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Finite-Key Effects in Quantum Access Networks

with Wireless Links
Sima Bahrani, Osama Elmabrok, Guillermo Currás Lorenzo, and Mohsen Razavi

School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK

Abstract—The finite-key effects in quantum access networks
are studied. We consider a quantum-classical network where
each user is equipped with a certain wavelength to exchange
secure keys, using quantum key distribution techniques, and
another one to exchange classical data. Users are connected to the
central office via a passive optical network. The quantum users
are connected to the fiber links via an indoor wireless channel.
We investigate the regimes of operation within which a secure
key can be exchanged in a reasonable amount of time. We find
out that by properly designing the system, it is possible to run
both quantum and classical systems at their full capacity.

Index Terms—Quantum key distribution, optical wireless com-
munications, passive optical networks, DWDM.

I. INTRODUCTION

The ubiquitous adoption of online services in our daily lives

would have not been possible without the development of

mobile and wireless communications. Such systems have made

the access to the network such convenient that any new tech-

nology needs to find a way to adapt itself to such platforms.

The issue of data security is, nevertheless, an important matter

especially when it comes to wireless communications. One of

the enabling technologies that can provide us with future-proof

security is that of quantum key distribution (QKD), where the

security of the key exchange between legitimate users—a pre-

requisite for many cryptography applications—is guaranteed

by the laws of quantum mechanics. QKD systems have been

developed and tested across different media, but, in order to

hit the large market of public customers, they have to take

one more step and become available to mobile and wireless

users. The initial steps toward this end have already been

taken. Key exchange between a handheld device and an ATM

has been demonstrated [1], [2] and chip-based prototypes are

being developed [3]–[5]. Feasibility studies have also been

done to show the possibility of providing QKD services in

indoor environments under controlled light conditions [6],

and then to connect such wireless users to the central office

in a passive optical network (PON) [7]. The latter scenario

has, however, been studied only in the asymptotic case when

infinitely many key bits have been exchanged between the two

users. In practice, we would like to exchange a secret key in

a finite span of time, which requires us to study the feasibility

of such systems under finite-size key conditions. This paper

addresses such finite-key effects in a quantum-classical access

network that relies on hybrid wireless-fiber links.

This research is partly funded by the UK EPSRC Grant EP/M013472/1 and
EU H2020 Project 675662. All data generated in this paper can be reproduced
by the provided methodology and equations.

A wireless QKD system must overcome certain challenges

before being implemented. The first of such issues is the

background noise in the environment. QKD systems inherently

operate in the low-photon-number regime, which implies that

even a fraction of a background photon collected by the

receiver can reduce the rate or possibly make the QKD system

insecure. That may imply that, even for an indoor system,

certain lighting conditions must hold for a QKD system to op-

erate. Another challenge is with the use of wide beams, which

makes a mobile device more accessible, but causes additional

loss in the channel. The latter will be costly for our few-

photon signals. Once we couple QKD signals to optical fibers

and multiplex them with classical data channels, additional

loss, due to the nature of PONs, and background noise, due

to the Raman noise generated by data channels, must also

be tolerated. These all contribute to a hostile environment for

QKD operation. Luckily, it has been shown that by proper

use of beam steering techniques, and under controlled light

conditions, there would be regimes of operation in which

secure exchange of keys would asymptotically be possible [7].

That corresponds to the limit when infinitely many key bits

have been exchanged.

The number of bits exchanged in a QKD protocol is

important because such systems rely on parameter estimation

for the detection of eavesdroppers, error reconciliation, and

privacy amplification. This is often done by measuring the

rate of a certain event, e.g. an error in the key, by counting

the number of bits in error and dividing it by the length

of the key. Such a rate parameter would not, however, be

identical to the underlying probability that we need to know

in order to reliably do the above tasks. The rates would

approach their corresponding probabilities only when we are

in the asymptotic limit of exchanging infinitely many key

bits. In a practical scenario that the block size of exchanged

key bits is finite, we need rigorous techniques by which the

underlying probabilities can be bounded within an interval

around the observed/measured rate. If the chance of lying

outside such an interval is less than a security parameter ε,

then we can guarantee that the failure probability for our QKD

system, because of this estimation process, is below ε, and that

would quantify our confidence in the security of our QKD

system. Initial techniques for bounding the failure probability

was based on assuming Gaussian statistics for the parameters

of interest [8]. Such techniques could not provide us with

a rigorous proof of the system’s security, but could have

offered reasonable estimates for achievable key rates. It has

recently been shown that by the use of Chernoff and Hoeffding



inequalities one can come up with rigorous techniques for

bounding the relevant parameters of interest [9]. In particular,

by the use of the multiplicative form of Chernoff bounds, it

can be shown that we can come very close to the tight bounds

obtained from the Gaussian approximation [10].

In this paper, we look at a quantum-classical access network,

where the quantum users are operating in an indoor wireless

environment. The wireless QKD signals are coupled to an

optical fiber, and then multiplexed, using dense wavelength

division multiplexing (DWDM), with data channels for each

user. A DWDM PON structure then connects the users to the

central office. The question of interest for us is the time that it

takes for a QKD user to exchange a key of a certain size with

the central office, in the presence of Raman noise generated

by the data channels and the background noise collected in the

room. Looking at it from a different angle, we would like to

examine if any, or how much, secret keys can be exchanged

in this noisy environment within a reasonable time scale of a

few seconds to a few minutes. Longer time scales perhaps void

the whole purpose of using the wireless mode, and it might be

more practical to use a cable-based solution. A finite time for

key exchange requires us to revisit the security of our setup

using finite-key techniques. In this work, we use and extend

the results in [10] to achieve this objective.

The rest of the paper is organized as follows. In Sec. II, we

describe the setup in detail. In Sec. III, we present the finite-

key analysis for the setup, and in Sec. IV, we present some

numerical results. Section V concludes the paper.

II. SYSTEM DESCRIPTION

In this paper, we consider a quantum-classical DWDM-

PON, as shown in Fig. 1. Such hybrid access networks enable

multiple users to exchange secret key bits with the central

office, in addition to transmitting their classical data. We

assume that there are D users in the system. The kth user

is allocated two wavelengths, λdk
and λqk , corresponding

to classical and quantum signals, respectively. Each classical

channel uses the same wavelength for uplink and downlink

to transmit data with a launch power I via the fiber link.

The length of the fiber link between the central office and the

splitting point of users is denoted by L0, while the distance

between the splitting point and the kth user is denoted by Lk,

for k = 1, ..., D.

We assume that end users are working in an indoor environ-

ment. In principle, both the classical and quantum applications

can use wireless optical links for their operation. Here we only

focus on the quantum side of the game and assume that there

is no interference between the classical signals and quantum

ones in the wireless section of the link. To control the light

conditions, we consider a windowless room, illuminated by

a bulb at the center of the room. The wireless signals are

collected at the ceiling by a telescope, and will be coupled to

an optical fiber. This would result in an additional coupling

loss, denoted by ηcoup, but, instead, it enables the QKD user

to exchange the key with the central office without necessarily

trusting the optical equipment in the room. To reduce the

deteriorating effect of such a coupling process, we assume

Fig. 1. A quantum-classical access network with embedded wireless indoor
links.

that the QKD transmitter and the coupling node use beam

steering techniques to provide full alignment [7]. We assume

that the QKD transmitter is at the corner of the room, with a

semi-angle at half power of Φ1/2.

For our DWDM system, we assume that the wavelengths

available at the C-band, ranging from 1530 nm to 1565 nm,

are used. With the channel spacing of 100 GHz, there would

be 44 available channels. In order to allocate the channels to

the available wavelengths appropriately, one should consider

different sources of background noise generated by classical

channels at the quantum ones, e.g., Raman noise and adjacent

channel crosstalk. One possible setting is to assign the lowest

wavelengths of the system to quantum channels and the

largest ones to classical channels. While this method may

not be the optimal solution [11], it would place quantum

channels at the anti-stokes region of the Raman spectrum of

all classical channels. Also, to reduce the level of such Raman

noise at the quantum receivers, we assume the use of narrow

bandpass filters at the quantum channels. On the other hand,

adjacent channel crosstalk can be reduced by not allocating

quantum and classical channels to adjacent wavelengths. In

our setup, we assume that the two channels in the middle of

the wavelength grid are not in use, which leaves us with 42

available channels corresponding to a maximum number of

users of 21.

In our work, the decoy state BB84 protocol is used for the

QKD setups [12]. We assume that two decoy states are used,

where one of them has a mean photon number (intensity) of

ν and the other one is the vacuum state. The intensity of the

signal state, µ, is chosen to be larger than ν. The probabilities

of choosing these intensity levels are denoted by qs, qw, and

1 − (qs + qw), for the signal state, weak decoy state, and

vacuum state, respectively. As for the probabilities of Z and

X bases in the BB84 protocol, we assume efficient QKD

with asymmetrical probabilities Pz and Px = 1 − Pz . With

the transmission of N pulses in a QKD round by the QKD

transmitter, we can obtain an upper bound for the final key

rate. The free parameters µ, ν, qs, qw, and Pz , each has a

range of possible values. To achieve the highest possible key

rate, we optimize the key rate over these parameters.



III. FINITE-KEY ANALYSIS

In this section, we present the finite-key analysis for the

system described in Sec. II. According to the GLLP analysis,

the final key length extracted from sifted bits in basis γ ∈
{z, x} is lower bounded by [13]:

Kγ ≥ Msγ
1 [1− h(epsγ1 )]− fMsγh(Esγ), (1)

where f ≥ 1 denotes the error correction inefficiency and

h(p) = −plog2(p)− (1−p)log2(1−p) is the Shannon binary

entropy function. In (1), the superscript “s” represents the

signal state; Msγ , Esγ , Msγ
1 , and epsγ1 , respectively, represent

the number of successful detection events, the quantum bit

error rate, the number of successful detection events from

single-photon components, and the phase error rate of single-

photon components in basis γ of the signal state. The first

two parameters would specify how much error correction is

needed. In practice, one can just measure how many parity bits

are used in the error correction to exactly specify the cost of

error correction in (1). The single-photon parameters should,

however, be rigorously bounded to make sure that sufficient

privacy amplification is in place. By using the decoy-state

method, we can obtain a lower bound on Msγ
1 , denoted by

MsγL
1 , and an upper bound on epsγ1 , denoted by epsγU1 , and

use them in (1). The final key length, in bits, obtained from z
and x bases would then be K = Kz +Kx.

The vacuum+weak decoy-state protocol uses three inten-

sity levels corresponding to the signal state, weak decoy

state, and vacuum decoy state, to generate pulses and en-

code key bits. In [10], it is shown that by using the set

A = {Msγ , EsγMsγ ,Mwγ , EwγMwγ ,Mυγ , EυγMυγ} of

observed parameters, the single-photon parameters MsγL
1 and

epsγU1 can be obtained. Here, the superscripts “w” and “υ”

represent weak decoy state and vacuum decoy state, respec-

tively. In the following, we summarize the key steps in [10]

and apply it to our problem.

In [10], the Chernoff bound is used to calculate upper

and lower bounds on averages of our observables in A, i.e.,

EL[Msγ ],EU [Msγ ], ...,EL[EvγMvγ ],EU [EvγMvγ ], in such

a way that Pr{EL[χ] < E[χ] < EU [χ]} ≥ 1 − ε, for any

χ ∈ A. ε will then be the failure probability in this case. For

an observable value χ > 0, it has been shown that

EL[χ] =
χ

1 + δL
(2)

and

EU [χ] =
χ

1− δU
, (3)

where δL and δU is calculated by solving the following two

equations:
(

eδ
L

(1 + δL)(1+δL)

)

χ

1+δL

=
ε

2
(4)

(

e−δU

(1− δU )(1−δU )

)

χ

1−δU

=
ε

2
. (5)

For χ = 0, the bounds are EL[χ] = 0 and EU [χ] = −ln(ε/2).
The lower bound on Mγ

1 and the upper bound on ebγ1 , where

ebγ1 is the bit error rate of single-photon components in basis

γ, are given by:

MγL
1 = Y γL

1 Nγ(e−µµqs + e−ννqw), (6)

ebγU1 =

EU [EwγMwγ ]
qwNγ eν − EL[EυγMυγ ]

(1−qs−qw)Nγ

Y γL
1 ν

, (7)

where

Y γL
1 =

µ

µν − ν2

(

(
EL[Mwγ ]

qwNγ
)eν − (

EU [Msγ ]

qsNγ
)eµ

ν2

µ2

−(
EU [Mυγ ]

(1− qs − qw)Nγ
)
µ2 − ν2

µ2

)

. (8)

In the above equations, Nγ = P 2
γN , where Pγ is the

probability of choosing basis γ and N is the block size.

The next step is the calculation of MsγL
1 . To this aim,

we note that E[Msγ
1 ] = psγ1 Mγ

1 , where psγ1 is the condi-

tional probability that a single-photon state corresponds to

a coherent pulse with intensity µ (signal state). By applying

the symmetric form of the Chernoff bound for the parameter

χ̄ = psγ1 MγL
1 , a lower bound for Msγ

1 can be obtained.

The final step is finding an upper bound on the phase error

rate of single-photon components from the signal state in each

basis, denoted by epsγU1 . In [10], random sampling method has

been used to calculate the upper bound epszU1 using ebxU1 . The

same approach can be used to calculate epsxU1 using ebzU1 .

For more details on the finite key analysis of vacuum+weak

decoy-state protocol, please refer to [10].

As mentioned in the previous section, the final key rate

should be optimized over possible range of values for pa-

rameters µ, ν, qs, qw, and Pz . To solve this multivariate

optimization problem, we can start by an appropriate initial set

of values, and optimize the parameters one by one, assuming

that other parameters are constant. This process should be

iterated until we converge to a specific set of values for our

parameters.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the system

described in Sec. II by providing some numerical results. We

use a DWDM-PON system with 100 GHz channel spacing.

We assume that users 1 to D are, respectively, allocated

wavelengths λq1 = 1530 nm to λqD = 1530+0.8(D−1) nm
on the wavelength grid for key exchange, and λd1

= 1564.4−
0.8(D − 1) nm to λdD

= 1564.4 nm for data transmission.

As for the relevant distances, we assume that L0 = 5 km
and Lk = 500 m, for k = 1, ..., D. In our indoor wireless

environment, we assume that the QKD transmitter is located

at the corner of the room and its beam is directed toward the

QKD receiver, such that full alignment is maintained between

the two nodes. The semi-angle at half power of the QKD

source is assumed to be Φ1/2 = 1◦. Furthermore, the QKD

receiver’s field of view (FOV) is assumed to be 6◦. Other

nominal values for the parameters of our system are listed in

Table I, which are all attainable by today’s established QKD

technologies.



TABLE I
NOMINAL VALUES USED FOR SYSTEM PARAMETERS.

Parameter Value

Quantum Efficiency 0.3

Receiver dark count rate 1E-6 ns
−1

Error correction inefficiency, f 1.22
Misalignment probability, ed 0.033

Detector gate interval and pulse width 100 ps
Fiber attenuation coefficient 0.2 dB/km

AWG insertion loss 2 dB
Coupling loss, ηcoup 10 dB

Repetition rate of QKD setup 1 GHz

In order to calculate the key rate, in this section, we assume

that the measured values for the observable parameters χ in

set A match that of the asymptotic limit scenario, when no

eavesdropper is present. These asymptotic values have been

calculated based on the analysis, and parameter values, in [7],

in which the effect of various sources of noise including the

Raman noise and bulb noise is considered. For any such value

of χ, we then follow the prescription in (2)–(8) to find the

relevant key parameters in the finite-key regime. We then use

the obtained lower and upper bounds in (1) to find an upper

bound on the key rate.

One of the key applications of wireless indoor QKD could

be in topping up the key bank that users may keep on their

portable devices. For such an application, a fair requirement

is that the time that it takes for the user to top up should not

be excruciatingly long. If the key exchange takes too long, the

user may prefer to use an alternative method, e.g. a cable-based

solution, for that matter. A limited time for key exchange, plus

a finite pulse rate for photon transmission, implies that the

block size we can use for key distribution is of finite size.

In this section, we first attempt to answer two questions: (1)

For a target secret key size, S, how much time is needed to

establish the key? and (2) for a fixed given amount of time for

key exchange, how many key bits can securely be exchanged?

In both cases, we neglect the time that it takes for establishing

the connection as well as that needed for post-processing.

In order to answer the above questions, we first study how

the key rate depends on the employed block size as shown

in Fig. 2(a). We consider a quantum-classical DWDM-PON

with 20 users, where the launch power for data channels is on

average −30 dBm. This is typically sufficient to guarantee an

error rate below 10−9 for data channels. Because of the Raman

noise generated by the data channels and its non-uniform

distribution, different quantum channels experience different

levels of background noise. In Fig. 2(a), and all other examples

in this section, we have chosen the worst case scenario and

present the key rate for the QKD user with the lowest secret

key generation rate. As can be seen in Fig. 2(a), the secret key

rate per pulse in this channel increases by increasing the block

size, until it reaches its asymptotic limit of 4.3×10−4 b/pulse

for very large block sizes. There are two observations to make

in this figure. First, it can be seen that for a block size around

108 and less, the secure exchange of keys is not possible. That

is, if the time that we have for key exchange is below a certain

threshold, it would not be possible to exchange a secret key

at all. The second observation is that if we need to work near

the asymptotic limit, the time needed for key exchange could

be unreasonably long. For instance, at a clock rate of 1 GHz
for our QKD system, even a block size of 1012 pulses takes

1000 s to transmit, which implies that the user should allocate

nearly 20 minutes to finish the key exchange.

Another way to look at the above problem is to work out for

a target key size S, what block size, and correspondingly how

much time is needed for key exchange. Figure 2(b) provides

an answer to this question, in which the size of the final key,

i.e., K is plotted versus N . It can be seen in this figure that

for any fixed target key length, there would be an optimal

block size. For example, for S = 107, our optimal choice for

block size is about 6× 1010 and the required time is about 1

minute. This length of key is large enough to refresh the seed

in an AES-256 protocol nearly 40,000 times. It is possible to

exchange shorter keys as well, but the longer the key the more

time-efficient the key exchange will become.

Next, let us fix the key exchange duration and see how

that would affect other system parameters. We have chosen

this fixed time to be 100 s, which, at a clock rate of 1 GHz,

corresponds to N = 1011. One of the key parameters that

needs to be set in such a hybrid network is the launch power

for data channels. On the one hand, we do not want this

parameter to be too low, or otherwise, our data channels will

not be reliable. Choosing I to be too high, however, would

result in a large amount of Raman noise, which dismantles

the QKD operation, henceforth reducing the number of QKD

users we can support. Figure 3 depicts the maximum possible

number of users that can be supported for different values

of launch power. It can be seen that for I < −22 dBm, it

is possible to use the system at its full capacity. For launch

powers larger than −22 dBm, the number of users drops

sharply. For example, for I = −20 dBm, the maximum

possible number of users reduces from 21 to 15. Within the

parameters of our setup, the maximum toelrable launch power

is 0.1 mW, which is one order of magnitude lower than the

typical 1 mW power used in optical communications systems.

This will indicate that the needs of quantum communications

applications need to be accounted for in the design of future

hybrid quantum-classical networks.

V. CONCLUSIONS

In this paper, we considered a quantum-classical access

network with wireless indoor links. In this system, users were

connected via wireless links to a DWDM PON structure. We

investigated the possibility of exchanging secret key bits in

a reasonable time of up to a few minutes by considering the

finite-size key effects in our analysis. Our numerical results

showed that by a careful specification of system parameters,

such as launch power, block size and coupling loss, key

exchange was feasible within practical times limits for a

wireless user. In particular, we showed that the choice of

launch power for data channels can significantly affect the

number of QKD users that can be supported by the network.

Proper initialization of the system is then required to allow

expansion if needed.



Fig. 2. (a) Secret key rate per pulse for different values of block size. (b)
Final key length for different values of block size.
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Fig. 3. Maximum number of QKD users that can be supported at different
values of launch power.
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