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ABSTRACT 16 

Solubility parameters, developed originally for regular solutions, have been applied to 17 

solutions beyond the presumed weak non-ideality, implying that the true foundation of the 18 

solubility parameters may be more general than the regular solution theory. To assess the root 19 
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of regularity on rigorous statistical thermodynamics, here we re-examine the classical iodine 20 

dissolution experiments by Shinoda and Hildebrand, who concluded that the entropy of mixing 21 

is ideal regardless of solute-solvent size ratio. We show that iodine solubility is concerned with 22 

the limit of infinite dilution, while the regular solution theory is a scheme to describe the 23 

dependence on the solute concentration. This means that the solubility of iodine cannot be a 24 

foundation of the regular solution; it is further shown that the differences in the solvation free 25 

energy among organic solvents are dominated by enthalpy with negligible role of the entropic 26 

component. In addition, the validity of the regular solution concept, i.e., the enthalpic nature 27 

of the solution non-ideality, can now be examined quantitatively by expressing the Margules 28 

model in terms of the Kirkwood-Buff integrals, which incorporate the excluded volume effects 29 

and the potential of mean force nature of interactions that were beyond the reach of the classical 30 

thermodynamic models. Such insights into the physical basis of solubility parameters may be 31 

useful for improving solubility prediction.    32 

 33 

1. Introduction  34 

 35 

There has been a resurgence of interest in Hildebrand [1,2] and Hansen [3,4] solubility 36 

parameters, due to the need for rational solvent selection and alternative solvent development 37 

for greener processes [5–12]. The idea of the solubility parameters originally came from the 38 

regular solution theory [1,2], whose applicability is strictly limited to mixtures whose weak 39 

deviation from ideality is enthalpic. However, solubility parameters turned out to be useful for 40 

mixtures that cannot be considered regular [4], suggesting that it may be more versatile than 41 

the regular solution theory itself. This raises a question as to what the solubility parameters 42 

really are based upon. We will address this question through rigorous statistical 43 

thermodynamics.   44 
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 45 

Our goal is to establish the physical basis of solubility parameters for improving solubility 46 

prediction. As a first step, we will show that the ad-hoc nature of the classical thermodynamic 47 

foundation [1,2], upon which the regular solution theory and the solubility parameters are 48 

based, is often inconsistent and cluttered, and that their foundation can be made clearer and 49 

more transparent based on the modern statistical thermodynamics of solvation by Widom [13], 50 

Ben-Naim [14,15], and Gurney [16]. To appreciate this, let us first summarise the classical 51 

thermodynamic foundation of the regular solution theory, based upon the following well-52 

known relationships that have arisen from the cell theory of mixing equal-sized solutes and 53 

solvents [1,2,17–19]  54 𝜇1 = 𝜇1𝑜 + 𝑅𝑇 ln 𝑥1 + 𝑤𝑥22        (1) 55 𝜇2 = 𝜇2𝑜 + 𝑅𝑇 ln 𝑥2 + 𝑤𝑥12        (2)  56 

where 𝜇𝑖 , 𝜇𝑖𝑜  and 𝑥𝑖  express the chemical potential, standard chemical potential and mole 57 

fraction of the species 𝑖 , respectively, and 𝑖 = 1  and 2  represent the solvent and solute, 58 

respectively. Here, the terms involving 𝑤 express the deviation from ideality. However, the 59 

physical meaning of 𝑤 , as will be shown, has been dependent on model assumptions; 60 

Hildebrand and coworkers have shown that  61 

(1) 𝑅𝑇 ln 𝑥𝑖 arises from the entropy of mixing, whereas 𝑤𝑥𝑗2 originates from the enthalpy of 62 

mixing [1,2].   63 

(2) The size disparity between the solute and solvent, predicted by Flory [20,21] and Huggins 64 

[22], is negligible, hence Eqs. (1) and (2) are applicable regardless of size disparity 65 

[1,2,23]. 66 

These conclusions, when used in conjunction with the following assumptions,   67 

(3) Eqs. (1) and (2) are valid for the entire composition range, hence 𝜇1𝑜 and 𝜇2𝑜 are of the 68 

pure system [1,2];   69 
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(4) 𝑤  can be calculated from the difference of cohesive energy densities (“solubility 70 

parameters”) between the solute and solvent [1,2], 71 

have been considered to be the basis for predicting the solubility (ln 𝑥2) via Eq. (2) from the 72 

solubility parameters via 𝑤.  73 

 74 

The experimental evidence for (1) the ideality of the mixing entropy and (2) the negligibility 75 

of size disparity comes from a series of iodine dissolution experiments in which the entropy of 76 

solution (i) exhibited a linear correlation to the ideal mixing entropy and (ii) showed no 77 

dependence on solvent size, despite the wide variety in the partial molar volume of the solvents 78 

(Figure 1) [1,2,23–29]. Thus the seminal work by Hildebrand and coworkers [1,2,23–29] have 79 

provided a justification for some of the important pillars of the regular solution theory.   80 

 81 

 82 

Figure 1. Iodine dissolution experiments in a number of solvents, in which the correlation 83 

between the “ideal mixing entropy” (−𝑅 ln 𝑥2, where 𝑥2 is the solubility of iodine in mole-84 
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fraction scale) and the “entropy of solution” (𝑅 𝜕 ln 𝑥2𝜕 ln 𝑇 ) has traditionally been interpreted as the 85 

basis for (i) neglecting the entropy of mixing arising from solute-solvent size ratio and (ii) the 86 

prediction of solubility based on solubility parameters derived from enthalpy. The experimental 87 

data were taken from Shinoda and Hildebrand [25–28].  88 

 89 

 90 

However, that the mixing entropy is independent of solute-solvent size disparity is at odds 91 

with the Flory-Huggins lattice model [20–22] and with its re-derivation by Hildebrand based 92 

on van der Waals fluids [1,2,30] that have led to the existence of the non-ideal mixing entropy 93 

arising from solute-solvent size disparity. Attempts have been made in the 1990s to reconcile 94 

the size-independent nature of iodine dissolution with the size-dependent entropy of mixing, 95 

motivated largely by the need for quantifying the hydrophobic contribution to protein stability 96 

[31,32,41–49,33–40]. However, the paradox has remained unresolved [44].  97 

 98 

This paradox on the apparent solvent size independence of iodine dissolution entropy can 99 

only be resolved using the rigorous statistical thermodynamics of solvation, as will be 100 

demonstrated in the present paper. Statistical thermodynamics becomes particularly helpful 101 

through its ability in attributing a molecular-based physical meaning to thermodynamic 102 

quantities. This becomes particularly important because the previous analyses were carried out 103 

using the following expression for the entropy of solution Δ𝑆2̅  by Hildebrand (derivation 104 

summarised in Appendix A) [1,2]  105 Δ𝑆2̅ = 𝑅 𝜕 ln 𝑥2𝜕 ln 𝑇           (3)  106 

which is called the “Hildebrand entropy” and has been acknowledged to be different from the 107 

definition of the entropy of solution in other concentration scales [50–52]. As its name 108 
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indicates, the “Hildebrand entropy” is different from the entropy of dissolution, and we will 109 

demonstrate that it is actually enthalpic. 110 

 111 

Our statistical thermodynamic re-analysis of the iodine dissolution experiments (Section 2) 112 

will show that the iodine dissolution experiments cannot be interpreted as the support for the 113 

ideality of mixing entropy regardless of solute-solvent size disparity nor does it have any 114 

connection to 𝑤. The point of the iodine experiments is instead the dominance of enthalpy in 115 

solvation free energy difference. In addition, origin of the deviation from ideality can be 116 

identified rigorously by the Kirkwood-Buff (KB) integrals [53,54,63,55–62] that shows not 117 

only the enthalpy of mixing [1,2,21,46,64] but also the excluded volume effect and solvent-118 

mediated interactions play an important role (Section 3).  119 

 120 

2. Solubility and solubility parameters   121 

 122 

The entropy of solution for iodine (according to Eq. (3)) were shown to be ideal even in solvents 123 

widely differing in size [1,2,23–29], and has been used as evidence for solubility prediction 124 

based on solubility parameters (see assumptions 1-4 and Eqs. (1) and (2)). Based on rigorous 125 

statistical thermodynamics, here we examine the validity of this interpretation.  126 

 127 

2.1. Iodine dissolution does not support the ideality of mixing entropy  128 

 129 

Consider iodine as solute (indexed as 𝑖 = 2), which is in equilibrium with the solvent (𝑖 = 1). 130 

Due to the difficulty of dealing with the solid phase, let us focus on the difference in solvation 131 

of a single solute between solvents. In the following, the solvent species is distinguished by a 132 

superscript (𝛼). 133 
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 134 

According to the statistical thermodynamics of solvation, the chemical potential of the solute, 135 𝜇2, can be decomposed into the following manner, in terms of (i) the pseudochemical potential 136 𝜇2(𝛼)∗
, which signifies the free energy of inserting a solute molecule at a fixed position in the 137 

solvent 𝛼, and (ii) the free energy of liberating a solute from a fixed position (which can be 138 

expressed in terms of the molar concentration of the solute 𝑐2(𝛼)
) as  139 𝜇2(𝛼) = 𝜇2(𝛼)∗ + 𝑅𝑇 ln 𝑐2(𝛼)Λ23         (4)  140 

where Λ2  is the momentum distribution function of the solute [15]. The pseudochemical 141 

potential 𝜇2(𝛼)∗
 is the standard, quantitative measure of solute-solvent interaction in solution 142 

chemistry [14].  143 

 144 

Iodine solubility, on the other hand, has been reported using the mole fraction concentration 145 

scale,  𝑥2(𝛼)
, instead of molarity required by the statistical thermodynamic theory (Eq. (4)). 146 

Hence, we need to link the two solubility scales. Fortuitously, iodine solubility in most solvents 147 

are dilute enough such that the approach based on ideal dilute solutions can simplify the 148 

theoretical treatment significantly [1,2,23–29]. At this limit,  149 

𝑥2(𝛼) = 𝑐2(𝛼)𝑐1(𝛼)+𝑐2(𝛼) ≃ 𝑐2(𝛼)𝑐1(𝛼) = 𝑉1(𝛼)𝑐2(𝛼)
       (5) 150 

𝑉1(𝛼)
 is partial molar volume of the solvent 𝛼. Combining Eqs. (4) and (5), we can write down 151 

the transfer free energy of iodine from the solvent 𝛼 to the solvent 𝛽 in the following manner:  152 

Δ𝜇2(𝛼→𝛽)∗ = −𝑅𝑇 ln 𝑥2(𝛽)𝑥2(𝛼) + 𝑅𝑇 ln 𝑉1(𝛽 )𝑉1(𝛼)        (6) 153 

 154 



8 

 

Since the regular solution theory requires the consideration of entropic and enthalpic 155 

contributions to the transfer free energies, the isobaric entropy Δ𝑠𝑢∗  and enthalpy Δℎ𝑢∗  of 156 

transfer can be calculated straightforwardly from Eq. (6)  157 

Δ𝑠2(𝛼→𝛽)∗ = − (𝜕Δ𝜇2(𝛼→𝛽)∗𝜕𝑇 )𝑃,𝑁 = 𝑅 ln 𝑥2(𝛽)𝑥2(𝛼) + 𝜕𝑅 ln𝑥2(𝛽)𝑥2(𝛼)𝜕 ln 𝑇 − 𝑅 ln 𝑉1(𝛽 )𝑉1(𝛼) − 𝑅𝑇 (𝛼1(𝛽) − 𝛼1(𝛼))  158 

= − Δ𝜇2(𝛼→𝛽)∗𝑇 + 𝜕𝑅 ln𝑥2(𝛽)𝑥2(𝛼)𝜕 ln 𝑇 − 𝑅𝑇 (𝛼1(𝛽) − 𝛼1(𝛼)) ≈ − Δ𝜇2(𝛼→𝛽)∗𝑇 + 𝜕𝑅 ln𝑥2(𝛽)𝑥2(𝛼)𝜕 ln 𝑇  (7)  159 

Δℎ2(𝛼→𝛽)∗ = Δ𝜇2(𝛼→𝛽)∗ + 𝑇Δ𝑠2(𝛼→𝛽)∗ = 𝑇 𝜕𝑅 ln𝑥2(𝛽)𝑥2(𝛼)𝜕 ln 𝑇 − 𝑅𝑇2  (𝛼1(𝛽) − 𝛼1(𝛼))  160 

≈ 𝑇 𝜕𝑅 ln𝑥2(𝛽)𝑥2(𝛼)𝜕 ln 𝑇        (8)  161 

where the minor contributions from the expansivity of the pure solvent 𝛼1 = 1𝑉1 (𝜕𝑉1𝜕𝑇 ) have been 162 

neglected.  163 

 164 

Defining the transfer entropy and enthalpy statistical thermodynamically via Eqs. (7) and (8) 165 

has significant advantages. Firstly, as has been shown by one of us that the entropy and enthalpy 166 

of solvation defined via Eqs. (4)-(6) can be attributed to the solute-solvent and solvent-solvent 167 

interactions around the solute, which converges within finite distance, thereby establishing a 168 

link between solvation thermodynamics and its underlying physical picture of the “solvation 169 

shell” [65–69]. Secondly, purely thermodynamic approaches based on the mole-fraction scale, 170 

when considering entropy and enthalpy, faces significant conceptual difficulties arising from 171 

the need for the “mixing” process and its interpretational difficulties on a molecular scale 172 

[14,70,71].  173 

 174 
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Let us now apply Eqs. (6)-(8) to the interpretation of the classical iodine dissolution 175 

experiments. According to the regular solution theory, a correlation between Δ𝑆2̅ = 𝜕𝑅 ln 𝑥2𝜕 ln 𝑇  and 176 −𝑅 ln 𝑥2  (ideal mixing entropy, Figure 1) signifies the ideality of the entropy of solution 177 

(assumption 1 in Section 1) regardless of the solute-solvent size ratio (assumption 2), in which 178 

the deviation from ideality is entirely enthalpic (assumption 1) [1,2,23–29]. However, 179 

according to statistical thermodynamics, 
𝜕𝑅 ln 𝑥2𝜕 ln 𝑇  signifies the enthalpy (Eq. (8)), whereas 180 −𝑅 ln 𝑥2 is predominantly the free energy of solvation (Eq. (6)). Thus, according to statistical 181 

thermodynamics, iodine dissolution experiments are a direct evidence for the enthalpy-182 

dominated transfer free energy, Δ𝜇2(𝛼→𝛽)∗ ≃ Δℎ2(𝛼→𝛽)
 and the negligible entropy contribution, 183 Δ𝑠2(𝛼→𝛽)∗ ≃ 0 (Figure 2). It should be noted that a solution is always ideal (dilute ideal solution) 184 

at dilute conditions [1,2,15,17,19], hence the chemical potential depends on x2 in the form of 185 

RT ln x2 at small x2, and thus our focus in the above discussion is not the dependence on x2 186 

since the x2 dependence is trivial for dilute solutions. What our analysis revealed is Δ𝑠2(𝛼→𝛽)∗ ≃187 0, that is about the excess partial molar entropy, i.e., the entropy change upon dissolution of a 188 

single solute molecule; its x2 dependence does not come into the discussion since iodine was 189 

dilute in Figures 1 and 2.  190 
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 191 

Figure 2. Re-interpretation of iodine dissolution experiments, as a correlation between the 192 

enthalpic (Δℎ2(𝛼→𝛽)
, Eq. (8)) and free energy (Δ𝜇2(𝛼→𝛽)∗

, Eq. (6), red) contributions, as well as 193 

its approximation (−𝑅𝑇 ln 𝑥2, black). The blue line corresponds to Δ𝜇2(𝛼→𝛽)∗ =  Δℎ2(𝛼→𝛽)
. The 194 

reference solvent, 𝛼, was chosen to be SiCl4. The experimental data were taken from Shinoda 195 

and Hildebrand [25–28].   196 

 197 

The above conclusion of ours constitutes a resolution of the paradox, i.e., the apparent 198 

independence of the Hildebrand “entropy of solution”, Δ𝑆2̅ , on solute-solvent size ratio, 199 

expected from the Flory-Huggins and van der Waals fluid theories [1,2,20–22,30]. This 200 

paradox has been revisited in the 1990s in the context of quantifying hydrophobic stabilization 201 

of proteins from transfer free energies of amino acids [31,32,41–49,33–40], yet has remained 202 

unresolved, because of the use of Hildebrand’s “entropy”, 𝜕𝑅 ln 𝑥2𝜕 ln 𝑇  as entropy [41,44]. 203 

According to Eq. (8), we can see that the correlation between −𝑅 ln 𝑥1 and 
𝜕𝑅 ln 𝑥2𝜕 ln 𝑇  (Figures 1 204 
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and 2) has nothing to do with the size-dependent entropy of mixing. The “Hildebrand entropy” 205 

is actually an enthalpy, and a conclusion about the entropy is that the solvation entropy is not 206 

different among the solvents for dilute iodine. 207 

 208 

The dominance of transfer enthalpy on the free energy has been observed also in xenon 209 

solubility (Figure 3) in alkanes [72–74], alkanols [75], cyclic alkanes, carboxylic acids, 210 

aldehydes [76], and fluoroalkanes [77]. Indeed, the virtual independence of solvation entropy 211 

on solvents has been observed widely in gas solubility measurements for many decades [50,72–212 

77]. Instead of being a support for the regular solution theory, the Shinoda-Hildebrand 213 

experiments seem to be another example of this common empirical relationship.   214 

 215 

Figure 3. Correlation between experimental transfer enthalpy (Δℎ2(𝛼→𝛽)
, Eq. (8)) and free 216 

energy (Δ𝜇2(𝛼→𝛽)∗
, Eq. (6)) of xenon from hexane (as the reference solvent 𝛼) to alkanes 217 

(red),[72–74] alkanols (green) [75], cyclic alkanes, carboxylic acids, aldehydes (black) [76], 218 

and fluoroalkanes (orange) [77].  The blue line corresponds to Δ𝜇2(𝛼→𝛽)∗ =  Δℎ2(𝛼→𝛽)
. 219 
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 220 

The free energy of solvation also exhibits a linear correlation with enthalpy when various 221 

solutes are dissolved in a single organic solvent [1,2,51,52,78], just like the linear free energy 222 

relationship (LFER) which has been observed quite universally [79,80]. Thus, enthalpy serves 223 

as a predictor of solvation free energy (namely, solute-solvent interaction), which is the true 224 

foundation of solubility prediction.  225 

 226 

2.2. Solubility, via the regular solution theory, cannot be linked to solubility parameters 227 

 228 

Solubility prediction by 𝑤 (and consequently the solubility parameter difference under the 229 

mixing rule) pre-supposes that Eqs. (1) and (2) are valid for all solute-solvent composition 230 

range (assumption 3 of Section 1), so that the solubility difference can be attributed to the 231 

difference of 𝑤 via Eq. (2) and to the solubility parameters via the mixing rule (assumption 4).  232 

Here we examine the validity of the assumption 3 using statistical thermodynamics 233 

[53,54,63,55–62].  234 

  235 

Indeed, 𝑤 was introduced originally for the purpose of quantifying the deviation from ideal 236 

mixing (see Eqs. (1) and (2)). The deviation from ideality can in general be quantified by the 237 

activity coefficient 𝛾𝑖 of the species 𝑖. Our goal therefore is to identify the true origin of non-238 

ideality and how it compares with the perspective of solubility parameters. Let us start from 239 

the following statistical thermodynamic relationship, i.e., the Maclaurin expansion of ln 𝛾1 at 240 

the infinite dilution of species 2, which can be derived from the Kirkwood-Buff [53] theory 241 

[15,81]:   242 ln 𝛾1 = (𝐺11∞+𝐺22∞−2𝐺12∞2𝑉10 ) 𝑥22 + ⋯       (9) 243 

where 𝐺𝑖𝑗 is commonly referred to as the Kirkwood-Buff integral (KBI) defined as  244 
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𝐺𝑖𝑗 = 4𝜋 ∫ 𝑑𝑟 𝑟2[𝑔𝑖𝑗(𝑟) − 1]        245 

 (10) 246 

in which 𝑔𝑖𝑗(𝑟) is the radial distribution function between the species 𝑖 and 𝑗. (Note that the 247 

superscript, (𝛼), for the solvent species, unless indispensable, will be omitted from this section 248 

onwards. See Appendix A of Ref [81] for the derivation of Eq. (9).) The superscript ∞ refers 249 

to the infinite dilution of the species 2, and the superscript 0 is for the pure state of the solvent. 250 

This means that Eq. (1) is holds true strictly at small 𝑥2, with 251 𝑤 = 𝑅𝑇 𝐺11∞+𝐺22∞−2𝐺12∞2𝑉10         (11) 252 

as the statistical thermodynamic interpretation of 𝑤. To write down the expression for 𝜇2, let 253 

us use the Gibbs-Duhem equation, 𝑥1𝑑𝜇1 + 𝑥2𝑑𝜇2 = 0, which, in conjunction with Eqs. (1) 254 

and (11), yields   255 𝑑𝜇2 = 𝑅𝑇 𝑑𝑥2𝑥2 − 2𝑅𝑇(1 − 𝑥2)𝑑𝑥2       (12)  256 

whose integration yields  257 𝜇2 = 𝑅𝑇 ln 𝑥2 + 𝑤𝑥12 + 𝐶        (13)  258 

where 𝐶 is a constant. 𝐶 can be determined by comparing Eqs. (13) with Eqs. (4) and (5), i.e., 259 

at infinite dilution condition of solutes, 𝑥2 → 0. Taking up to the first order of 𝑥2,  260 𝜇2 = 𝜇2∗∞ + 𝑅𝑇 ln 𝑥2 − 2𝑤𝑥2 + 𝑅𝑇 ln Λ23𝑉1       (14)  261 

This is different in form from Eq. (2) nor it is valid for the entire composition range.  262 

 263 

Eq. (14) shows that the transfer free energy Δ𝜇2(𝛼→𝛽)∗
 deviates from its infinite dilution value 264 

(Δ𝜇2(𝛼→𝛽)∗∞
) in the following form 265 Δ𝜇2(𝛼→𝛽)∗ = Δ𝜇2(𝛼→𝛽)∗∞ − 2 (𝑤(𝛽)𝑥2(𝛽) − 𝑤(𝛽)𝑥2(𝛽))     (15) 266 

This, in conjunction to Eq. (6) and the negligibility of its second term, yields  267 
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Δ𝜇2(𝛼→𝛽)∗∞ − 2 (𝑤(𝛽)𝑥2(𝛽) − 𝑤(𝛽)𝑥2(𝛽)) = −𝑅𝑇 ln 𝑥2(𝛽)𝑥2(𝛼)    268 

 (16) 269 

Taken together with the enthalpy dominance of the transfer free energy, Δ𝜇2(𝛼→𝛽)∗ = Δℎ𝑢(𝛼→𝛽)
, 270 

we obtain  271 

 −𝑅𝑇 ln 𝑥2(𝛽)𝑥2(𝛼) = Δℎ𝑢∗ + 2(𝑤(𝛽)𝑥2(𝛽) − 𝑤(𝛼)𝑥2(𝛼))     (17) 272 

 273 

The lessons from iodine and gas solubility measurements is now summarised in a compact 274 

form by Eq. (17). The solubility difference comes from the enthalpy difference (the first term 275 

of the right-hand side). Yet, against the expectation of the regular solution theory, the second 276 

term involving 𝑤 makes a negligible contribution since x2 is small.  277 

 278 

In conclusion, Shinoda-Hildebrand experiments has nothing to do with the regular solution 279 

theory; solubility has nothing to do 𝑤 (assumption 3) nor the presumed enthalpic nature of 𝑤 280 

(assumption 1).  281 

 282 

3. Solubility parameters as the approximate Kirkwood-Buff integrals  283 

 284 

Even though the regular solution theory was shown to be irrelevant to the interpretation of 285 

solubility experiments by Shinoda and Hildebrand, what really makes a mixture a regular 286 

solution should be defined rigorously. As in Section 2.2, this requires us to identify how ln 𝛾1 287 

deviates from 0. Here we show that the lowest-order deviation from ideality (the terms with 288 𝑤), now expressed in terms of the KBIs, which will identify the contributions beyond the reach 289 

of the regular solution theory.  290 

 291 



15 

 

3.1. The regular solution from a statistical thermodynamic perspective  292 

 293 

Let us start from Eq. (9), which can provide a microscopic interpretation for the well-known 294 

empirical formula by Norrish and Margules [81] 295 ln 𝛾1 = 𝐴𝑥22 + ⋯         (18) 296 

Comparing Eqs.(9) and (18), the Margules-Norrish parameter can be interpreted as[81]  297 𝐴 = 𝐺11∞+𝐺22∞−2𝐺12∞2𝑉10                       (19)  298 

Eq. (18), despite its derivation at 𝑥2 ≪ 1, is often applicable to mixtures far beyond infinite 299 

dilution [81], suggesting that KBIs at infinite dilution (Eq. (19)) may play a determining role 300 

on non-ideality over a wider concentration range [81].   301 

 302 

The rigorous statistical thermodynamic result (Eq. (19)) can now be compared to the regular 303 

solution theory [1,2,23]. Based upon the concept of the cohesive energy density of a pure 304 

substance, 𝑐𝑖𝑖  (energy of vaporization of pure species 𝑖  liquid per molar volume) and its 305 

generalization to incorporate the “mutual” term 𝑐𝑖𝑗  [64], the activity coefficient can be 306 

expressed as [1,2]  307 ln 𝛾1 = 𝑉1(𝑐11+𝑐22−2𝑐12)𝑅𝑇 𝜙22         (20) 308 

where 𝜙𝑖  is the volume fraction the species 𝑖. (In the context of the polymer theory, 𝑐11 +309 𝑐22 − 2𝑐12, is related to the Flory 𝜒 parameter [21,46].) A comparison of Eq. (20) with Eq. (9) 310 

(which can be done at infinite dilution of the species 2 by exploiting 𝜙2 ≈ 𝑉2𝑉1 𝑥2 with the partial 311 

molar volume of the solute 𝑉2) shows  312 

𝐴 = 𝐺11∞+𝐺22∞−2𝐺12∞2𝑉10 = 𝑉22(𝑐11+𝑐22−2𝑐12)𝑅𝑇𝑉10        (21) 313 

This reveals the following correspondence between the regular solution theory and the rigorous 314 

statistical thermodynamic KB theory:  315 
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𝑐𝑖𝑗 ↔ 𝑅𝑇𝐺𝑖𝑗2𝑉22            (22) 316 

This means that 317 

1. 𝐺𝑖𝑗 comes from the potential of mean force between the species in solution [82–86],  318 

whereas 𝑐𝑖𝑗 focuses exclusively on contact energies;  319 

2. a negative (and often dominant) contribution to 𝐺𝑖𝑗 from the excluded volume effect 320 

[57,58,60,87–93] (Appendix B) is not present in 𝑐𝑖𝑗 , which focuses exclusively on 321 

enthalpy;    322 

3. the long-ranged contribution form 𝑔𝑖𝑗(𝑟) to 𝐺𝑖𝑗 (Eq. (10)) is not considered in the 𝑐𝑖𝑗  323 

based chiefly on contact energies.  324 

Indeed, a particularly striking consideration that 𝐺22∞ , which is related to the osmotic virial 325 

coefficient by 𝐺22 = −2𝐵22, is generally very different from the interactions between the two 326 

solutes in pure phase [82–86], underscoring the importance of the potential of mean force 327 

effectively to describe solute-solute interactions. (Note that the distribution function 𝑔𝑖𝑗(𝑟) is 328 

related to the potential of mean force between the two Φ𝑖𝑗(𝑟) via 𝑔𝑖𝑗(𝑟) = exp (− Φ𝑖𝑗(𝑟)𝑘𝑇 ) and 329 

that Φ𝑖𝑗(𝑟)  can be substantially different from the pair potential between 𝑖 and 𝑗 due to the 330 

presence of the solvent molecules).   331 

 332 

3.2. Solute-solute potential of mean force: solubility parameters vs statistical 333 

thermodynamics    334 

 335 

The key differences between the non-ideality from the regular solution theory and statistical 336 

thermodynamics have been identified in Section 3.1. Let us compare the predictions from the 337 

solubility parameters with experimental data.  338 

 339 
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Our goal is to compare the Margules-Norrish 𝐴 and the infinite dilution solute-solute 𝐺22∞  340 

with the predictions from the solubility parameters. Firstly, 𝐴  can be obtained from the 341 

parameters 𝐴12 and 𝐴21 of two-parameter Margules model [94],  342 ln 𝛾1 = (𝐴12 + 2(𝐴21 − 𝐴12)𝑥1)𝑥22 ≃ (2𝐴21 − 𝐴12)𝑥22 + ⋯   343 

 (23) 344 

which, upon comparison with Eq. (18), yields  345 𝐴 = 2𝐴21 − 𝐴12          (24)  346 

Secondly, 𝐺22∞  can be calculated using two well-known KB relationships [15],  347 𝐺11∞ = −𝑉10 + 𝑅𝑇𝜅𝑇          (25) 348 𝐺12∞ = −𝑉2∞ + 𝑅𝑇𝜅𝑇          (26) 349 

where 𝑉10 and 𝑉2∞express the partial molar volumes of the pure solvent and the solute at infinite 350 

dilution limit, respectively. 𝜅𝑇, the isothermal compressibility, is neglected due to its small 351 

(typically few cm3 mol-1) contributions [95]. Based on Eqs. (25) and (26), Eq. (19) can be 352 

rewritten as   353 𝐺22∞ = (2𝐴 + 1)𝑉10 − 2𝑉2∞        (27) 354 

 355 

The 𝐴  and 𝐺22∞  obtained from experimental data processed through rigorous statistical 356 

thermodynamics can now be compared with those obtained from the solubility parameters.  357 

Note that solubility parameter model employs the “mixing rule” assumption (𝑐12 = √𝑐11𝑐22) 358 

and defines the Hildebrand solubility parameters, as 𝑐𝑖𝑖 = 𝛿𝑖2 [1]. This will transform Eq. (20) 359 

into the fundamental relationship (the Scatchard-Hildebrand equation) [1,2,64,96] in the 360 

regular solution theory,  361 ln 𝛾1 = 𝑉1𝑅𝑇 (𝛿1 − 𝛿2)2𝜙22        (28) 362 

and Eq. (18) into the following form:   363 
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 𝐴 = 1𝑅𝑇 𝑉22𝑉1 (𝛿1 − 𝛿2)2         (29) 364 

Within the framework of Hildebrand solubility parameters, there are two possible ways to 365 

predict 𝐺22∞  from the solubility parameters. The first is from 𝐴 calculated via Eq. (29) combined 366 

with Eq. (27), where the latter is a general statistical thermodynamic relationship. The second 367 

is from the correspondence Eq. (22) together with the solubility parameter, as   368 𝐺22∞ = 2𝑉22𝑐22𝑅𝑇 = 2𝑉22𝛿22𝑅𝑇          (30)  369 

 370 

Table 1 compares Margules-Norrish 𝐴 calculated from the solubility parameters (Eq. (29)) 371 

to the experimentally-derived ones obtainable from the two-parameter Margules model (Eq. 372 

(24)). The generally poor agreement between the two demonstrates that the solution non-373 

ideality, characterized by the Margules constant, cannot be reproduced by the solubility 374 

parameters. We also note that, due to the mixing rule, the Margules constant is always predicted 375 

to be positive, hence the solubility parameters can only reproduce the positive deviation from 376 

ideality.  377 

 378 

  379 



19 

 

Table 1. Calculation of 𝐴 (Eq. (24)) from the two-parameter Margules model and from the 380 

Hildebrand solubility parameters (using Eq. (29)).  381 

Solvent (1) Solute (2) 𝐴  

Margulesa 

𝐴  

Hildebrandb 

Acetone Chloroform -0.28 0.04 

Acetone Methanol 0.54 0.90 

Benzene Chloroform 0.10 0.02 

Benzene Ethanol 2.20 0.87 

Benzene Methanol 2.49 0.90 

Chloroform Benzene 0.09 0.02 

Chloroform Acetone -1.12 0.03 

Chloroform Methanol 2.64 1.00 

Ethanol Benzene 1.11 3.11 

Ethanol Ethyl acetate 0.96 4.22 

Ethanol n-hexane 1.17 15.10 

Ethyl acetate Ethanol 0.64 0.90 

Ethyl acetate Methanol 0.95 0.90 

Methanol Acetone 0.66 5.37 

Methanol Chloroform -0.07 7.72 

Methanol Benzene 1.44 9.63 

Methanol Ethyl acetate 1.10 12.57 

Methanol Methyl acetate 0.91 7.58 

Methyl acetate Methanol 1.06 1.01 

n-hexane Ethanol 3.47 1.34 

 
382 

aBased on Margules parameters 𝐴12 and 𝐴21 (see Eq. (24)) compiled by Perry and Green [94]; 383 

bBased on the Hildebrand solubility parameters [1,23] (see Eq. (29)).  384 

 385 

Table 2 compares the solute-solute KBI, 𝐺22∞ , calculated from the regular solution theory in 386 

two different ways (𝐴 from the solubility parameters (Eq. (29)) and directly from the solute’s 387 

solubility parameter (Eq. (30)) to the experimentally-derived ones from the two-parameter 388 

Margules model (Eq. (27)). The gross overestimation by Eq. (30) shows that contact energy 389 
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alone cannot be a good predictor of solute-solute interaction in solution. We observe, quite 390 

fortuitously, the mixing rule approximation improves the solubility parameter prediction. Yet 391 

the predictions based on the solubility parameters is still poor, with the tendency of grossly 392 

overestimating 𝐺22∞ . The reason for this gross deviation may be multiple, however, note the 𝑉22 393 

dependence of 𝛼 in the Hildebrand model (Eq. (29)), which overrides the second term of Eq. 394 

(27) (first order of 𝑉2) when 𝑉2 is large. This means that the larger the solute, the more self-395 

aggregation it predicts in an exaggerated manner, considering that 𝐴  from the solubility 396 

parameters are always positive, even though size-dependent self-aggregation can also be 397 

predicted from a purely excluded volume-based perspective (Appendix B).   398 

 399 

  400 
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Table 2. Calculation of 𝐺22∞  (Eq. (25)) from the two-parameter Margules model and from the 401 

Hildebrand solubility parameters (using Eqs. (29) and (30)) based on the same data as Table 402 

1.   403 

Solvent (1) Solute (2) G22∞  

Margules 

G22∞  

Hildebrand 

(Eq. 29) 

G22∞  

Hildebrand 

(Eq. 30) 

Acetone  Chloroform -127.9 -81.4 1807 

Chloroform Acetone -246.6 -62.5 1689 

Acetone Methanol 74.7 124.9 1168 

Methanol Acetone -49.5 328.9 1689 

Chloroform Benzene -70.6 -79.1 2255 

Benzene Chloroform -88.5 -99.9 2436 

Chloroform Methanol 560.1 159.3 1168 

Methanol Chloroform -199.8 505.8 1807 

Ethanol Benzene 6.6 242.3 2255 

Benzene Ethanol 363.3 127.4 1889 

Ethyl acetate Ethanol 106.4 157.0 1889 

Ethanol Ethyl acetate -26.9 356.0 2551 

n-hexane Ethanol 925.9 365.4 1889 

Ethanol n-hexane -71.4 1559.6 3065 

Methanol Benzene -21.4 641.9 2255 

Benzene Methanol 450.6 168.6 1168 

Methanol Ethyl acetate -65.7 863.8 2551 

Ethyl acetate Methanol 205.0 191.8 1168 

Methyl acetate Methanol 168.9 158.6 1168 

Methanol Methyl acetate -44.3 496.3 1776 

 404 

 405 

The comparison above thus points to the importance of considering solute-solute potential 406 

of mean force directly in the modelling of mixing.  407 

 408 
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4. Conclusion  409 

 410 

Our goal is to establish the physical basis of solubility parameters for improving solubility 411 

prediction. Solubility parameters have been applied with success in wide-ranging applications 412 

beyond the remit of their theoretical foundation, i.e., the regular solutions theory [5–12]. This 413 

raises a question as to whether the solubility parameters are really based on the regular solution 414 

theory or on a more general theoretical basis. Indeed, the ad-hoc nature of the classical 415 

thermodynamic foundation [1,2], upon which the regular solution theory and the solubility 416 

parameters are based, often led to controversies [31,32,41–49,33–40], which have also 417 

motivated us to carry out a clarification based on rigorous statistical thermodynamics.   418 

 419 

Statistical thermodynamics has raised questions over the traditional interpretations of iodine 420 

dissolution experiments:       421 

(1) The basic relationships for the regular solution theory (Eqs. (1) and (2)) cannot be 422 

applied for the entire composition range.    423 

(2) Whether the solution is regular, i.e., that the non-ideality term, 𝑤𝑥22, is enthalpic, has 424 

nothing to do with solubility prediction.   425 

(3) Whether varying solute-solvent sizes has entropic ramification is irrelevant to the 426 

interpretation of iodine dissolution experiments.   427 

Thus, the Shinoda-Hildebrand iodine dissolution experiments does not constitute the support 428 

for the basis of the regular solution theory.  429 

 430 

Statistical thermodynamics has shown instead that the classical iodine dissolution should be 431 

reinterpreted as the dominance of enthalpy in transfer free energies, due to the near-constancy 432 

of the solvation entropy over many common organic solvents. We advocate that the classical 433 



23 

 

experiments that have been considered to support the regular solution theory and the solubility 434 

parameters should now be reinterpreted as the following:   435 

(1) The linear free energy relationship, i.e., the solvation free energy is linearly correlated 436 

with the enthalpy.  437 

(2) The mixing rule applied to the enthalpy of solvation. 438 

These two principles should replace the current foundation for the solubility parameters, which 439 

are inaccurate and convoluted.   440 

 441 

The origin on the deviation from ideal mixing is understood from KBIs, which can help 442 

determine whether the non-ideality is enthalpic and whether the mixing rule is accurate. Such 443 

a comparison shows that the regular solution ignores the two major contributions to the KBIs: 444 

the excluded volume effect and the potential of mean force nature of interactions in the solution 445 

phase.  446 

 447 

The rigorous statistical thermodynamic approach is admittedly incapable of predicting 448 

solubility at the present stage. However, it has provided a molecular-based interpretation of 449 

key experiments free from the historical clutter of the regular solution theory.  We believe such 450 

a clarification is crucial in overcoming the current limitations and inaccuracies of the solubility 451 

parameters [1,4].  452 

 453 

Appendix A 454 

 455 

Here we outline the derivation of Eq. (3) with the emphasis on the basic assumptions introduced 456 

therein.  457 

 458 
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Consider a solid solute (iodine) in equilibrium with the solvent. According to Hildebrand, 459 

the entropy of solution of a solid, Δ𝑆2̅ = 𝑆2̅ − 𝑆2̅𝑠, where 𝑆2̅ and 𝑆2̅𝑠 express the molar entropies 460 

of the solute in solution and in solid, respectively, can be expressed through the chain rule as 461 

[1,2]  462 Δ𝑆2̅ = − (𝜕Δ𝐺2𝜕𝑇 )𝑃,𝑥2 = ( 𝜕Δ𝐺2𝜕 ln 𝑥2)𝑃,𝑇 (𝜕 ln 𝑥2𝜕𝑇 )Δ𝐺2,𝑃     463 

 (A1) 464 

where Δ�̅�2 = �̅�2 − �̅�2𝑠 is the change of partial molar Gibbs free energy between the solution 465 

phase and the solid phase. Assuming that the solid phase remains unchanged regardless of 𝑥2, 466 

the first factor in the r.h.s. of Eq. (A1) [1,2]  467 ( 𝜕Δ𝐺2𝜕 ln 𝑥2)𝑃,𝑇 = 𝑅𝑇 (𝜕 ln 𝑎2𝜕 ln 𝑥2)𝑃,𝑇        (A2)  468 

can be evaluated only in terms of the solution phase activity. Combining Eqs. (A1) and (A2) 469 

yields the entropy of solution at saturation [1,2] 470 Δ𝑆2̅ = 𝑅𝑇 (𝜕 ln 𝑎2𝜕 ln 𝑥2)𝑃,𝑇 (𝜕 ln 𝑥2𝜕𝑇 )Δ𝐺2,𝑃 = 𝑅 (𝜕 ln 𝑎2𝜕 ln 𝑥2)𝑃,𝑇 (𝜕 ln 𝑥2𝜕 ln 𝑇 )sat,𝑃   471 

 (A3)  472 

For dilute solution, for which the dilute ideal solution is applicable,  473 (𝜕 ln 𝑎2𝜕 ln 𝑥2)𝑃,𝑇 = 1         474 

 (A4) 475 

which is satisfied very well by the majority of solvents studied by Shinoda and Hildebrand 476 

[1,23–29]. Combination of Eqs. (A3) and (A4) yields Eq. (3).  477 

 478 

Appendix B 479 

 480 
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Here we show that solute-to-solvent size ratio may contribute significantly to the entropic or 481 

enthalpic nature of 𝑤. To do so, let us calculate the Margules-Norrish 𝐴 parameter (Eq. (19)) 482 

using the effective radii 𝑟1 and 𝑟2 for the solvent and solute, respectively, which leads to the 483 

following estimation of the KBI:  484 𝐺𝑖𝑗 = − 43 𝜋(𝑟𝑖 + 𝑟𝑗)3
        485 

 (B1) 486 

Using 𝑉10 ≃ −𝐺11∞  in conjunction with Eqs. (20) and (B2), we obtain  487 

𝐴 = − (2𝑟1)3+(2𝑟2)3−2(𝑟1+𝑟2)32(2𝑟1)3 = − 12 [1 + (𝑟2𝑟1)3 − 14 (1 + 𝑟2𝑟1)3] = − 38 (𝑟2𝑟1 + 1) (𝑟2𝑟1 − 1)2
(B2)  488 

 489 

According to Eq. (B2), Margules-Norrish 𝐴 parameter depends on solute-to-solvent size 490 

ratio 𝑟2/𝑟1  much more weakly for small 𝑟2/𝑟1  than larger 𝑟2/𝑟1  , as shown in Figure 4. 491 

Assuming that the radii are not temperature dependent or only weakly so, the entropic 492 

contribution to Margules-Norrish 𝐴 is small for small 𝑟2/𝑟1 and large for large 𝑟2/𝑟1.  493 

 494 
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Figure 4. Dependence on the solute-solvent size ratio, 
𝑟2𝑟1, of the excluded volume contribution 495 

to the Margules-Norrish 𝐴 parameter (Eq. (B2)).  496 
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