (4.11)

Therefore F(t, f ) ∈ L
p
ν and thus F is well defined. Moreover, (4.11) gives the desired

conclusion (4.10). Finally, we prove that F is globally Lipschitz on L
p
ν . Fix t ≥ 0 and

f1, f2 ∈ L
p
ν . Then by the Cauchy–Schwarz inequality, we have

|F(t, f1)(x) − F(t, f2)(x)|

≤
∣

∣

∣

∣

〈

g
(

t, x, f1(x)
)

,

∫ x

0

(

g
(

t, y, f1(y)
)

− g
(

t, y, f2(y)
)

)

dy

〉

H

∣

∣

∣

∣

+
∣

∣

∣

∣

〈

g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)

,

∫ x

0

g
(

t, y, f2(y)
)

dy

〉

H

∣

∣

∣

∣

≤
∥

∥g
(

t, x, f1(x)
)∥

∥

H

∫ ∞

0

∥

∥g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)∥

∥

H
dx

+
∥

∥g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)∥

∥

H

∫ ∞

0

∥

∥g
(

t, x, f2(x)
)∥

∥

H
dx, x ∈ [0,∞).

It follows from Lemma 4.1 and (4.4) and (4.5) that for t ≥ 0, x ∈ [0,∞),

|F(t, f1)(x) − F(t, f2)(x)| ≤
(

p

νq

)
1
q

‖ĝ‖∞‖f1 − f2‖ν,p|ḡ(x)|

+
(

p

νq

)
1
q

‖ḡ‖ν,p|ĝ(x)| |f1(x) − f2(x)|. (4.12)

Taking into account the last inequality, we infer that

‖F(t, f1) − F(t, f2)‖ν,p ≤ 2

(

p

νq

)
1
q

‖ĝ‖∞‖ḡ‖ν,p‖f1 − f2‖ν,p,

concluding that F is globally Lipschitz on L
p
ν with a Lipschitz constant independent

of time t . �

Lemma 4.7 Let ν > 0 and p ≥ 2. Assume g : [0,∞) × [0,∞) × R → H is a func-

tion satisfying the assumptions of Theorem 4.2. Then G : [0,∞) × L
p
ν → γ (H,L

p
ν )

defined by

G(t, f )[h](x) =
〈

g
(

t, x, f (x)
)

, h
〉

H
, f ∈ Lp

ν , h ∈ H,x, t ∈ [0,∞),

is well defined. Moreover, we have:
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(i) For all t ∈ [0,∞) and f ∈ L
p
ν , there exists a constant N > 0 such that

‖G(t, f )‖γ (H,L
p
ν ) ≤ N ‖ḡ‖ν,p. (4.13)

(ii) G is globally Lipschitz on L
p
ν with a Lipschitz constant independent of time t .

Proof Fix t ≥ 0 and f ∈ L
p
ν . Define the function κ : [0,∞) → H by

κ(x) = g
(

t, x, f (x)
)

, x ∈ [0,∞).

Then G(t, f ) can be written as

G(t, f )[h](x) = 〈κ(x),h〉H , h ∈ H,x ∈ [0,∞).

It follows from (4.4) that κ ∈ L
p
ν (H). Therefore, by Lemma 4.5, G(t, f ) is a

γ -radonifying operator from H to L
p
ν and so G is well defined. Moreover, again

by Lemma 4.5 and (4.4), we have for a constant N > 0 independent of κ that

‖G(t, f )‖γ (H,L
p
ν ) ≤ N‖ḡ‖ν,p,

which gives the desired result (4.13). Finally, using Lemma 4.5 and (4.5), we have

for each t ≥ 0 and f1, f2 ∈ L
p
ν that

‖G(t, f1) − G(t, f2)‖γ (H,L
p
ν ) ≤ N‖ĝ‖∞‖f1 − f2‖ν,p, (4.14)

which implies that G(t, ·) is globally Lipschitz on L
p
ν with a Lipschitz constant inde-

pendent of time t . �

Proof of Theorem 4.2 Fix ν > 0 and p ≥ 2. The abstract form of (4.3) in the space

L
p
ν is

dr(t) =
(

Ar(t) + F
(

t, r(t)
)

)

dt + G
(

t, r(t)
)

dW(t), t ≥ 0, (4.15)

where A is the infinitesimal generator of the shift semigroup on L
p
ν (see Lemma 4.4),

and F and G are the functions defined in Lemmas 4.6 and 4.7, respectively.

Now (4.3) is of the same form as (3.1) and it follows from the previous lem-

mas that all the assumptions of Theorem 3.4 hold. Therefore, in view of Theo-

rem 3.4, (4.15) has a unique L
p
ν -valued continuous mild solution with the initial value

r0 ∈ L2(�,F0,P;Lp
ν ). �

Example 4.8 Let us consider the function g defined by

α(t, x) = g(x) = σ0e
−λx, t ≥ 0, x ∈ [0,∞),

where σ0, λ are constants and λ > 0. This corresponds to the volatility σ in (4.1)

having the form

σ(t, T ) = g(T − t) = σ0e
−λ(T −t), 0 ≤ t ≤ T < ∞.
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With this function g, (4.3) (driven by a standard one-dimensional Wiener process

W = (W(t)), t ≥ 0) transforms to

dr(t)(x) =
(

∂

∂x
r(t)(x) +

σ 2
0

λ
(e−λx − e−2λx)

)

dt

+ σ0e
−λx dW(t), t, x ≥ 0. (4.16)

As g satisfies all assumptions of Theorem 4.2, we infer that (4.16) has a unique

L
p
ν -valued continuous mild solution with initial value r0 ∈ L2(�,F0,P;Lp

ν ). More-

over, by the definition of a mild solution, this unique solution is of the exact form

r(t)(x) − r0(x + t) =
σ 2

0

λ

∫ t

0

(e−λ(x+s) − e−2λ(x+s)) ds + σ0

∫ t

0

e−λ(x+s) dW(s)

=
σ 2

0

2λ2

(

2e−λx(1 − e−λt ) − e−2λx(1 − e−2λt )
)

+ σ0e
−λx

∫ t

0

e−λs dW(s), t, x ≥ 0.

We can also consider the functions g1 and/or g2 defined by

g1(x) = e−λx cos(βx), x ∈ [0,∞),

g2(x) = e−λx sin(βx), x ∈ [0,∞),

where λ > 0 and β ∈ R. As these functions obviously satisfy all the assumptions of

Theorem 4.2, we infer that for each r0 ∈ L2(�,F0,P;Lp
ν ), (4.3) with the function

gi , i = 1,2, has a unique L
p
ν -valued continuous mild solution with initial value r0.

Example 4.9 Let us next consider the function g defined by

g(x,u) = e−λx sinu, x ∈ [0,∞), u ∈ R,

where λ > 0. With this function g, (4.3) changes to

dr(t)(x) =
(

∂

∂x
r(t)(x) + e−λx sin

(

r(t)(x)
)

∫ x

0

e−λy sin
(

r(t)(y)
)

dy

)

dt

+e−λx sin
(

r(t)(x)
)

dW(t), x, t ∈ [0,∞),

where (W(t))t≥0 is a standard one-dimensional Wiener process. Since the function

sin is bounded and globally Lipschitz on R, the function g satisfies all the assump-

tions of Theorem 4.2. Thus, (4.9) has a unique L
p
ν -valued continuous mild solution

with the initial value r0 ∈ L2(�,F0,P;Lp
ν ).
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Example 4.10 Suppose that W(t), t ≥ 0, is a standard 1-dimensional Brownian mo-

tion and the function σ in (4.1) is of the form

σ(t, T ) = σ0(T − t), 0 ≤ t ≤ T < ∞,

where σ0 = g ∈ Lp(0,∞). Since α(t, x) = σ(t, t + x) = σ0(x) for t ≥ 0, x ∈ [0,∞),

we infer that for all t ≥ 0,

‖α(t)‖p
ν,p =

∫ ∞

0

|α(t, x)|peνxdx =
∫ ∞

0

|σ0(x)|peνxdx < ∞.

Hence, for every t ≥ 0, α(t) ∈ L
p
ν . However, unless σ0 ∈ W 1,2

ν , α(t) does not belong

to the space W 1,2
ν . In particular, one can expect that the problem (4.3) is not well

posed in the space W 1,2
ν although it is well posed in the space L

p
ν . It should not be

too difficult to verify this claim.

This example shows that the HJMM equation, and hence also term structure equa-

tions, can be well posed on a Banach space where the point evaluation at x = 0 is not

well defined. It would be interesting to study different spaces than L
p
ν , for instance,

spaces with the norm defined by

‖r‖ := sup
x≥0

∫ x

0

|r(y)|dy.

4.3 Existence and uniqueness of solutions to the HJMM equations in weighted

Sobolev spaces

For each ν ∈ R and p ≥ 1, define W
1,p
ν to be the space of all functions f ∈ L

p
ν such

that the weak derivative Df belongs to L
p
ν , i.e.,

W 1,p
ν = {f ∈ Lp

ν : Df ∈ Lp
ν }.

For each ν ∈ R and p ≥ 1, the space W
1,p
ν is a separable Banach space endowed with

the norm

‖f ‖
W

1,p
ν

= ‖f ‖ν,p + ‖Df ‖ν,p, f ∈ W 1,p
ν .

Proposition 4.11 For each ν ≥ 0 and p ≥ 1, the space W
1,p
ν is continuously embed-

ded into the space L∞. In particular, there exists a constant C(ν,p) > 0 depending

on ν and p such that

sup
x∈[0,∞)

eνx |f (x)|p ≤ C(ν,p)‖f ‖p

W
1,p
ν

, f ∈ W 1,p
ν .

Proof Fix ν ≥ 0, p ≥ 1 and f ∈ W
1,p
ν . Let ε > 0. Since

∫ ∞

0

|f (x)|peνxdx < ∞,
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there exists x0 ∈ [0,∞) such that eνx0 |f (x0)|p < ε. Consider x ∈ [x0,∞). Then

eνx |f (x)|p = eνx0 |f (x0)|p + p

∫ x

x0

|f (y)|p−1Df (y)eνydy

+ ν

∫ x

x0

|f (y)|peνydy, x ∈ [x0,∞).

Therefore, we have

sup
x∈[x0,∞)

eνx |f (x)|p ≤ ε + p

∫ ∞

x0

|f (x)|p−1Df (x)eνxdx + ν‖f ‖p
ν,p.

Using the Hölder and Young inequalities, we get

∫ ∞

x0

|f (x)|p−1Df (x)eνxdx ≤
(∫ ∞

x0

|f (x)|peνxdx

)
p−1
p
(∫ ∞

x0

|Df (x)|peνxdx

)
1
p

≤ p − 1

p
‖f ‖p

ν,p + 1

p
‖Df ‖p

ν,p.

Taking into account the last inequality, we obtain

sup
x∈[x0,∞)

eνx |f (x)|p ≤ ε + (p − 1)‖f ‖p
ν,p + ‖Df ‖p

ν,p + ν‖f ‖p
ν,p.

Similarly, we can prove the above inequality for x ∈ [0, x0). Since ε > 0 is arbitrary,

we infer that

sup
x∈[0,∞)

eνx |f (x)|p ≤ (p − 1)‖f ‖p
ν,p + ‖Df ‖p

ν,p + ν‖f ‖p
ν,p,

which gives the desired result. �

Theorem 4.12 Let ν > 0 and p ≥ 2. Assume that g : [0,∞) × [0,∞) × R → H

is a continuously weakly differentiable function with respect to the second and third

variables such that there exist functions ḡ, ĝ ∈ W
1,p
ν with the following properties:

(i) For all t ∈ [0,∞),

‖g(t, x,u)‖H ≤ |ḡ(x)|, u ∈ R, x ∈ [0,∞). (4.17)

(ii) For all t ∈ [0,∞),

‖g(t, x,u) − g(t, x, v)‖H ≤ |ĝ(x)| |u − v|, u, v ∈ R, x ∈ [0,∞). (4.18)

(iii) For all t ∈ [0,∞),

‖Dxg(t, x,u)‖H ≤ |Dḡ(x)|, u ∈R, x ∈ [0,∞). (4.19)
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(iv) For all t ∈ [0,∞),

‖Dxg(t, x,u) − Dxg(t, x, v)‖H ≤ |Dĝ(x)| |u − v|, u, v ∈ R, x ∈ [0,∞).

(4.20)

(v) There exists a constant K1 > 0 such that for all t ∈ [0,∞),

‖Dug(t, x,u)‖H ≤ K1, u ∈ R, x ∈ [0,∞). (4.21)

(vi) There exists a constant K2 > 0 such that for all t ∈ [0,∞),

‖Dug(t, x,u) − Dvg(t, x, v)‖H ≤ K2|u − v|, u, v ∈ R, x ∈ [0,∞). (4.22)

Above, Dxg(t, x,u) is the first weak derivative of the function [0,∞) ∋ x �→g(t, x,u)

when t and u are fixed. Similarly, Dug(t, x,u) is the first weak derivative of the

function R ∋ u �→ g(t, x,u) when t and x are fixed.

Then for each r0 ∈ L2(�,F0,P;W 1,p
ν ), (4.3) with the function g has a unique

W
1,p
ν -valued continuous mild solution with the initial value r(0) = r0.

In view of Theorem 3.11, the proof follows from the following lemmas.

Lemma 4.13 For each ν ∈ R and p ≥ 2, the space W
1,p
ν satisfies the H -condition.

Similarly to the argument for Lemma 4.3, the proof follows from the fact that for

each p ≥ 2, the space W 1,p satisfies the H -condition; see [13].

Lemma 4.14 For each ν ∈ R and p ≥ 1, the shift semigroup on W
1,p
ν is a

contraction-type C0-semigroup. Moreover, its infinitesimal generator is character-

ized by

D(A) = {f ∈ W 1,p
ν : Df ∈ W 1,p

ν }

and

Af = Df, f ∈D(A).

The proof of the first part of Lemma 4.14 can be found in [37, Lemma 5.13] and

the proof of the second part in [37, Lemma 5.16].

For each ν ∈ R and p ≥ 1, define W
1,p
ν (H) to be the space of all functions

f ∈ Lp(H) such that Df ∈ Lp(H). For each ν ∈R and p ≥ 1, W
1,p
ν (H) is a separa-

ble Banach space with respect to the norm

‖f ‖
W

1,p
ν (H)

= ‖f ‖L
p
ν (H) + ‖Df ‖L

p
ν (H) f ∈ W 1,p

ν (H).

The following proposition gives a sufficient condition under which a W
1,p
ν -valued

operator defined on H is γ -radonifying.
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Lemma 4.15 For each ν > 0 and p ≥ 2, the bounded linear operator K :H → W
1,p
ν

defined by

K[h](x) = 〈κ(x),h〉H , h ∈ H,x ∈ [0,∞),

where κ ∈ W
1,p
ν (H), is a γ -radonifying operator. Moreover, there exists a constant

N > 0 independent of κ such that

‖K‖
γ (H,W

1,p
ν )

≤ N‖κ‖
W

1,p
ν (H)

.

Similarly to the proof of Lemma 4.5, the proof follows from [13, Theorem 4.1].

Lemma 4.16 Let ν > 0 and p ≥ 1. Assume g : [0,∞) × [0,∞) ×R → H is a func-

tion satisfying all the assumptions of Theorem 4.12. Then F : [0,∞) × W
1,p
ν → W

1,p
ν

defined by

F(t, f )(x) =
〈

g
(

t, x, f (x)
)

,

∫ x

0

g
(

t, y, f (y)
)

dy

〉

H

, f ∈ W 1,p
ν , x, t ∈ [0,∞),

is well defined. Moreover, we have:

(i) For every t ∈ [0,∞),

‖F(t, f )‖
W

1,p
ν

≤ ‖ḡ‖1‖ḡ‖ν,p + 3‖ḡ‖1‖Dḡ‖ν,p

+ 3K1‖ḡ‖1‖Df ‖ν,p + 3‖ḡ‖∞‖ḡ‖ν,p. (4.23)

(ii) F is Lipschitz on balls with Lipschitz constant independent of time t .

Proof Fix t ≥ 0 and f ∈ W
1,p
ν . In Lemma 4.6, we have already proved that

F(t, f ) ∈ L
p
ν under conditions (4.17) and (4.18). Let us show that DF(t, f ) ∈ L

p
ν .

By the chain rule, we have

DF(t, f )(x) =
〈

Dg
(

t, x, f (x)
)

,

∫ x

0

g
(

t, y, f (y)
)

dy

〉

H

+
〈

g
(

t, x, f (x)
)

, g
(

t, x, f (x)
)〉

H
.

Since the functions g(t, x, f (x)), Dg(t, x, f (x)) and h(x) :=
∫ x

0 g(t, y, f (y)) are

measurable, DF(t, f ) is measurable. Moreover, by the Cauchy–Schwarz inequality,

we obtain for each x ∈ [0,∞) that

|DF(t, f )(x)| ≤
∥

∥Dg
(

t, x, f (x)
)∥

∥

H

∫ ∞

0

∥

∥g
(

t, x, f (x)
)∥

∥

H
dx

+
∥

∥g
(

t, x, f (x)
)∥

∥

H

∥

∥g
(

t, x, f (x)
)∥

∥

H
.

Using (4.17) and Lemma 4.1, we obtain

|DF(t, f )(x)| ≤ ‖ḡ‖1

∥

∥Dg
(

t, x, f (x)
)∥

∥

H
+ |ḡ(x)|2, x ∈ [0,∞).
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Note that

Dg
(

t, x, f (x)
)

= Dxg
(

t, x, f (x)
)

+ Dug
(

t, x, f (x)
)

Df (x), x ∈ [0,∞).

Therefore, by (4.19) and (4.21), we get for each x ∈ [0,∞) that

∥

∥Dg
(

t, x, f (x)
)∥

∥

H
≤
∥

∥Dxg
(

t, x, f (x)
)∥

∥

H
+
∥

∥Dug
(

t, x, f (x)
)∥

∥

H
|Df (x)|

≤ |Dḡ(x)t | + K1|Df (x)|. (4.24)

Taking into account the last inequality, we obtain

|DF(t, f )(x)| ≤ ‖ḡ‖1|Dḡ(x)| + K1‖ḡ‖1|Df (x)| + |ḡ(x)|2, x ∈ [0,∞).

Thus, by the last inequality and Proposition 4.11, we infer that

∫ ∞

0

|DF(t, f )|peνxdx ≤ 3p‖ḡ‖p

1 ‖Dḡ‖p
ν,p +3pK

p

1 ‖ḡ‖p

1 ‖Df ‖p
ν,p +3p‖ḡ‖p

∞‖ḡ‖p
ν,p.

Therefore DF(t, f ) ∈ LP
ν and hence F is well defined. Moreover, it follows from

(4.10) and the last inequality that

‖F(t, f )‖
W

1,p
ν

≤ ‖ḡ‖1‖ḡ‖ν,p + 3‖ḡ‖1‖Dḡ‖ν,p

+ 3K1‖ḡ‖1‖Df ‖ν,p + 3‖ḡ‖∞‖ḡ‖ν,p,

which gives the desired conclusion (4.23).

Let us now prove that F is locally Lipschitz on balls. Fix t ≥ 0 and f1, f2 ∈ W
1,p
ν .

Note that

F(t, f1)(x) − F(t, f2)(x)

=
〈

g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)

,

∫ x

0

g
(

t, y, f2(y)
)

dy

〉

H

+
〈

g
(

t, x, f1(x)
)

,

∫ x

0

(

g
(

t, y, f1(y)
)

− g
(

t, y, f2(y)
)

)

dy

〉

H

, x ∈ [0,∞).

By the Cauchy–Schwarz inequality, we have

|F(t, f1)(x) − F(t, f2)(x)|

≤
∥

∥g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)∥

∥

H

∫ ∞

0

∥

∥g
(

t, x, f2(x)
)∥

∥

H
dx

+
∥

∥g
(

t, x, f1(x)
)∥

∥

H

∫ ∞

0

∥

∥g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)∥

∥dx, x ∈ [0,∞).

Using (4.17) and (4.18), we obtain for each x ∈ [0,∞) that

|F(t, f1)(x) − F(t, f2)(x)| ≤ |ĝ(x)| |f1(x) − f2(x)|
∫ ∞

0

|ḡ(x)|dx

+ |ḡ(x)|
∫ ∞

0

|ĝ(x)| |f1(x) − f2(x)|dx.
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It follows from Lemma 4.1 and Proposition 4.11 that

|F(t, f1)(x) − F(t, f2)(x)| ≤ ‖ḡ‖1|ĝ(x)||f1(x) − f2(x)|

+ ‖f1 − f2‖1‖ĝ‖∞|ḡ(x)|, x ∈ [0,∞).

Taking into account the last inequality and Proposition 4.11, we infer that

‖F(t, f1) − F(t, f2)‖ν,p ≤ 2‖ḡ‖1‖ĝ‖∞‖f1 − f2‖ν,p

+ 2‖ĝ‖∞‖ḡ‖ν,p‖f1 − f2‖1. (4.25)

By the chain rule, we get for x ∈ [0,∞) that

D
(

F(t, f1)(x) − F(t, f2)(x)
)

=
〈

Dg
(

t, x, f1(x)
)

,

∫ x

0

g
(

t, y, f1(y)
)

dy

〉

H

+
〈

g
(

t, x, f1(x)
)

, g
(

t, x, f1(x)
)〉

H

−
〈

Dg
(

t, x, f2(x)
)

,

∫ x

0

g
(

t, y, f2(y)
)

dy

〉

H

−
〈

g
(

t, x, f2(x)
)

, g
(

t, x, f2(x)
)〉

H
.

Note that

D
(

F(t, f1)(x) − F(t, f2)(x)
)

=
〈

Dg
(

t, x, f1(x)
)

,

∫ x

0

(

g
(

t, y, f1(y)
)

− g
(

t, y, f2(y)
)

)

dy

〉

H

+
〈

Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)

,

∫ x

0

g
(

t, y, f2(y)
)

dx

〉

H

+
〈

g
(

t, x, f1(x)
)

, g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)〉

H

+
〈

g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)

, g
(

t, x, f2(x)
)〉

H
, x ∈ [0,∞).

Using the Cauchy–Schwarz inequality and (4.17) and (4.18), we obtain

∣

∣D
(

F(t, f1)(x) − F(t, f2)(x)
)∣

∣

≤
∥

∥Dg
(

t, x, f1(x)
)∥

∥

H

∫ ∞

0

|ĝ(x)| |f1(x) − f2(x)|dx

+
∥

∥Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)∥

∥

H

∫ ∞

0

|ḡ(x)|dx

+ 2|ḡ(x)| |ĝ(x)| |f1(x) − f2(x)|, x ∈ [0,∞).
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By Lemma 4.1 and Proposition 4.11, we get for x ∈ [0,∞) that

∣

∣D
(

F(t, f1)(x) − F(t, f2)(x)
)∣

∣≤ ‖ĝ‖∞‖f1 − f2‖1

∥

∥Dg
(

t, x, f1(x)
)∥

∥

H

+ ‖ḡ‖1

∥

∥Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)∥

∥

H

+ 2|ḡ(x)||ĝ(x)||f1(x) − f2(x).

Note that

Dg
(

t, x, f1(x)
)

= Dxg
(

t, x, f1(x)
)

+ Dug
(

t, x, f1(x)
)

Df1(x), x ∈ [0,∞),

Dg
(

t, x, f2(x)
)

= Dxg
(

t, x, f2(x)
)

+ Dvg
(

t, x, f2(x)
)

Df2(x), x ∈ [0,∞).

Thus

Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)

= Dxg
(

t, x, f1(x)
)

− Dxg
(

t, x, f2(x)
)

+ Dug
(

t, x, f1(x)
)(

Df1(x) − Df2(x)
)

+
(

Dug
(

t, x, f1(x)
)

− Dvg
(

t, x, f2(x)
)

)

Df2(x), x ∈ [0,∞).

Using the Cauchy–Schwarz inequality, we obtain

∥

∥Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)∥

∥

H

≤
∥

∥Dxg
(

t, x, f1(x)
)

− Dxg
(

t, x, f2(x)
)∥

∥

H

+
∥

∥Dug
(

t, x, f1(x)
)∥

∥

H
|Df1(x) − Df2(x)|

+
∥

∥Dug
(

t, x, f1(x)
)

− Dvg
(

t, x, f2(x)
)∥

∥

H
|Df2(x)|.

It follows from (4.20)–(4.22) that for x ∈ [0,∞),

∥

∥Dg
(

t, x, f1(x)
)

− Dg
(

t, x, f2(x)
)∥

∥

H

≤ |Dĝ(x)| |f1(x) − f2(x)| + K1|Df1(x) − Df2(x)|

+ K2|f1(x) − f2(x)| |Df2(x)|. (4.26)

Taking into account (4.24) and the last inequality, we obtain for each x ∈ [0,∞) that

∣

∣D
(

F(t, f1)(x) − F(t, f2)(x)
)∣

∣

≤ ‖ĝ‖∞‖f1 − f2‖1|Dḡ(x)| + K1‖ĝ‖∞‖f1 − f2‖1|Df1(x)|

+ ‖ḡ‖1|Dĝ(x)||f1(x) − f2(x)| + K1‖ḡ‖1|Df1(x) − Df2(x)|

+ K2‖ḡ‖1|f1(x) − f2(x)||Df2(x)| + 2|ḡ(x)||ĝ(x)||f1(x) − f2(x)|.
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Using the last inequality and Proposition 4.11, we infer that

∥

∥D
(

F(t, f1) − F(t, f2)
)∥

∥

ν,p

≤ 6‖ĝ‖∞‖f1 − f2‖1‖Dḡ‖ν,p + 6K1‖ĝ‖∞‖f1 − f2‖1‖Df1‖ν,p

+ 6‖ḡ‖1‖Dĝ‖ν,p‖f1 − f2‖∞ + 6K1‖ḡ‖1‖Df1 − Df2‖ν,p

+ 6K2‖ḡ‖1‖f1 − f2‖∞‖Df2‖ν,p + 6‖ĝ‖∞‖ḡ‖∞‖f1 − f2‖p
ν,p. (4.27)

It follows from (4.25) and (4.27) that F is Lipschitz on balls. �

Lemma 4.17 Let ν > 0 and p ≥ 1. Suppose g : [0,∞) × [0,∞) ×R → H satisfies

all the assumptions of Theorem 4.12. Then G : [0,∞) × W
1,p
ν → γ (H,W

1,p
ν ) de-

fined by

G(t, f )[h](x) =
〈

g
(

t, x, f (x)
)

, h
〉

H
, f ∈ W 1,p

ν , h ∈ H,x, t ∈ [0,∞),

is well defined. Moreover, we have:

(i) For every t ∈ [0,∞),

‖G(t, f )‖
γ (H,W

1,p
ν )

≤ N(‖ḡ‖ν,p + 2‖Dḡ‖ν,p + 2K1‖Df ‖ν,p), f ∈ W 1,p
ν .

(4.28)

(ii) G is Lipschitz on balls with Lipschitz constant independent of time t .

Proof Fix t ≥ 0 and f ∈ W
1,p
ν . Define the function κ : [0,∞) → H by

κ(x) = g
(

t, x, f (x)
)

, x ∈ [0,∞).

Then we can write G(t, f ) as

G(t, f )[h](x) = 〈κ(x),h〉H , h ∈ H,x ∈ [0,∞).

It follows from (4.17) that κ ∈ L
p
ν (H). Moreover, (4.24) implies that Dκ ∈ L

p
ν (H).

Therefore, by Lemma 4.15, G(t, f ) is a γ -radonifying operator from H into W
1,p
ν ,

and thus G is well defined. Furthermore, again by Lemma 4.15 and (4.17) and (4.24),

we obtain

‖G(t, f )‖
γ (H,W

1,p
ν )

≤ N(‖ḡ‖ν,p + 2‖Dḡ‖ν,p + 2K1‖Df ‖ν,p),

which gives the desired result (4.28). Finally, we prove that G is Lipschitz on balls.

Fix t ≥ 0 and f1, f2 ∈ W
1,p
ν . Define the function λ : [0,∞) → H by

λ(x) = g
(

t, x, f1(x)
)

− g
(

t, x, f2(x)
)

, x ∈ [0,∞).

Then

(

G(t, f1) − G(t, f2)
)

[h](x) = 〈λ(x),h〉H , x ∈ [0,∞), h ∈ H.
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By (4.18) and Proposition 4.11, we get

∫ ∞

0

‖λ(x)‖p

H eνxdx ≤
∫ ∞

0

|ĝ(x)|p|f1(x) − f2(x)|peνxdx

≤ ‖ĝ‖p
∞‖f1 − f2‖p

ν,p. (4.29)

Moreover, by (4.26) and Proposition 4.11, we obtain

∫ ∞

0

‖Dλ(x)‖p

H eνxdx ≤ 3p‖f1 − f2‖p
∞‖Dĝ‖p

ν,p + 3pK
p

1 ‖Df1 − Df2‖p
ν,p

+ 3pK
p

2 ‖f1 − f2‖p
∞‖Df2‖p

ν,p. (4.30)

It follows from Lemma 4.15 and (4.29) and (4.30) that G is Lipschitz on balls. �

Remark 4.18 One can easily check that the functions in Examples 4.8 and 4.9 satisfy

all the assumptions of Theorem 4.12. Therefore, the HJMM equation with one of

these functions has a unique W
1,p
ν -valued continuous mild solution.

Remark 4.19 The elements of W
1,p
ν are α-Hölder-continuous functions for

α < 1 − 1
p

, and hence for each p ≥ 2, the solution to the HJMM equation in the

space W
1,p
ν is more regular than the solution in the space W 1,2

ν . On the other hand,

in the spaces Cα of α-Hölder-continuous functions, one cannot define an Itô integral,

and hence these spaces are not suitable for our purposes.

4.4 Existence and uniqueness of invariant measures for the HJMM equations

in weighted Lebesgue spaces

In this section, we prove the existence of a unique invariant measure for the HJMM

equation (with time-independent coefficients) in the spaces L
p
ν , p ≥ 2. Let us start by

presenting the following natural conclusion of Theorem 4.2.

Corollary 4.20 Let ν > 0 and p ≥ 2. Assume that for a time-independent function

g : [0,∞) × R → H , all the assumptions of Theorem 4.2 are satisfied. Then for

each r0 ∈ L2(�,F0,P;Lp
ν ), the HJMM equation with the function g has a unique

L
p
ν -valued continuous mild solution r with the initial value r(0) = r0. Moreover, the

solution is a Markov process.

Theorem 4.21 Assume that all the assumptions of Theorem 4.2 are satisfied for a

time-independent function g : [0,∞) ×R → H . If ν > 0 and p ≥ 2 are such that

2

(

p

νq

)
1
q

‖ĝ‖∞‖ḡ‖ν,p + (p − 1)N2‖ĝ‖2
∞ <

ν

2
, (4.31)

where 1
p

+ 1
q

= 1, then the HJMM equation with the function g has a unique invariant

probability measure in the space L
p
ν .
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Proof Assume that F : Lp
ν → L

p
ν and G : Lp

ν → γ (H,L
p
ν ) are defined by

F(f )(x) =
〈

g
(

x,f (x)
)

,

∫ x

0

g
(

y,f (y)
)

dy

〉

H

, f ∈ Lp
ν , x ∈ [0,∞),

and

G(f )[h](x) =
〈

g
(

x,f (x)
)

, h
〉

H
, f ∈ Lp

ν , x ∈ [0,∞), h ∈ H.

Then the abstract form of the HJMM equation (with the function g) in the space L
p
ν is

dr(t) =
(

Ar(t) + F
(

r(t)
)

)

dt + G
(

r(t)
)

dW(t), t ≥ 0,

where A is the infinitesimal generator of the shift semigroup on L
p
ν . By Theo-

rem 3.17, it is sufficient to show that there exist constants ω > 0 and n0 ∈ N such

that for all n ≥ n0 and f1, f2 ∈ L
p
ν ,

[An(f1 − f2) + F(f1) − F(f2), f1 − f2]ν,p + (p − 1)‖G(f1) − G(f2)‖2
γ (H,L

p
ν )

≤ −ω‖f1 − f2‖2
ν,p, (4.32)

where [·, ·]ν,p is the semi-inner product on L
p
ν given by (see [10])

[f,g]ν,p = ‖g‖2−p
ν,p

∫ ∞

0

f (x)g(x)|g(x)|p−2eνx dx, f, g ∈ Lp
ν ,

and An is the Yosida approximation of A. We prove (4.32) in the following few steps.

Step 1. Fix f1, f2 ∈ L
p
ν . Then by (4.12), we have

|F(f1)(x) − F(f2)(x)| ≤
(

p

νq

)
1
q

‖ĝ‖∞‖f1 − f2‖ν,p|ḡ(x)|

+
(

p

νq

)
1
q

‖ḡ‖ν,p|ĝ(x)| |f1(x) − f2(x)|, x ∈ [0,∞).

Taking into account the last inequality, we obtain

[F(f1) − F(f2), f1 − f2]ν,p

≤ ‖f1 − f2‖2−p
ν,p

∫ ∞

0

|F(f1)(x) − F(f2)(x)| |f1(x) − f2(x)|p−1eνxdx

≤
(

p

νq

)
1
q

‖ĝ‖∞‖f1 − f2‖3−p
ν,p

∫ ∞

0

|ḡ(x)| |f1(x) − f2(x)|p−1eνxdx

+
(

p

νq

)
1
q

‖ḡ‖ν,p‖f1 − f2‖2−p
ν,p ‖ĝ‖∞‖f1 − f2‖p

ν,p.
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Using the Hölder inequality, we get

∫ ∞

0

|ḡ(x)| |f1(x) − f2(x)|p−1eνxdx ≤ ‖ḡ‖ν,p‖f1 − f2‖p−1
ν,p .

By the last inequality, we deduce that

[F(f1) − F(f2), f1 − f2]ν,p ≤ 2

(

p

νq

)
1
q

‖ĝ‖∞‖ḡ‖ν,p‖f1 − f2‖2
ν,p. (4.33)

Step 2. For each t ≥ 0, define the operator P(t) : Lp
ν → L

p
ν by

P(t)f = e
νt
p S(t)f, f ∈ Lp

ν ,

where {S(t)}t≥0 is the shift semigroup on L
p
ν . It is obvious that the family (P (t))t≥0

of these operators is a contraction C0-semigroup on L
p
ν and its infinitesimal genera-

tor is

B = νI

p
+ A.

By [49, Theorem 4.3 (b)], B is dissipative and so for all f ∈ D(B) and f ∗ ∈ F(f ),

we have 〈Bf,f ∗〉 ≤ 0, where

F(f ) = {f ∗ ∈ (Lp
ν )∗ : 〈f,f ∗〉 = ‖f ‖2 = ‖f ∗‖2},

where (L
p
ν )∗ is the dual space of L

p
ν and by [10],

(

L
p
ν

)∗ = L
q
ν . By the definition of

the semi-inner product, see Definition 3.18, we have

[f,g]ν,p = 〈f,g∗〉, f ∈ Lp
ν , g∗ ∈ (Lp

ν )∗,

and 〈g,g∗〉 = ‖g‖2, i.e., g∗ ∈ (L
p
ν )∗. Therefore, 〈Bf,f ∗〉 = [Bf,f ]ν,p and so we get

[Bf,f ]ν,p ≤ 0. Note that

An = nA(nI − A)−1 = n

(

B − ν

p
I

)(

nI + ν

p
I − B

)−1

.

Let ω2 := −ν
p

and k := n − ω2. Then we obtain

An = (ω2 + kω2)(kI − B)−1 +
(

1 + ω2

k

)

Bk.

Therefore, we get

[Anf,f ]ν,p ≤ (ω2
2 + kω2)‖(kI − B)−1‖‖f ‖2

ν,p.

By [49, Theorem 3.1], ‖(kI − B)−1‖ ≤ 1
k

. Hence

[Anf,f ]ν,p ≤
ω2

2 + kω2

k
‖f ‖2

ν,p.
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Therefore, we infer that

[An(f1 − f2), f1 − f2]ν,p ≤ −νn

np + ν
‖f1 − f2‖2

ν,p, f1, f2 ∈ Lp
ν . (4.34)

Step 3. Taking into account (4.14), (4.33) and (4.34), we obtain

[An(f1 − f2) + F(f1) − F(f2), f1 − f2]ν,p + (p − 1)‖G(f1) − G(f2)‖2
γ (H,L

p
ν )

≤ Cn‖f1 − f2‖2
ν,p,

where Cn = 2(
p
νq

)
1
q ‖ĝ‖∞‖ḡ‖ν,p + (p − 1)N2‖ĝ‖2

∞ + −νn
np+ν

. Since (4.31) gives

Cn −→ 2

(

p

νq

)
1
q

‖ĝ‖∞‖ḡ‖ν,p + (p − 1)N2‖ĝ‖2
∞ − ν

p
= C < 0,

there exists n0 ∈ N such that for all ω ∈ (0,−C),

Cn ≤ −ω, n ≥ n0.

Therefore, (4.32) holds for any ω ∈ (0,−C). �

Remark 4.22 Consider the HJMM equation in Example 4.8. By Theorem 4.21, for

each ν > 0 and p ≥ 2, (4.16) has a unique invariant probability measure in the

space L
p
ν .

Remark 4.23 There are many papers on the existence of invariant measures for the

HJMM equations. In addition to the already mentioned papers [53, 54], one should

also list [29, 41].

Remark 4.24 It would be interesting to investigate the uniqueness of an invariant

measure for the HJMM equation in the weighted Sobolev spaces. A use of Malli-

avin calculus could prove to be essential here. In this context, one should mention

two papers. The first one by Baudoin and Teichmann [1] is about hypoellipticity for

finite-dimensional realisations of the HJMM equations, whose generalisation could

provide a first step in proving the uniqueness. The second one by Hairer and Mat-

tingly [33] shows how to use the hypoellipticity for (infinite-dimensional) parabolic

SPDEs in conjunction with an asymptotic strong Feller property in order to prove the

uniqueness of an invariant measure.

4.5 An extension of the HJMM model

Klein et al. [36] extended the HJMM model by an additional constituent which is not

absolutely continuous in terms of the maturity T . Let us fix a finite time horizon T ∗

and a probability measure Q which is equivalent to the measure P|FT ∗ . Assume that

W and V are d- and 1-dimensional Q-independent Q-Brownian motions. Consider

the filtration (Ft )t≥0 defined by

Ft = σ
(

W(s) : 0 ≤ s ≤ t, V (u) : u ≥ 0
)

,
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which is the completion of the initial enlargement of the natural filtration of W with

the full path of V . Klein et al. [36] assume that bond prices are given by

P(t, T ) = exp

(

−
∫ T

t

g(t, u) dV (u) −
∫ T

t

f (t, u) du

)

, 0 ≤ t ≤ T ≤ T ∗,

where for each T ≤ T ∗, the processes f (t, T ) and g(t, T ), t ∈ [0, T ], satisfy the

stochastic differential equations

f (t, T ) = f (0, T ) +
∫ t

0

a(s, T ) ds +
∫ t

0

b(s, T ) dW(s), 0 ≤ t ≤ T , (4.35)

g(t, T ) = g(0, T ) +
∫ t

0

c(s, T ) ds +
∫ t

0

d(s, T ) dW(s), 0 ≤ t ≤ T . (4.36)

Remark 4.25 If g ≡ 0, this model includes the classical HJMM framework [34].

Let us recall, see [36], that Q is an equivalent local martingale measure (ELMM)

if the process (
P(t,T )
P (t,T ∗) )0≤t≤T is a local martingale for all T ∈ [0, T ∗]. Let us set

A(t, T ) :=
∫ T ∗

T

a(t, u) du, B(t, T ) :=
∫ T ∗

T

b(t, u) du, t ∈ [0, T ],

C(t, T ) :=
∫ T ∗

T

c(t, u) dV (u), D(t, T ) :=
∫ T ∗

T

d(t, u) dV (u), t ∈ [0, T ].

Proposition 4.26 [36] Denote by � the optional sigma-algebra on � ×R+. Assume

that a, b, c and d are � ⊗B(R+)-measurable. Moreover, assume that 1

∫ T ∗

0

∫ T ∗

0

1{s≤t}
(

|a(s, t)| + c(s, t)|
)

ds dt < ∞,

sup
0≤s≤t≤T ∗

(

|b(s, t)| + |d(s, t)|
)

< ∞.

Then Q is an ELMM if and only if for all T ≤ T ∗,

A(t, T ) + C(t, T ) + 1

2

(

‖B(t, T )‖2 + ‖D(t, T )‖2
)

= 0 dQ⊗ dt-a.s. (4.37)

Example 4.27 Let us suppose that the process g is of the special form

g(t, u) =
∫ t

0

c(s, u) ds + W(t), 0 ≤ t ≤ u ≤ T ∗.

1As compared to [36], we added the indicator function 1{s≤t} in the first condition below. We also believe

that the second condition should be replaced by sup0≤t≤T ≤T ∗
∫ t

0 (|b(s, t)|2 + |d(s, t)|2) ds < ∞. This

should be investigated further.
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Assume that c(t, u) and f (t, u) are deterministic functions which are bounded and

continuous. Moreover, f is differentiable with respect to the first variable. As-

sume that c(0, T ) = f (0, T ) = 0 for all T ≥ 0. Therefore, we have d(t, T ) = 1,

a(t, T ) = f ′(t, T ) and b(t, T ) = 0. Thus, by the drift condition (4.37), we have

∫ T ∗

T

c(t, u) dV (u) +
∫ T ∗

T

f ′(t, u) du = 1

2

(

V (T ∗) − V (T )
)2

.

By the Itô formula, we obtain

(

V (T ∗) − V (T )
)2 =

∫ T

T ∗
2
(

V (u) − V (T ∗)
)

dV (u) +
∫ T

T ∗
du.

Therefore, (4.37) holds if and only if

c(t, u) = V (u) − V (T ∗) and f ′(t, u) = 1

2
, for all 0 ≤ t ≤ u ≤ T ∗.

If the processes f and g satisfy the term structure equations (4.35) and (4.36), then

the corresponding Musiela parametrization processes r1 and r2 defined by

r1(t, x) = f (t, t + x), r2(t, x) = g(t, t + x), x ≥ 0,

should solve the HJMM equations

⎧

⎨

⎩

dr1(t) =
(

d

dx
r1(t) + α1

(

r(t)
)

)

dt + σ1

(

r(t)
)

dW(t),

r(0) = r0,

(4.38)

and
⎧

⎨

⎩

dr2(t) =
(

d

dx
r2(t) + α2

(

r(t)
)

)

dt + σ2

(

r(t)
)

dW(t),

r(0) = r0.

(4.39)

By the above calculations, the coefficient α2 is equal to

α2(t)(x) = a(t, t + x) = V (t + x) − V (T ∗), t ≥ 0, x ∈ [0,∞).

We see that for a fixed t ≥ 0, the function c(t, ·) is at most Hölder-continuous of

order strictly less than 1
2

and therefore, the HJMM equations (4.38) and (4.39) need

to be solved in larger spaces than the weighted W 1,2 spaces, for instance, weighted

Lp spaces or fractional Sobolev spaces.

4.6 The HJMM equations with real-world dynamics driven by Wiener

processes

Tappe [55] presented new results concerning the HJMM equations with real-world

dynamics. He assumed that under the real-world probability measure P, for every T ,
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the forward rate process (f (t, T ))t∈[0,T ] satisfies the term structure equation

df (t, T ) = α(t, T ) dt + σ(t, T ) dW(t) + jumps, t ∈ [0, T ], (4.40)

where W is a (possibly infinite-dimensional) Wiener process. We did not write the

jumps in (4.40) in detail since we assume that the jump terms in our case are simply

equal to zero. If the jumps are zero, then Tappe’s model includes the original HJMM

framework. As argued in [37], switching to the Musiela parametrization [43], i.e.,

r(t)(x) = f (t, t + x), x ≥ 0,

leads to the partial differential equation

⎧

⎨

⎩

dr(t) =
(

d

dx
r(t) + α

(

r(t)
)

)

dt + σ
(

r(t)
)

dW(t) + jumps,

r(0) = r0.

(4.41)

Tappe proved that in an arbitrage-free bond market, the drift term in (4.41) is given

by

α(t, T ) = σ(t, T )

(

θ(t) +
∫ T

t

σ(t, u) du

)

+ jumps, t ∈ [0, T ],

where θ denotes the reference market price of risk with respect to the Wiener pro-

cess W . He also proved, under some suitable conditions, the existence and uniqueness

of mild solutions to the HJMM (4.41) with real-world dynamics in a separable Hilbert

space.

Remark 4.28 We assume that the jumps are equal to zero. Let W be an H -valued

F-cylindrical canonical Wiener process. Assume that g : [0,∞) ×R → R is a given

function and

σ
(

r(t)
)

(x) = g
(

x, r(t)(x)
)

, x ∈ [0,∞), t ≥ 0.

Then (4.41) becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dr(t)(x) =
(

d

dx
r(t)(x) +

〈

g
(

x, r(t)(x)
)

,�(t)(x)
〉

H

)

dt

+
〈

g
(

x, r(t)(x)
)

, dW(t)
〉

H
,

r(0) = r0,

(4.42)

where �(t)(x) := θ(t) +
∫ x

0 g(y, r(t)(y))dy, x ∈ [0,∞), t ≥ 0.

Theorem 4.29 Assume g : [0,∞) × R → H is a measurable function with respect

to the first variable such that there exist functions ḡ ∈ L
p
ν and ĝ ∈ L

p
ν ∩L∞ such that

|g(x,u)| ≤ |ḡ(x)|, u ∈R, x ∈ [0,∞),
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and

|g(x,u) − g(x, v)| ≤ |ĝ(x)| |u − v|, u, v ∈R, x ∈ [0,∞).

Moreover, we assume that θ : [0,∞) × L
p
ν × � → H is a progressively measurable

function such that there exist constants C1,C2 > 0 such that for all t ≥ 0, we have

|θ(t, f )| ≤ C1(1 + ‖f ‖ν,p), f ∈ Lp
ν ,

|θ(t, f1) − θ(t, f1)| ≤ C2‖f1 − f2‖ν,p, f1, f2 ∈ Lp
ν .

Then for each r0 ∈ L2(�,F0,P;Lp
ν ), (4.42) has a unique L

p
ν -valued continuous mild

solution.
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5. Brzeźniak, Z.: Stochastic partial differential equations in M-type 2 spaces. Potential Anal. 4, 1–45

(1995)
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12. Brzeźniak, Z., Peszat, S.: Space time continuous solutions to SPDEs driven by a homogeneous Wiener

process. Stud. Math. 137, 261–299 (1999)
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