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Methods for Population-Adjusted Indirect
Comparisons in Health Technology Appraisal

David M. Phillippo, Anthony E. Ades, Sofia Dias, Stephen Palmer,

Keith R. Abrams, and Nicky J. Welton

Abstract

Standard methods for indirect comparisons and network meta-analysis are based on aggregate data, with the key

assumption that there is no difference between the trials in the distribution of effect-modifying variables. Methods

which relax this assumption are becoming increasingly common for submissions to reimbursement agencies, such as

the National Institute for Health and Care Excellence (NICE). These methods use individual patient data from a sub-

set of trials to form population-adjusted indirect comparisons between treatments, in a specific target population.

Recently proposed population adjustment methods include the Matching-Adjusted Indirect Comparison (MAIC) and

the Simulated Treatment Comparison (STC). Despite increasing popularity, MAIC and STC remain largely untested.

Furthermore, there is a lack of clarity about exactly how and when they should be applied in practice, and even

whether the results are relevant to the decision problem. There is therefore a real and present risk that the assumptions

being made in one submission to a reimbursement agency are fundamentally different to—or even incompatible

with—the assumptions being made in another for the same indication. We describe the assumptions required for

population-adjusted indirect comparisons, and demonstrate how these may be used to generate comparisons in any

given target population. We distinguish between anchored and unanchored comparisons according to whether a com-

mon comparator arm is used or not. Unanchored comparisons make much stronger assumptions, which are widely

regarded as infeasible. We provide recommendations on how and when population adjustment methods should be

used, and the supporting analyses that are required to provide statistically valid, clinically meaningful, transparent and

consistent results for the purposes of health technology appraisal. Simulation studies are needed to examine the prop-

erties of population adjustment methods and their robustness to breakdown of assumptions.

Keywords

comparative effectiveness, indirect comparison, individual patient data, population adjustment

Date received: March 8, 2017; accepted: June 8, 2017

Standard methods for indirect comparisons1 and net-

work meta-analysis2 (NMA) (see Dias et al.3 for a com-

prehensive guide) are based on aggregate data, and

assume that the distributions of effect-modifying vari-

ables do not differ between studies. Methods that relax

this assumption to form ‘‘population-adjusted indirect

comparisons’’ are becoming increasingly common for

submissions to reimbursement agencies, such as the

National Institute for Health and Care Excellence

(NICE). Ideally, we would have individual patient data

(IPD) from all studies to fully adjust for patient differ-

ences using network meta-regression, as aggregate data
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network meta-regression has low power to detect or

adjust for covariates and is susceptible to ecological

bias.4,5 However, it is rarely the case that full IPD are

available. In particular, a very common scenario is when

a company has IPD on its own trial but only published

aggregate data on their competitor’s trial, typically con-

sisting of average treatment effects and summary patient

characteristics (e.g., mean and standard deviation for

continuous characteristics, and proportions for binary/

categorical). Population adjustment methods use the

available IPD to adjust for between-trial imbalances in

the distribution of observed covariates. These methods

cannot adjust for differences in, for example, treatment

administration, co-treatments, or treatment switching, as

these are perfectly confounded with treatment. We focus

on 2 recently proposed methods: Matching-Adjusted

Indirect Comparison (MAIC)6–8 and Simulated Treatment

Comparison (STC).7,9 MAIC and STC are not the only

possible approaches to population adjustment; we outline

some alternatives in the discussion.

This paper is based on a Technical Support Document

prepared for the NICE Decision Support Unit, available

from http://www.nicedsu.org.uk/.10 We begin by introdu-

cing the population adjustment scenario. We then

describe MAIC and STC in detail, and clearly set out

their assumptions and properties. We propose the shared

effect modifier assumption which, if justified, may be

used to transport indirect comparisons into any target

population. Recommendations on the use of population

adjustment methods in technology appraisal are then

given, with a particular focus on reproducibility, consis-

tency, and transparency, whilst minimizing bias and max-

imizing precision.

Overview of the Problem

We focus exposition on a simple indirect comparison

between 2 treatments based on 2 studies; although, our

recommendations and many of the methods are general-

izable to comparisons involving more treatments or stud-

ies.10 We distinguish between population adjustment

methods to make ‘‘anchored’’ indirect comparisons,

where the evidence is connected by a common compara-

tor, and ‘‘unanchored’’ indirect comparisons, where the

evidence is disconnected due to a lack of a common com-

parator or single-arm studies. We begin by describing the

anchored scenario; the unanchored scenario then follows

simply (albeit, with very different assumptions; see the

overview in the following section). We make a clear and

necessary distinction between prognostic variables and

effect modifiers: prognostic variables are covariates that

affect the outcome whereas effect modifiers (also known

as predictive variables11) are covariates that alter the

effect of treatment as measured on a given scale. Effect

modifiers are not necessarily also prognostic variables,

and may be specific to each treatment. Effect modifier

status on one scale does not necessarily imply effect

modifier status on another scale. We assume internal

validity of the studies included in the analysis, so that the

studies provide unbiased estimates of treatment effects in

their respective sample populations.

Consider one AB trial, for which the analyst has IPD,

and one AC trial, for which only published aggregate

data are available. We wish to estimate a comparison of

the effects of treatments B and C on an appropriate scale

in some target population P, denoted by the parameter

dBC(P). Within the AB trial population, there are para-

meters mA(AB), mB(AB) and mC(AB) representing the expected

outcome on each treatment (including for treatment C,

which was not studied in the AB trial). The AB trial pro-

vides estimators �YA(AB) and �YB(AB) of mA(AB) and mB(AB),

respectively, which are the summary outcomes; for exam-

ple, the probability of success, on each arm (note that

mC(AB) is not estimated by the AB trial). There is a parallel

system of parameters (mA(AC), mB(AC), mC(AC)) and estima-

tors (�YA(AC), �YC(AC)) in the AC trial.

Having selected a suitable scale, for example, a logit,

log, risk difference, or mean difference scale, we form

estimators D̂AB(AB) and D̂AC(AC) of the population-specific

relative treatment effects dAB(AB) and dAC(AC) in each trial

using the appropriate link function g �ð Þ:

D̂AB(AB) = g �YB(AB)

� �

� g �YA(AB)

� �

,

D̂AC(AC) = g �YC(AC)

� �

� g �YA(AC)

� �

: ð1Þ

Standard methods for indirect comparisons make the

assumption that there is no difference in the distribution

of trial-level effect modifiers, specific to the chosen scale,

between the populations in the AB and AC trials or the

target population P, so that population-specific relative

treatment effects are equal across populations:

dAB(AB) = dAB(AC) = dAB(P) and dAC(AB) = dAC(AC) = dAC(P).

Under this assumption, the standard indirect comparison

estimator of the relative effect dBC(P) is

D̂BC(P) = D̂AC(AC) � D̂AB(AB); ð2Þ

which takes account of the fact that patients are only ran-

domized within trials.1

The final step is to apply these relative effects to a

specified target population P in which the summary abso-

lute effect (such as the mean change from baseline, or
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probability of response) of treatment A is �YA(P). We can

now estimate the summary absolute effects of treatments

A, B, C in the target population, mA(P), mB(P), mC(P),

which have estimators

�YA(P), ŶB(P) = g�1 g �YA(P)

� �

+ D̂AB(P)

� �

,

ŶC(P) = g�1 g �YA(P)

� �

+ D̂AC(P)

� �

: ð3Þ

Suppose that in each trial we have information on a

common set of covariates X. Between-trial differences in

the distribution of prognostic variables that are not

effect modifiers do not affect inference, because the

within-trial randomization means that they do not

impact on the relative treatment effects (assuming that

the sample size is sufficiently large). Note that effect

modifiers X
EM , a subset of X, are assumed to have an

additive effect on the transformed scale, such that, at

any given value of XEM , the conditional relative effect is

dAB X
EM

� �

= dAB 0ð Þ+gT
X

EM , conceptualized as an

‘‘intercept’’ term (the relative effect dAB 0ð Þ at X
EM = 0)

plus an interaction effect, gT
X

EM .

If there are effect modifiers and if these are distributed

differently between the populations, the relative treat-

ment effects dAB(AB), dAC(AC) that can be estimated directly

from each trial are only valid for a population with the

distribution of effect modifiers observed in that trial. For

example, we would have estimates d̂AB(AB) in the AB popu-

lation and d̂AC(AC) in the AC population, but it would not

be possible to identify a coherent set of estimates, either

for the population represented in the AB trial

d̂AB(AB), d̂AC(AB), d̂BC(AB) = d̂AC(AB) � d̂AB(AB);

or for the population represented in the AC trial

d̂AB(AC), d̂AC(AC), d̂BC(AC) = d̂AC(AC) � d̂AB(AC);

or, indeed, for any other target population.

The premise of MAIC and STC is to ‘‘adjust for’’

between-trial differences in ‘‘baseline characteristics’’, in

order to identify a coherent set of estimates where stan-

dard methods of indirect comparison cannot. Both meth-

ods use IPD on the AB trial to form predictors

ŶA(AC), ŶB(AC) of the summary outcomes that would be

observed on treatments A and B in the AC trial if the

AB trial population was the same as the AC trial

population.

The predicted outcomes ŶA(AC), ŶB(AC) may then be

used in 2 ways. First, relative effects may be estimated

by an anchored indirect comparison:

D̂BC(AC) = g �YC(AC)

� �

� g �YA(AC)

� �� �

� g ŶB(AC)

� �

� g ŶA(AC)

� �� �

: ð4Þ

Alternatively, an unanchored indirect comparison can

generated:7,8

D̂BC(AC) = g �YC(AC)

� �

� g ŶB(AC)

� �

: ð5Þ

The anchored indirect comparison should always be

preferred in a connected network as it respects the ran-

domization within studies, whereas the unanchored indi-

rect comparison requires much stronger assumptions

that are very hard to meet. If the treatment network is

disconnected or contains single-arm studies, then there is

no common comparator arm through which to make an

anchored indirect comparison, and we are obliged to rely

on an unanchored indirect comparison.

MAIC and STC are both based upon methods

that date back several decades—propensity score reweight-

ing and regression adjustment, respectively—and are dis-

cussed extensively in the literature on standardization,12–15

generalization,16–20 and calibration.21–24 Like MAIC and

STC, these methods have been aimed at mapping the

absolute and relative effects observed in one population

into effects that would be predicted in another, in both

randomized and observational study settings. The novel

aspect of MAIC and STC is to provide indirect compari-

sons when IPD are only available in the AB trial, with

aggregate data in the AC trial along with summary infor-

mation on the covariate distribution. If individual patient

data are available on both the AB and AC studies, a net-

work meta-regression using IPD is the gold-standard

approach.4;5;25-27 Ideally, the full joint distribution of cov-

ariates X is known or can be obtained from conditional

distributions, but frequently in practice only the marginal

mean and standard deviation of each covariate are known.

Due to the lack of IPD from the AC trial, standard

approaches to fitting both propensity score and outcome

models cannot be used. We outline both MAIC and STC

approaches below. A worked example of MAIC and STC

as conforming to our recommendations is provided in the

online Appendix.

Overview of Methods for Population Adjustment

with Limited IPD

Population Reweighting Methods

MAIC is a reweighting method similar to inverse pro-

pensity score weighting14 and non-parametric likelihood
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reweighting,23 which allows the propensity score logistic

regression model to be estimated without IPD in the AC

population. The mean outcomes mt(AC) on treatment

t=A,B in the AC target population are estimated by

taking a weighted average of the outcomes Yit(AB) of the

Nt(AB) individuals in arm t of the AB population,

Ŷt(AC) =

P

Nt(AB)

i= 1

Yit(AB)wit

P

Nt(AB)

i= 1

wit

; ð6Þ

where the weight wit assigned to the i-th individual receiv-

ing treatment t is equal to the odds of being enrolled in

the AC trial v. the AB trial. The weights are estimated

using logistic regression as log witð Þ=a0 +aT
1
Xit, where

Xit is the covariate vector for the i-th individual receiving

treatment t; however, the regression parameters are not

estimable using standard methods due to the lack of IPD

in the AC trial. Signorovitch et al.6 use the method of

moments to estimate â1 so that the weights exactly bal-

ance the mean covariate values (and any included higher

order terms; for example, squared covariate values to

balance the variance) between the weighted AB popula-

tion and the AC population. When �X(AC) = 0,

Signorovitch et al. show that this is equivalent to minimiz-

ing
P

t=A,B

PNt(AB)

i= 1
exp aT

1
Xit

� �

. The estimator in equation

(6) is then equal to

Ŷt(AC) =

P

Nt(AB)

i= 1

Yit(AB)exp âT
1
Xit

� �

P

Nt(AB)

i= 1

exp âT
1
Xit

� �

;

noting that exp â0ð Þ cancels from the top and bottom of

the fraction. Anchored and unanchored indirect compar-

isons are then formed using equations (4) and (5), respec-

tively. Although MAIC can be used to facilitate indirect

comparisons on any scale, the MAIC literature almost

exclusively performs comparisons on the natural out-

come scale (i.e., with g �ð Þ the identity function).

Typically, standard errors for MAIC estimates are calcu-

lated using a robust sandwich estimator28 (see the

Appendix of Signorovitch et al.6). Sandwich estimators

are derived empirically from the data, and account for

the fact that the weights are estimated rather than fixed

and known. Signorovitch et al.6 suggest reporting the

effective sample size (ESS) of the pseudo-population

formed by weighting the AB population, approximated

by

ESS=
P

t=A,B

PNt(AB)

i= 1
ŵit

� �2
�

P

t=A,B

PNt(AB)

i= 1
ŵ2

it: ð7Þ

This approximate ESS is only accurate if the weights are

fixed and known, or if they are uncorrelated with the

outcome—neither of which is true here. As such, this

approximation is likely to be an underestimation of the true

ESS.29 Small ESS indicates that the weights are highly vari-

able due to a lack of population overlap, and that the

resulting estimate may be unstable. The distribution of

weights themselves should also be examined directly, to

diagnose issues with a lack of population overlap and to

highlight any overly influential individuals. It is not possible

to apply traditional propensity score tools for ‘‘balance

checking’’ here,19,20 as propensity scores are only estimated

for the AB trial, and the method of moments, by definition,

ensures covariate balance (at least to the level of informa-

tion published in the AC trial).

Another form of population reweighting is based on

entropy balancing,30 and was first suggested for treatment

effect calibration by Belger et al.31,32 The approach is identi-

cal to standard MAIC except that the weights are addition-

ally constrained to be as close to each other as possible;

entropy balancing methods should thus have equal or

reduced standard error compared to MAIC, whilst achiev-

ing the same reduction in bias. Different schemes for apply-

ing weights have also been proposed.31,32 These involve

splitting apart trial arms and balancing covariate distribu-

tions separately between the control arms (A) and between

the treatment arms (B and C) in the IPD and aggregate

populations. The properties of such ‘‘splitting’’ approaches

in comparison with more typical population reweighting

are largely unknown, and require further investigation.

Outcome Regression Methods

Simulated Treatment Comparison (STC) is a modifica-

tion of covariate adjustment,21 which fits an outcome

model using the IPD in the AB trial:

g mt(AB) Xð Þ
� �

=b0 +bT
1
X+ bB +bT

2
X

EM
� �

I t=Bð Þ;

ð8Þ

where b0 is an intercept term, b1 is a vector of coeffi-

cients for prognostic variables, bB is the relative effect of

treatment B compared to A at X= 0, b2 is a vector of

coefficients for effect modifiers XEM (a subvector of the

full covariate vector X), and mt(AB) Xð Þ is the expected out-

come of an individual assigned treatment t with covariate

values X, which is transformed onto a chosen linear pre-

dictor scale with link function g �ð Þ.
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The model in equation (8) is a more general form of

that given by Ishak et al.7, which does not include any

effect modifier terms. The STC literature advocates

forming indirect comparisons directly on the natural out-

come scale with g �ð Þ the identity link in equation (4) or

(5); however, this leads to scale conflicts10 if the same

link is not used in the outcome model (8) (see the follow-

ing section on the importance of scale). ŶA(AC) and ŶB(AC)
may be predicted from the outcome regression by

substituting in mean covariate values to obtain

ŶA(AC) = g�1ðb̂0 + b̂
T

1
�X(AC)Þ and ŶB(AC) = g�1ðb̂0 +

b̂
T

1
�X(AC) + b̂B + b̂

T

2
�X
EM

(AC)Þ. These estimators are systema-

tically biased whenever g �ð Þ is not the identity function,

because the mean outcome depends on the full distribu-

tion of the covariates and not just their mean.7 Instead

of substituting in mean covariate values in this case,

Ishak et al. suggest that estimates are obtained by first

drawing samples from the joint covariate distribution in

the AC trial and then averaging over the predicted out-

comes based on the regression model. This simulation

approach, however, inflates uncertainty of the relative

effect estimates.

Standard tools for model checking (such as AIC/DIC,

examining residuals, among others) may be used when

constructing the outcome model in the AB trial; however

(as with MAIC), additional assumptions are required to

predict absolute outcomes in the AC population, which

are difficult to test with the limited data available.

Overview of Assumptions Made by Different

Methods

It is critical to note that unanchored indirect comparisons

require much stronger assumptions than anchored indi-

rect comparisons. The assumptions required by different

forms of population-adjusted indirect comparisons are

summarized in Table 1.

A standard indirect comparison or (fixed effect) net-

work meta-analysis assumes ‘‘constancy of relative

effects’’ on the linear predictor scale, meaning that the

expected relative C v. A effect in the AC trial is identical

to that which would be expected in the AB trial. This

requires that any and all effect modifiers are balanced

between the 2 trial populations.

Anchored forms of population-adjusted indirect com-

parisons rely on ‘‘conditional constancy of relative

effects,’’ typically on the natural outcome scale. This

means that the relative treatment effects are assumed

constant between studies at any given level of the effect

modifiers, so there is no imbalance of unobserved effect

modifiers between the 2 trial populations. This is quite a

strong assumption but considerably less strong than the

constancy of relative effects assumption required for a

standard indirect comparison.

Unanchored forms of population-adjusted indirect

comparisons make the much stronger assumption of

‘‘conditional constancy of absolute effects.’’ This means

that the absolute treatment effects are assumed constant

at any given level of the effect modifiers and prognostic

variables, and all effect modifiers and prognostic vari-

ables are required to be known. This is a far more

demanding assumption than either constancy or condi-

tional constancy of relative effects, and widely accepted

to be very hard to meet.

The assumptions of internal validity and some form

of constancy are sufficient in the scenario where, despite

not having access to IPD on the AC trial, sufficient infor-

mation on the joint covariate distribution is available. In

practice, even this level of detail is unlikely, as published

trials frequently report only details of the marginal cov-

ariate distributions (e.g., mean/median and standard

deviation for continuous covariates, or proportion of

individuals with a binary/categorical trait). Additional

assumptions are therefore required: either that the true

outcome model does not depend on the correlations

between covariates, or that the missing correlations in

the AC trial may be imputed from those observed in the

AB trial.10

The Importance of Scale and its Relation to

Effect Modification

The standard practice for indirect comparisons, in com-

mon with standard methods of meta-analysis, is that they

are made on a pre-specified transformed scale (e.g., on

the log scale for odds ratios and risk ratios), rather than

on the natural outcome scale;1,3 to aid interpretation or

for the purposes of a cost effectiveness analysis, the

resulting estimates are back-transformed onto the natu-

ral scale. The reasons for this choice include approximate

normality and the stabilization of variance. Critically, for

indirect comparisons, effects are assumed to be additive

and linear on the transformed scale.

Effect modifier status is scale-specific,33 and the status

of a variable as an effect modifier on one scale does not

imply (either positively or negatively) the effect modifier

status on any other scale. MAIC and STC, as currently

practiced, are typically carried out on the natural out-

come scale, regardless of the conventional linear predic-

tor scale, so that variables that are effect modifiers in a

standard indirect comparison might not be in MAIC/

204 Medical Decision Making 38(2)



Table 1 Assumptions Made by Different Methods for Indirect Comparisons

Method

Assumptions Made
Standard Indirect
Comparison, NMA

Network
Meta-regressiona

Unanchored
MAIC

Anchored
MAIC

Unanchored
STC

Anchored
STC

Constancy
Constancy of absolute effects N N N N N N
Conditional constancy
of absolute effects

N N Y
Typically on

natural outcome
scale.

N Y
Typically on natural

outcome scale.

N

Constancy of
relative effects

Y
On linear predictor
scale. For RE NMA
relaxed to constancy

in expectation.

N N N N N

Conditional constancy
of relative effects

N Y
On linear
predictor
scale.

N Y
Typically on

natural outcome
scale.

N Y
Typically on

natural
outcome scale.

Shared effect modifiers N/A Y
On linear predictor scale.
Not required if IPD are
available on both studies.

Nb Nb Nb Nb

aThe assumptions set out here are applicable to all forms of network meta-regression with varying combinations of IPD and aggregate data (both studies IPD, both studies

aggregate data, one IPD and one aggregate), with the exception of the shared effect modifier assumption which is not required if IPD are available on both studies.
bThe shared effect modifier assumption is not required, but may be additionally assumed in order to present estimates for another target population.

2
0
5



STC, and vice versa. Furthermore, forming the indirect

comparison on a different scale to that used for the out-

come model in STC results in serious issues due to the

conflicting scales: linearity and additivity cannot hold on

both scales, the definition of effect modifiers is obscured,

and the subsequent indirect comparison is uninterpreta-

ble. The choice of an appropriate scale is therefore criti-

cal, and should be made using biological and clinical

knowledge.34 Moreover, where a standard scale exists

for a given outcome upon which additivity is commonly

accepted, the use of an alternative scale is hard to justify.

In a decision-making context, the possibility of effect

modification has to be handled carefully, not least

because a treatment that is cost-effective at one value of

the effect modifier might not be at another. Guidelines

on methods recommend that effect modifiers must be

pre-specified and clinically plausible, and that supporting

evidence must be provided from a thorough review of

the subject area or from expert clinical opinion (see

Section 5.2.7 of the NICE Methods Guide,35 and ISPOR

guidance36).

Calibrating Population-Adjusted Estimates to

The Correct Target Population

The premise of both MAIC and STC is that the treat-

ment effect depends on the population. It is therefore

not sufficient to use MAIC or STC to generate an

‘‘unbiased’’ comparison in just any population; they are

only useful for decision making if they can produce a fair

comparison in the target population for the decision. In

general, the target population should be a cohort or reg-

istry study population relevant to the clinical decision,

which is unlikely to match the population of the AC trial.

However, MAIC and STC, as currently proposed, are

unable to achieve estimates in any population other than

that of the AC study.

To allow relative treatment effects to be projected into

any target population, we propose that an additional

assumption is made, known as the ‘‘shared effect modi-

fier assumption.’’ The shared effect modifier assumption

applies to a set of active treatments T , and states that 1)

the effect modifiers of all treatments in T are the same,

and 2) the change in treatment effect caused by each

effect modifier is the same for all treatments in T . This

assumption is not required for MAIC or STC as cur-

rently used. However, if deemed reasonable, it may be

leveraged to produce indirect comparisons in any given

target population. For example, if the shared effect

modifier assumption holds for treatments B and C, then

the estimated dBC relative treatment effect (whether

obtained using anchored or unanchored MAIC/STC)

will be applicable to any population. In general, we make

use of the relationship

dtu(P) = dtu(Q) 8t, u 2 T ð9Þ

for any 2 populations P and Q and for a set of treatments

T for which the shared effect modifier assumption holds.

Mathematical proof and examples are provided in

Appendix A. The shared effect modifier assumption is

evaluated on a clinical and biological basis; treatments in

the same class (i.e., sharing biological properties or mode

of action) are more likely to satisfy the shared effect

modifier assumption than those from different classes.

Recommendations for The Use of Population-

Adjusted Indirect Comparisons

The exact properties of population adjustment methodol-

ogies, such as MAIC and STC, in anchored and unan-

chored forms and their performance relative to standard

indirect comparisons can only be properly assessed by a

comprehensive simulation exercise. For this reason, we

do not express preference for any particular population

adjustment method. However, based on general princi-

ples, we can draw some useful conclusions about the role

of population-adjusted estimates of treatment effects,

including the types proposed by MAIC and STC, in sub-

missions to reimbursement agencies.

The recommendations in Table 2 and reporting guide-

lines in Appendix B are intended to promote reproduci-

bility, consistency, and transparency in the use of

population adjustment methods, whilst minimizing bias

and maximizing precision. A further desirable property is

that, if there were no effect modifiers, no adjustment

would occur: the estimates would be expected to be

exactly those produced by standard indirect comparison.

Appendix C provides flow charts summarizing these rec-

ommendations, and describing the process of selecting a

method for indirect comparison, undertaking the analy-

sis, and presenting the results.

Recommendations 1 to 3 are concerned with choosing

and justifying an appropriate form of population-

adjusted indirect comparisons over a standard indirect

comparison. Since unanchored comparisons make much

stronger assumptions than anchored comparisons, recom-

mendation 1 is that the latter should always be preferred.

For anchored comparisons, recommendation 2 requires

that a priori evidence of effect modifier status is provided,

along with evidence of substantial imbalance; this stems

from established guidance on effect modification.35,36
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Unanchored comparisons cannot rely on randomization

and thus are problematic (see the overview of assumptions

above). Recommendation 3 for unanchored comparisons

therefore calls for evidence of predictive accuracy for abso-

lute outcomes, and an estimate of residual bias due to unac-

counted for covariates, without which the amount of bias is

unknown but is likely to be substantial, and could even

exceed the magnitude of treatment effects being estimated.

Recommendation 4 ensures that bias is minimized

whilst controlling standard error. For anchored indirect

comparisons performed via population reweighting

methods (e.g., MAIC), all effect modifiers should be

adjusted for, whether in imbalance or not, to ensure bal-

ance and reduce bias. To avoid loss of precision due to

over-matching, purely prognostic variables should not be

adjusted for, as they do not affect the estimated relative

treatment effect. For anchored indirect comparisons per-

formed via outcome regression methods (e.g., STC), all

effect modifiers in imbalance should be adjusted for to

reduce bias. The inclusion of additional prognostic vari-

ables and effect modifiers in the model can result in a

gain in precision of the estimated treatment effect if the

variable accounts for a substantial degree of variation in

the outcome, but will not reduce bias any further. For an

unanchored indirect comparison, reliable predictions of

absolute outcomes are required; therefore, population

adjustment methods should adjust for all effect modifiers

and prognostic variables.

Recommendation 5 is to choose an appropriate linear

predictor scale for the adjustment and subsequent indi-

rect comparison in line with general modelling prac-

tice,35,37 avoiding scale conflicts (see the above section

on the importance of scale). If a scale is chosen that dif-

fers from what is usually used in existing literature for

that outcome and condition, thorough justification must

be given.

As noted in the previous section, population adjust-

ment methods are only useful for decision making if they

can produce estimates for the appropriate target popula-

tion; recommendation 6 makes this explicit, and the

shared effect modifier assumption defined above may be

utilized if appropriate.

Further detail on each of the recommendations may

be found in NICE DSU Technical Support Document

18.10

Discussion

The rationale for employing population adjustment

stems principally from 2 scenarios: 1) connected, com-

parative evidence is available but standard synthesis

methods are deemed inappropriate due to an imbalance

in suspected effect modifiers; or 2) no connected evidence

is available, or comparisons are required involving

single-arm studies. In this paper, we focused on a simple

2-study indirect comparison; however, in principle, the

Table 2 Recommendations for the Use of Population-Adjusted Indirect Comparisons

Recommendation 1: When connected evidence with a common comparator is available, a population-adjusted anchored indirect
comparison may be considered. Unanchored indirect comparisons may only be considered in the absence of a connected
network of randomized evidence, or where there are single-arm studies involved.

Recommendation 2: Submissions using population-adjusted analyses in a connected network need to provide evidence that they
are likely to produce less biased estimates of treatment differences than could be achieved through standard methods.
(a) Evidence must be presented that there are grounds for considering one or more variables as effect modifiers on the

appropriate transformed scale. This can be empirical evidence or an argument based on biological plausibility.
(b) Quantitative evidence must be presented that population adjustment would have a material impact on relative effect

estimates due to the removal of substantial bias.
Recommendation 3: Submissions using population-adjusted analyses in an unconnected network need to provide evidence that
absolute outcomes can be predicted with sufficient accuracy in relation to the relative treatment effects, and present an estimate
of the likely range of residual systematic error in the ‘‘adjusted’’ unanchored comparison.

Recommendation 4: The following variables should be adjusted for in a population-adjusted analysis:
(a) For an anchored indirect comparison, propensity score weighting methods should adjust for all effect modifiers (in

imbalance or not) but no prognostic variables. Outcome regression methods should adjust for all effect modifiers in
imbalance, and any other prognostic variables and effect modifiers that improve model fit.

(b) For an unanchored indirect comparison, both propensity score weighting and outcome regression methods should adjust
for all effect modifiers and prognostic variables to reliably predict absolute outcomes.

Recommendation 5: Indirect comparisons should be carried out on the linear predictor scale, with the same link functions that
are usually employed for those outcomes.

Recommendation 6: The target population for any treatment comparison must be explicitly stated, and population-adjusted
estimates of the relative treatment effects must be generated for this target population.
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methods and recommendations are generalizable to

situations where multiple studies are available for each

comparison or involving larger treatment networks. This

is a clear area for further research.

As with standard methods for indirect comparison1

and network meta-analysis,3 population-adjusted indi-

rect comparisons assume internal validity of the included

studies. An appropriately well-designed randomized

study is expected to balance the distributions of both

observed and unobserved prognostic variables and effect

modifiers between arms. Further research is necessary to

investigate methods for adjusting for within-study cov-

ariate imbalance, and other issues with internal validity,

such as lack of blinding.

By definition, the presence of effect modification means

that relative treatment effects may differ between popula-

tions and, as a result, different decisions could be reached in

different populations. MAIC and STC apply propensity

score reweighting and outcome regression to produce an

indirect comparison in the aggregate data population, typi-

cally that of a competitor’s study, which is unlikely to match

the decision target population. If the competitor was to use

its IPD and run the analysis the other way around, appar-

ently contradictory results could be obtained. This has

already arisen in practice, with 2 MAIC analyses from com-

peting manufacturers comparing treatments for ankylosing

spondylitis.38,39 Each manufacturer had IPD available on

their own study and used MAIC to form a comparison in

their competitor’s study population, and each obtained

opposing results in favor of their own treatment. With a

decision target population in mind, however, we note that

the real conflict lies not in the different results produced by

the 2 MAICs but in deciding which of the 2 study popula-

tions better represents the decision target population.

Ironically, each company is left in the position of implicitly

assuming that their competitor’s trial is more representative

of the decision target population than their own. We have

shown that the shared effect modifier assumption, if justi-

fied, may be used to transport indirect comparisons into the

target population for the decision without pleading to repre-

sentativeness. Methods that relax the shared effect modifier

assumption, or attempt to validate it, are areas for further

research.

Much of the literature on unanchored MAIC and

STC acknowledges the possibility of residual bias due

to unobserved prognostic variables and effect modi-

fiers;40–44 however, it is not made clear that the accuracy

of the resulting estimates is entirely unknown, because

there is no analysis of the potential magnitude of residual

bias, and hence no idea of the degree of error in the

unanchored estimates. It is, of course, most unlikely that

systematic error has been eliminated. Hoaglin,45,46 in a

critique of an unanchored comparison47 based upon a

matching approach similar to MAIC, remarked that,

without providing evidence that the adjustment compen-

sates for the missing common comparator arms and the

resulting systematic error, the ensuing results ‘‘are not

worthy of consideration.’’ If unanchored forms of popu-

lation adjustment are to be presented, it is essential that

submissions to reimbursement agencies include informa-

tion on the likely bias resulting from unobserved prog-

nostic factors and effect modifiers distributed differently

in the trials. The way in which residual systematic error

is quantified is an area that requires further research.

A potential and oft-cited advantage of MAIC is that

it is perceived to be ‘‘scale-free’’, as the definition of the

weighting model does not require any fixed outcome

scale to be chosen.6,7 Although it is true that the

reweighting procedure makes no scale assumptions, the

subsequent indirect comparison does assume additivity

on a specific scale, and therefore neither MAIC nor STC

are ‘‘scale-free’’ in this important sense.

Setting aside their failure to generate coherent

population-adjusted estimates for the chosen target pop-

ulation, MAIC and STC also give very considerable lee-

way to investigators to choose anchored or unanchored

approaches, and to pick and choose variables for adjust-

ing. In the interests of transparency and consistency, and

to ensure equity for patients and a degree of certainty for

those making submissions to reimbursement agencies, it

is essential to regularize how and under what circum-

stances these procedures should be used, and which addi-

tional analyses should be presented to support their use

and assist interpretation. We believe that the recommen-

dations set out here go a long way toward meeting these

objectives.

MAIC and STC are not the only approaches to popu-

lation adjustment. One alternative stems from network

meta-regression, with regression models defined at both

the individual level and at the study level.48–53 If the

study level model is an integration of the individual level

model over the study population,50,52,53 then aggregation

bias is avoided;4,10,54 however, at present, these types of

models have only been derived for simple scenarios with

binary covariates.10,50 Attractively, these methods are

naturally generalizable to connected networks of any

size, and they reduce to the gold standard IPD network

meta-regression if IPD are available for all trials. Doubly

robust techniques that combine both reweighing and

regression adjustment are also plausible, and have been

described for the case when full IPD are available by

Zhang et al.24 We would expect these alternatives to have
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similar properties to MAIC and STC in both anchored

and unanchored scenarios, and the recommendations

made in the last section are applicable to population

adjustment methods in general; for a more detailed dis-

cussion, see NICE DSU Technical Support Document

18.10 Further research is needed to assess all available

methods alongside MAIC and STC; in particular,

to examine their properties and robustness to breakdown

of assumptions, with varying levels of data availability,

through thorough simulation studies.
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