UNIVERSITYW

This is a repository copy of Thermodynamic Analysis of Time Evolving Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136391/

Version: Accepted Version

Article:

Ye, Cheng, Wilson, Richard Charles orcid.org/0000-0001-7265-3033, Rossi, Luca et al. (2
more authors) (Accepted: 2018) Thermodynamic Analysis of Time Evolving Networks.
Entropy. ISSN 1099-4300 (In Press)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Article
Thermodynamic Analysis of Time Evolving Networks

Cheng Yel, Richard C. Wilson?, Luca Rossi®, Andrea Torsello?, and Edwin R. Hancock >*

1 Department of Computer Science, Royal Holloway, University of London, Egham, TW20 0EX, UK. 1;

Cheng.Ye@rhul.ac.uk
2 Department of Computer Science, University of York, York, YO10 5GH, UK. 2; Richard.Wilson@york.ac.uk
School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK.
3;l.rossi@aston.ac.uk
Dipartimento di Scienze Ambientali, Informatica, Statistica Universita’ Ca’ Foscari Venezia via Torino 155,
30172 Venezia Mestre, Italy. 4; Andrea.Torsello@unive.it
*  Correspondence: Edwin.Hancock@york.ac.uk; Tel.: +44 1904 325497

Version September 12, 2018 submitted to Entropy

The problem of how to represent networks, and from this representation derive succinct
characterizations of network structure and in particular how this structure evolves with time, is
of central importance in complex network analysis. This paper tackles the problem by proposing
a thermodynamic framework to represent the structure of time-varying complex networks. More
importantly, such a framework provides a powerful tool for better understanding the network time
evolution. Specifically, the method uses a recently developed approximation of the network von
Neumann entropy, and interprets it as the thermodynamic entropy for networks. With an appropriately
defined internal energy to hand, the temperature between networks at consecutive time points can be
readily derived, which is computed as the ratio of change of entropy and change in energy. It is critical
to emphasize that one of the main advantages of the proposed method is that all these thermodynamic
variables can be computed in terms of simple network statistics, such as network size and degree
statistics. To demonstrate the usefulness of the thermodynamic framework, the paper uses real-world
network data, which are extracted from time-evolving complex systems in the financial and biological
domains. The experimental results successfully illustrate that critical events, including abrupt changes
and distinct periods in the evolution of complex networks can be effectively characterized.

1. Introduction

There has been a vast amount of effort expended on the problems of how to represent networks,
and from this representation derive succinct characterizations of network structure and in particular
how this structure evolves with time [1-3]. Broadly speaking the representations and the resulting
characterizations are goal-directed, and have centred around ways of capturing network substructure
using clusters, or notions such as hubs and communities [4-7]. Here the underlying representations are
based on the connectivity structure of the network, or statistics that capture the connectivity structure
such as degree distributions [2,8,9]

A more principled approach is to try to characterize the properties of networks using ideas from
statistical physics [10,11]. Here the network can be succinctly described using a partition function, and
thermodynamic characterizations of the network such as entropy [12], total energy and temperature
can be derived from the partition function [13-15]. Specifically, statistical thermodynamics can be
combined with both graph theory and kinetics to provide a practical framework for handling highly
structured and highly interactive time-evolving complex systems [13]. By using a random walk that
maximizes the Ruelle-Bowens free-energy rate on weighted graphs, a novel centrality measure can
be computed, and this has been successfully applied to both connected and disconnected large-scale
networks [14]. Recently, it has been demonstrated that the subgraph centrality can be interpreted as a
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partition function of a network [16], and as a result the entropy, internal energy and the Helmholtz
free energy can be defined using spectral graph theory. The authors have also argued that the
thermodynamic quantities are intimately related to the complex network dynamics. This approach
combines the theoretical tools developed for studying graph spectra in the context of statistical
mechanics of complex networks and clearly points out the potentials of the current approach to study
real-world time-varying networks.

More recently, Minello et al. [17] have presented a quantum thermodynamic approach to study
time-varying networks, in which the thermodynamic variables are developed through an unknown
Hamiltonian operator governing the free evolution through the Schrodinger equation. Here, motivated
by our recent work [18], we adopt a different theoretical foundation, namely the statistical mechanics,
to establish our thermodynamic framework to analyze the time evolution of dynamic networks. We
commence by studying undirected networks and define the network thermodynamic entropy, based
on a recently developed approximation for the von Neumann entropy. We then focus on developing
additional thermodynamic variables, i.e., internal energy and temperature for time-varying networks.
We further show that our framework can be readily applied to directed networks, by taking into
consideration the difference between the in- and out-degree of network nodes. We evaluate the
usefulness of the proposed method using real-world time-varying complex system data from both
financial and biological domains.

1.1. Related Literature

Although the bulk of existing network theory is concerned with static networks, most realistic
networks are in reality dynamic in nature. Generally speaking, most existing methods for analyzing
time evolution of complex networks have centered on studying structural measures of static networks,
and then applying these quantities to each snapshot of the time-varying network in order to understand
the evolutionary patterns. For instance, Holme et al. [19] have analyzed the time evolution of a number
of well-known network features, including clustering coefficient, degree-degree correlations, average
geodesic length and reciprocity of a large-scale online social network. Moreover, in [20], the authors
have analyzed how the social networks of Flickr and Yahoo!360 evolve over different time periods using
measures such as network density and average distance between nodes in the network components.
Although such methods have proved to be efficient in reflecting the time evolution of some structural
properties of evolving networks, they have a significant drawback, namely the lacking use of structure
information between temporal networks at two consecutive time steps, e.g., the node degree change
and edge number change.

In order to overcome this problem and to incorporate the missing structure information, a number
of alternative techniques to capture the structure and evolution of networks have been proposed.
For instance, Palla et al. [21] have developed a method for investigating the time dependence of the
overlapping communities on a social network, using clique percolation method. Specifically, they take
into consideration both the group size and age, and propose a measure for quantifying the relative
overlap between two states of the same community at different time steps. Also they have developed
a new network indicator called stationarity in order to quantify the changing rate of communities
based on their size and age. In this way the authors have managed to exploit the community structure
information between subsequent states of a time-evolving network. More recently, Peel and Clauset
[22] have formalized the problem of identifying change points during network evolution within an
online probabilistic learning framework, and have utilized generative network models and statistical
hypothesis tests to solve it. This method has proved to successfully detect if, when and how change
points occur in two high-resolution dynamic social networks.

Comparing to the existing evolving network analysis approaches, our thermodynamics analysis
provides an advantageous approach in that the thermodynamic quantities, especially the temperature,
fully exploit the information related to the structural changes of networks at subsequent time steps.
More importantly, our approach does not require computationally complicated Bayesian probabilistic
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frameworks such as the generalized hierarchical random graph (GHRG) model [22], but only uses a
number of simple but important network characteristics, i.e., node degree statistics, edge number and
degree information of some simple substructures such as triangles. This yields a low computational
complexity to our thermodynamic analysis.

The structure of the remainder of the paper is as follows. Sec. II gives a detailed development of
the thermodynamic framework for network evolution analysis. Sec. 1II tests the proposed method on
a number of real-world time-varying networks, i.e., the New York Stock Exchange (NYSE) network
and fruit fly life cycle gene expression network. Sec. IV summarizes the main contributions of this
paper and also suggests a few research directions for the future.

2. Thermodynamic Framework for Time Evolving Complex Networks

In this section, we provide a detailed development of the thermodynamic framework for analyzing
the time evolution of complex networks. In particular, the framework consists of three thermodynamic
variables, namely the thermodynamic entropy, internal energy and temperature. Mathematically, the
thermodynamic takes the same form as the network von Neumann entropy, when we associate the
microscopic configurations of a network with the eigenstates of the normalized Laplacian spectrum.
By defining an appropriate internal energy, the temperature is determined by measuring fluctuations
in entropy and internal energy. We show that computationally, the framework is effective since each
of these thermodynamic variables can be calculated using a few important graph statistics including
number of nodes and edges and node degree statistics.

2.1. Initial Considerations

Let G(V,E) be an undirected graph with node set V and edge set E C V x V. The adjacency
matrix A of graph G(V, E) is defined as

1 if(u,v)€E
Ay = 1
"o { 0 otherwise. M)

The degree of node u is d;, = ¥y Apu- The normalized Laplacian matrix is L = D~/2(D — A)D~1/2
where D is the degree diagonal matrix whose elements are given by Dy, = d,, and zeros elsewhere.
The elementwise expression of L is

1 ifu=vandd, #0
Luw = —\/ﬁ ifu#vand (u,v) € E (2)
0 otherwise.

The normalized Laplacian matrix L and its spectrum yield a number of very useful graph invariants
for a finite graph. For example, the eigenvalues for the graph normalized Laplacian are real numbers,
bounded between 0 and 2 [23].

According to [24], the normalized Laplacian matrix L can be interpreted as the density matrix of
an undirected graph. With this choice of density matrix, the von Neumann entropy of the undirected
graph is defined as the Shannon entropy associated with the normalized Laplacian eigenvalues, i.e.,

\V| /\ .

where A;,i =1,...,|V|, are the eigenvalues of L.

In this paper, we aim at developing a thermodynamic characterization of network structure.
We commence by assuming that at any instant in time a network G(V, E), is statistically distributed
across an ensemble of |V | microstates. The probability that the system occupies a microstate indexed

s is given by ps = As/ ZL‘Ql As, where Ag,s = 1,2,..., |V| are the eigenvalues of the normalized
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Laplacian matrix of graph G. Noting that the trace of a matrix is the sum of its eigenvalues, we have
Z‘;jl As = Tr[L] = |V|, so the microstate occupation probability is simply ps = As/|V|.

We define the thermodynamic entropy of a network using the Shannon formula that is exclusively
dependent on the probabilities of the microstates:

4 VA A
Hs = —k Inps=—-k) —In—,
Lsinpe =k L yyiny,

@)
where k is the Boltzmann constant and is set to be 1 to simplify matters.

It is clear that the thermodynamic entropy Eq. (4) and the von Neumann entropy Eq. (3) take the
same form. Both depend on the graph size and the eigenvalues of the normalized Laplacian matrix.
It is reasonable to suggest that the von Neumann entropy can be interpreted as the thermodynamic
entropy of a complex network.

2.2. Approximate Von Neumann Entropy for Undirected Graphs

In prior work [25], we have shown how the von Neumann entropy of an undirected graph Eq. (3)
can be simplified by making use of the quadratic approximation (i.e.,, —xInx ~ x(1 — x)),

o) ©)

For undirected graphs this quadratic approximation allows the von Neumann entropy to be expressed
in terms of the trace of the normalized Laplacian and the trace of the squared normalized Laplacian,
with the result that

(6)

The two traces appearing in the above expression are given in terms of node degree statistics [25],

leading to
1 1 1

1— — —— —. 7
VIV (B s v

Hyn =
This formula contains two measures of graph structure, the first is the number of nodes of graph,
while the second is based on degree statistics for pairs of nodes connected by edges. Moreover, the
expression for the approximate entropy has computational complexity that is quadratic in graph size,
which is simpler than the original von Neumann entropy that is cubic since it requires enumeration of
the normalized Laplacian spectrum.

In order to obtain a better understanding of the entropic measure of graphs, it is interesting to
explore how the von Neumann entropy is bounded for graphs of a particular size, and in particular
which topologies give the maximum and minimum entropies. From Eq. (7) it is clear that when the
term under the summation is minimal, the von Neumann entropy reaches its maximal value. This
occurs when each pair of graph nodes is connected by an edge, and this means that the graph is
complete. On the other hand, when the summation takes on its maximal value, the von Neumann
entropy is minimum. This occurs when the structure is a string.

The maximum and minimum entropies corresponding to these cases are as follows. For a complete
graph Kj,, in which each node has degree n — 1, it is straightforward to show that

1 1 nn-1) 2n—1

Hyn(Ky) =1——— — .= g =7
vn(Ka) n n? 2(n—1)2 2n(n—1)
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In the case of a string P, (n > 3), in which two terminal nodes have degree 1 while the remainder have

degree 2, we have
1 1 n+1 5n+1
Hyn(Pr) =1= 0 = 5= = 1=~

As a result, the graph von Neumann entropy is bounded as follows:

2(V|—1

_5|V|+1 o 2vi-1
2ivI([V]—=1)

1 -4 ' -
4lv|?

< Hyn(G) =1
where the lower boundary is obtained for strings, which are the simplest regular graph, and the upper
bound is reached for complete graphs.

2.3. Internal Energy and Temperature

The internal energy of a network is defined as the mean value of the total energy, i.e., the sum of
all microstate energies, each weighted by its occupation probability:

Vi
u - psuS, (8)

s=1

where U is the energy of microstate s. Here we take the internal energy to be the total number of edges
in the graph i.e., U = |E|. From the properties of the Laplacian and normalized Laplacian matrices, we
have |E| = Tr[L] = Tr[D'/2LD'/2] = Tr[DL). This can be achieved if we set the microstate energies to
be Us = |V|ds, i.e., proportional to the node degrees.

Suppose that the graphs G = (V, E) and G’ = (V/, E’) represent the structure of a time-varying
complex network at two consecutive epochs t and #' respectively. The reciprocal of the thermodynamic
temperature T is the rate of change of entropy with internal energy, subject to the condition that
the volume and number of particles are held constant, i.e., 1/T = dHyy/dU. This definition can be
applied to evolving complex networks which do not change size during their evolution.

2.3.1. Undirected Edges

We approximate the change of the von Neumann entropy Hyn between undirected graphs G and
G as
dMAU + dUAll + AHA'U
du (du + Au)dv(dv + AU) ’

dHyn = Hyn(G') — Hyn(G) =
(u,0)€E,E'
where A, is the change of degree of node u: A, = dj, — dy; A, is similarly defined. The change in
internal energy, is equal to the change in the total number of edges: dU = U(G’) — U(G) = |E'| — |E| =
A|E|. Hence the reciprocal temperature T is:

1 dllA'U + d‘UAH + AHA’U

- = . 9
T(G,G) (g DEM (o Ao (do + B) ©)

When the changes in node degree are small compared to the node degree, i.e., |A,| << d,, then

1 Ay + dyAy,
—_— = —_ . (10)
T(G,G) (u,v)ZeE,E’ A|E|d?d?

The temperature measures fluctuations in the internal structure of the time evolving network, and
depends on two properties of the network. The first is the overall or global change of the number of
edges A|E|, while the second property is a local one which measures the change in degree for pairs of
nodes connected by edges, i.e., d,Ay + dyA,,. Both quantities measure fluctuations in network structure,
but at different levels of detail. The temperature is greatest when there are significant differences in
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the global number of edges, and smallest when there are large local variations in edge structure which
do not result in an overall change in the number of edges.

Turning our attention in more detail to the term d, A, + dyA,, appearing in the numerator of the
inverse temperature, it clearly measures the correlations between the degree of a node at one end of
an edge and the change in degree at the other. When the correlation is large, then the reciprocal of
the temperature is large, i.e., the temperature is low. On the other hand, low correlation corresponds
to high temperature. So at low temperature we can expect highly correlated changes in node degree,
while at high temperature these correlations are disrupted.

2.3.2. Directed Edges

We can extend this analysis to directed graphs. According to Ye et al. [26], the approximate von
Neumann entropy of a graph consisting entirely of directed edges, i.e., with no bidirectional edges is

1 1 in 1
VI VE L, &

Hp=1- (11)

where di,” is number of directed edges incident on node 1, i.e., the in-degree of node u, dot is the
number of edge exiting node u, i.e., the out-degree of node u and Ep the directed edge set of graph
G. The edge commences at node u and ends at node v. It should be noted that the out-degree of the
terminal node v does not participate in the expression for directed edge entropy. In terms of causality,
this means it is determined by the causal past but not the future of node v.

We can now repeat the incremental analysis for the directed version of the entropy. Considering
only terms of first order in the change in in-degree and out-degree, we find

d(l)tutdiJnAT o ZdilndénA.Zut o ditndZutAén
(a2

dHp = Hp(G') = Hp(G) = ),
(u,0)€Ep

(12)

where di is the in-degree at node u, d}* the out-degree, and A" and AJ* the changes in in- and

out-degree of node u. Again the change in entropy takes the form of a correlation between the change
in the in-degree or out-degree of a node, and the product of the remaining two partial degrees. When
the entropy change is substituted into the expression for reciprocal temperature, we again find that
high correlation corresponds to low temperature.

2.4. Section Summary

In this section we have detailed the development of the thermodynamic framework for network
evolution analysis. In particular, we have employed three thermodynamic quantities, namely
thermodynamic entropy, internal energy and temperature, to characterize the structure of time-varying
complex networks. By analyzing how these quantities change over time, we are able to track the time
evolution of complex networks. It is also important to point out that one of the main advantages of
the proposed framework is that these thermodynamic variables can be simply computed using graph
statistics including graph size and node degree changes.

Another point worth noting is that when applying our approach to study real-world dynamic
systems, it is critical to take into consideration how the corresponding dynamic network is built and
particularly, how the links connecting nodes in the network are established. For instance, according to
Gorban et al. [27], given financial time series, the connections between financial entities can be assessed
by correlations between either two individuals or two time moments. The two different measures,
described as “varieties” and “volatilities”, respectively, have been shown to have different statistical
properties, e.g., the latter does not require averaging in time when calculating correlation coefficients
(locality), and thus could lead to different interpretations of our approach. A similar behaviour can be
observed in the process of cell fate decision as well [28].
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3. Experiments and Evaluations

In this section we test the performance of the proposed thermodynamic framework by applying
it to analyze the time evolution of realistic complex networks. In particular, we aim to apply
the thermodynamic variables, i.e., the entropy, energy as well as temperature to a few real-world
time-varying networks in order to explore whether abrupt changes in structure or different stages in
network evolution can be efficiently characterized.

The data we will analyze in the experiments are summarized as follows.

NYSE Stock Market Network Dataset. Is extracted from a database consisting of the daily prices of
3799 stocks traded on the New York Stock Exchange (NYSE). This data has been well analyzed in [29],
which has provided an empirical investigation studying the role of communities in the structure of the
inferred NYSE stock market. The authors have also defined a community-based model to represent
the topological variations of the market during financial crises. Here we make use of a similar
representation of the financial database. Specifically, we employ the correlation-based network to
represent the structure of the stock market since many meaningful economic insights can be extracted
from the stock correlation matrices [30-32]. To construct the dynamic network, 347 stocks that have
historical data from January 1986 to February 2011 are selected [29,33]. Then, we use a time window of
28 days and move this window along time to obtain a sequence (from day 29 to day 6004) in which
each temporal window contains a time series of the daily return stock values over a 28-day period.
We represent trades between different stocks as a network. For each time window, we compute the
cross-correlation coefficients between the time series for each pair of stocks, and create connections
between them if the maximum absolute value of the correlation coefficient is among the highest 5% of
the total cross correlation coefficients. This yields a time-varying stock market network with a fixed
number of 347 nodes and varying edge structure for each of 5976 trading days.

Drosophila Melanogaster Gene Network Dataset. Is extracted from DNA microarrays that contain
the transcriptional profiles for nearly one-third of all predicted fruit fly (Drosophila melanogaster)
genes through the complete life cycle, from fertilization to adult. The data is sampled at 66 sequential
developmental time points. The fruit fly life cycle is divided into four stages, namely the embryonic
(samples 1-30), larval (samples 31-40) and pupal (samples 41-58) periods together with the first 30 days
of adulthood (samples 59-66). Early embryos are sampled hourly and adults are sampled at multiday
intervals according to the speed of the morphological changes. At each time point, by comparing each
experimental sample to a reference pooled mRNA sample, the relative abundance of each transcript
can be measured, which can further be used as a gene’s expression level [34]. To represent this gene
expression measurements data using a time-evolving network, the following steps are followed
[35]. At each developmental point the 588 genes that are known to play an important role in the
development of the Drosophila are selected. These genes are the nodes of the network. The edges
are established based on the distribution of the gene expression values, which can be modeled as a
binary pair-wise Markov Random Field (MRF) whose parameter indicates the strength of undirected
interactions between two genes. In other words, two genes are connected when their model parameter
exceeds a threshold. This dataset thus yields a time-evolving Drosophila gene-regulatory network
with a fixed number of 588 nodes, sampled at 66 developmental time points.

3.1. Thermodynamic Measures for Analyzing Network Evolution

To evaluate how well our thermodynamic characterization method can be used to analyze the
time evolution of complex systems, we thoroughly study the dynamic networks in both datasets. In
particular, given the network structure at each time step, we compute the thermodynamic entropy
together with internal energy according to Eq. (7), Eq. (8), respectively. Also we compute the
temperature between networks at consecutive time steps using Eq. (9). By investigating how these
network thermodynamic variables evolve with time, it is interesting to see whether some critical events
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Figure 1. 3D scatter plot of the dynamic stock correlation network in the thermodynamic space. Red
dots: 1987 - 1999 data; cyan dots: Dot-com bubble; blue dots: 2003 - 2006 background data; green dots:
Subprime crisis.

can be detected in the network evolution. These include financial crises or crashes in the stock market,
and the essential morphological transformations that occur in the development of the Drosophila.

3.1.1. Financial Networks

In Fig. 1 we show a 3-dimensional scatter plot with each dimension representing a thermodynamic
variable for the time-evolving stock correlation network. Essentially, such a plot represents a
thermodynamic space spanned by entropy, internal energy and temperature. The most striking
feature here is that the thermodynamic distribution of the time-evolving financial network shows a
strong manifold structure with different phases of network evolution occupying different volumes of
the thermodynamic space. More interestingly, the outliers, which indicate significant global events
such as financial crises and stock market crashes, appear as peaks and troughs in the individual time
series (see Fig. 2). Examples include Black Monday, 1997 Asian Financial Crisis and the 24 October
2008 stock market crash (Bloody Friday). Another interesting observation in Fig. 1 is that the Dot-com
bubble period (approximately from 1999 to 2002), which is represented by cyan dots, is separated from
the background data points and occupies a distinct region in the 3-dimensional thermodynamic space.
Theoretically, this is due to the fact that during the Dot-com bubble period, a significant number of
Internet-based companies were founded, leading to a rapid increase of both stock prices and market
confidence. This considerably changed both the inter-relationships between stocks and the resulting
structure of the entire market.

To explore how our approach (especially the approximate von Neumann entropy) is compared
with existing graph characteristics in terms of revealing the network structural evolution across
different phases, we pause here to investigate two well-known measurements for networks, namely
1) degree assortativity coefficient, originally developed by Newman [36], and 2) Estrada index [37].
Theoretically speaking, the main difference between the von Neumann entropy and the degree
assortativity lies in that, the former quantifies the network structural complexity, i.e., how far a given
network deviates from a regular one, whereas the latter estimates the preference of nodes with different
degrees being connected, although both their mathematical expressions contain the product of degree
of nodes that are linked in the network. On the other hand, the difference between the Estrada index
and the von Neumann entropy is that the Estrada index exploits the spectrum of the network adjacency
matrix instead of the Laplacian. The individual time series of the two measurements are reported in Fig.
3. Clearly, both plots show significant fluctuations over the entire time period. Although critical events
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Figure 2. Top to bottom: a) The von Neumann entropy versus time for the dynamic stock correlation
network. b) The temperature versus time for the dynamic stock correlation network. c) The internal
energy versus time for the dynamic stock correlation network.

such as Black Monday and 1997 Asian financial crisis appear to be peaks and troughs in the figure, they
cannot be easily distinguished from a large number of other fluctuations. Moreover, compared with
Fig. 2, the time periods in which the network structure remains relatively stable, cannot be identified as
both time series display continuous fluctuations. These interesting observations together suggest that,
by viewing critical event networks as the outliers that deviate far from the regular network, which
corresponds to the stable phase in the time evolution, our thermodynamic framework turns out to be a
more appropriate option for analyzing the structural changes of dynamic networks. This is because
the von Neuman entropy can measure the distance between a given network and a regular one, which
cannot be readily estimated by other existing network characteristics.

We now study three financial crises in detail, and explore how the thermodynamic variables can
be used to unravel how the stock market network structure changes with time. In Fig. 4 we show the
trace of the stock network on the entropy-energy plane during Black Monday (left panel), the Asian
Financial Crisis (Middle panel) and the Lehman Brothers bankruptcy (right panel) respectively. The
number beside each data point represents the day number in the time series. From the figure, before
Black Monday, the network structure remains relatively stable, neither the network entropy nor the
internal energy changes significantly. However, when Black Monday takes place (day 115 and 116 in
the time series), the network undergoes a considerable change in structure since the entropy increases
dramatically. Then, the network entropy slowly decreases after the stock market crash, which implies
that the stock correlation network gradually returns to its normal state (before crisis). A similar pattern
can be observed concerning the 1997 Asian Financial Crisis which is shown in the middle panel as well.
In short, the stock market undergoes a significant crash in which the network structure undergoes a
significant change, as signalled by a large drop in network entropy. The crash is followed by a slow
recovery. It is interesting to note that for the Lehman Brothers bankruptcy case, as the time series
evolves, both the network entropy and the internal energy continue to grow gradually, which yields
a very different pattern as compared to previous cases. So the difference in the network structure
behaviour during different financial crises implies that our thermodynamic representation can be used
to both characterize and distinguish between different critical events in the network evolution.

Next we particularly concentrate the temperature variable, which measures the structural
difference of networks at consecutive time steps. From the definition of temperature Eq. (10), clearly
the temperature depends on changes in node degree. Mathematically, for an undirected graph the
reciprocal of the temperature is determined by the quantity d,A, + dyA,. So in order to investigate
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Figure 3. Top to bottom: a) The Estrada index versus time for the dynamic stock correlation network.

b) The assortativity coefficient versus time for the dynamic stock correlation network.
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Figure 6. Scatter plots of variance of A, versus d,, for high and low temperature networks.

the correlation between node degree and node degree change, we show a scatter plot of A, versus d,
for nodes u and v connected by an edge in Fig. 5. We consider two pairs of consecutive networks,
respectively: the first contains networks in the proximity of the Black Monday epoch (left panel)
whereas the second consists of networks far away from it (right panel). The main difference between
the two subplots lies in that for the case of the Black Monday networks, there is no correlation between
dy and A,, while in the case of the second pair there is a regression line of approximately zero slope. The
temperature between networks in the former pair is particularly high, whereas the latter corresponds
to a very low temperature. Another feature to note from the two plots is that for a given degree the
variance of the degree changes is greatest at high temperature. To illustrate this point, Fig. 6 shows the
variance of the degree change as a function of degree. In the case of the Black Monday networks the
variance is much larger than in the case of the second network pair, far away from it.
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Figure 7. 3D scatter plot of the Drosophila melanogaster gene regulatory network in the thermodynamic
space. Red dots: embryonic period; cyan dots: larval period; blue dots: pupal period: green dots:
adulthood; black dot: adult ready to emerge.

3.1.2. Gene Regulatory Network

We now apply the thermodynamic framework to the fruit fly network, i.e., the Drosophila gene
regulatory network in the second dataset. Similar to the experiments performed on the financial data,
we again show the 3-dimensional scatter plot of the thermodynamic variables of the time-varying
network in the thermodynamic space (Fig. 7), together with the entropy, energy and temperature times
series (Fig. 8). The four developmental stages are shown in different colours. Some key observations
can be made. First, the different stages of evolution are easily distinguished by the thermodynamic
variables. For instance from Fig. 8, due to the early development of an embryo, the red curve
(embryonic period) shows some fluctuations. This is attributable to strong and rapidly changing gene
interactions, because of the need for rapid development. Secondly, in Fig. 7, the pupal stage data
points are relatively sparsely distributed in the thermodynamic space. This is attributable to the fact
that during this period, the pupa undergoes a number of significant pupal-adult transformations.
Moreover, as the organism evolves into an adult, the gene interactions which control its growth begin
to slow down. Hence the green points (adulthood) remain stable. Finally, the black data points are
well separated from the remainder of the developmental samples, and correspond to the time when
the adult emerges.

To summarize, in this section we have implemented computational experiments on two realistic
time-evolving complex systems extracted from financial and biological domains, respectively. For the
stock market data, we have particularly analyzed a few well-known stock market crashes and have
demonstrated that the thermodynamic entropy, internal energy together with temperature provide a
powerful tool for detecting abrupt events and characterizing different stages in the network evolution.
The same conclusion can also be drawn based on the results of the fruit fly life cycle network analysis.

4. Conclusions

It is of fundamental importance to have methods to hand to characterize and understand the
time volution of time-varying complex systems. To tackle this particular problem, in this paper we
have developed a few global variables for networks, namely the thermodynamic entropy, internal
energy and temperature, and have united them as a whole to analyze the structural properties of
time-evolving networks. In other words, we have adopted a thermodynamic framework to visualise
and understand the network evolution. Specifically, based on statistical thermodynamics, this method
starts with a recently derived expression for the von Neumann entropy of a network. The method then
connects the microscopic configurations of a network with the normalized Laplacian eigenstates. In
this way we have shown that the von Neumann entropy can be interpreted as the thermodynamic
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Figure 8. Top to bottom: a)The von Neumann entropy versus time for the Drosophila melanogaster
gene regulatory network. b) The temperature versus time for the Drosophila melanogaster gene
regulatory network. c) The internal energy versus time for the Drosophila melanogaster gene regulatory
network.

entropy of a network. The method further defines the network internal energy, which is determined
by the number of edges in the network. Finally, the thermodynamic temperature is a measure that
gauges the structural fluctuations between networks at consecutive time points, via changes in the
number of edges and individual node degree changes.

To demonstrate that the proposed framework serves as a powerful tool for detecting critical
events and distinct periods in the time evolution of real-world complex systems, we have evaluated the
method experimentally using data taken from the financial and biological domains. The experimental
results have confirmed that the thermodynamic variables together provide an efficient framework for
analyzing the evolutionary properties of dynamic networks.

In the future, in order to improve the thermodynamic characterizations so that they can become
more effective in identifying critical events and significant time stages in the evolution of time-varying
networks, we could turn our attention to the quantum physics. In particular, we would be interested in
exploring whether partition functions from different quantum statistics, such as Bose-Einstein partition
function and Fermi-Dirac partition function, can be used for the purpose of providing a more efficient
way to probe dynamic network structure.

5. Patents
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