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Abstract

When	making	predictions	about	ecosystems,	we	often	have	available	a	number	of	differ-
ent	ecosystem	models	that	attempt	to	represent	their	dynamics	in	a	detailed	mechanistic	
way.	Each	of	these	can	be	used	as	a	simulator	of	large-	scale	experiments	and	make	pro-

jections	about	the	fate	of	ecosystems	under	different	scenarios	to	support	the	develop-

ment	of	appropriate	management	strategies.	However,	structural	differences,	systematic	
discrepancies	and	uncertainties	lead	to	different	models	giving	different	predictions.	This	
is	further	complicated	by	the	fact	that	the	models	may	not	be	run	with	the	same	func-
tional	groups,	spatial	structure	or	time	scale.	Rather	than	simply	trying	to	select	a	“best”	
model,	or	taking	some	weighted	average,	it	is	important	to	exploit	the	strengths	of	each	
of	the	models,	while	learning	from	the	differences	between	them.	To	achieve	this,	we	
construct	a	flexible	statistical	model	of	the	relationships	between	a	collection	of	mecha-
nistic	models	and	their	biases,	allowing	for	structural	and	parameter	uncertainty	and	for	
different	ways	of	representing	reality.	Using	this	statistical	meta-	model,	we	can	combine	
prior	beliefs,	model	estimates	and	direct	observations	using	Bayesian	methods	and	make	
coherent	predictions	of	future	outcomes	under	different	scenarios	with	robust	measures	
of	uncertainty.	In	this	study,	we	take	a	diverse	ensemble	of	existing	North	Sea	ecosystem	
models	and	demonstrate	the	utility	of	our	framework	by	applying	it	to	answer	the	ques-
tion	what	would	have	happened	to	demersal	fish	if	fishing	was	to	stop.

K E Y W O R D S

Bayesian	statistics,	complex	models,	multimodel	ensemble,	multispecies	models,	simulation	
models,	uncertainty	analysis

1 | INTRODUC TION
Ecosystem	models	are	widely	used	to	support	policy	decisions,	 in-

cluding	 fisheries	 and	 marine	 environmental	 policies	 (Hyder	 et	al.,	
2015).	Any	such	model	is	imperfect,	and	in	order	to	use	it	to	inform	
policymaking,	it	is	important	to	quantify	the	uncertainty	of	its	pre-

dictions	 in	a	robust	manner	 (Harwood	&	Stokes,	2003;	Williams	&	
Hooten,	2016).	Often	several	models	are	available,	each	embodying	
some	knowledge	of	a	given	ecosystem,	but	differing	in	their	predic-
tions.	Choosing	 to	use	one	model’s	prediction	while	excluding	 the	

others	is	limiting	the	amount	of	information	available	and	therefore	
increasing	uncertainty.	Our	aim	here	is	to	describe	and	demonstrate	
a	 framework	 for	 combining	 information	 from	 multiple	 ecosystem	
models	in	a	coherent	way	that,	following	Chandler	(2013),	exploits	
their	strengths	and	discounts	their	weaknesses.

Many	methods	 of	 combining	 outputs	 from	 different	models	 have	
been	previously	proposed.	One	 is	 to	use	a	 “democracy”	of	 simulators	
(Knutti,	2010;	Payne	et	al.,	2015),	where	each	model	gets	one	vote,	re-
gardless	of	how	well	it	represents	the	true	system,	and	a	distribution	of	
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possible	outputs	comes	from	this.	Likewise,	one	could	take	an	average	
of	the	model	outputs,	which	often	outperforms	all	the	individual	models	
(Rougier,	2016).	However,	some	models	are	better	at	predicting	some	
outputs	than	others.	An	alternative	approach	is	to	try	and	find	the	“best”	
model(s)	(Johnson	&	Omland,	2004;	Payne	et	al.,	2015).	These	methods	
imply	that	at	least	one	of	the	models	is	“correct,”	in	the	sense	that	it	can	
predict	the	true	output.	Not	only	is	this	a	bold	assumption,	but	the	addi-
tion	of	another	model	may	allow	an	area	of	the	output	space	to	become	
probable	when	 before	 it	was	 not.	Thus,	 by	 increasing	 the	 number	 of	
models,	there	is	no	guarantee	that	the	uncertainty	will	reduce.	One	way	
of	deciding	which	model	is	the	“best”	is	to	weight	models	using	Bayes	
factors,	also	known	as	Bayesian	model	averaging	(Banner	&	Higgs,	2017;	
Ianelli,	Holsman,	Punt,	&	Aydin,	2016).	As	Chandler	(2013)	explains,	there	
is	generally	no	model	better	in	all	respects	than	the	others	and	so	there	is	
no	natural	way	of	assigning	a	single	weight	to	each	model.	Furthermore,	
if	model	outputs	are	not	presented	with	uncertainty	 then,	 in	 the	case	
where	the	truth	is	a	continuous	quantity,	a	simulator	will	almost	never	
be	“correct,”	and	thus,	the	probability	of	getting	the	true	value	from	the	
ensemble	is	zero.	In	recent	past,	“ensemble	models”	have	been	used	to	
describe	how	model	outputs	related	to	reality	(Anderson	et	al.,	2017).

Applying	the	above	methods	to	ecosystem	models	is	not	straight-
forward,	as	different	models	have	often	been	fitted	to	different	data	
(Ianelli	et	al.,	2016),	and	often	their	outputs	are	on	different	scales	
or	represent	different	dynamical	processes,	which	are	sometimes	in-

tegrated	out.	A	further	difficulty	 in	applying	these	methods	 is	that	
the	 ecosystem	models	 can	 have	 different	 outputs	 that	 are	 not	 di-
rectly	comparable.	For	example,	whole	ecosystem	models	often	re-

duce	complexity	through	the	use	of	functional	groups	(Heath,	2012),	
whereas	partial	ecosystem	or	multispecies	models	may	focus	on	a	re-

duced	number	of	species	(Blanchard	et	al.,	2014).	However,	different	
ecosystem	models	are	often	developed	with	similar	underlying	the-

ory	(e.g.	food	web	interactions),	could	have	similar	dynamics	and	may	
even	be	developed	in	the	same	research	groups	(Heath,	2012;	Speirs,	
Guirey,	Gurney,	&	Heath,	2010).	They	may	also	have	similar	forcing	
inputs,	 for	 example	 those	 coming	 from	 global	 regional	 physical	 or	
biogeochemical	models	such	as	those	used	in	model	intercomparison	
studies	(Tittensor	et	al.,	2017).	When	combining	model	outputs,	it	is	
important	to	take	these	similarities	into	account	rather	than	treating	
the	models	as	independent	(Rougier,	Goldstein,	&	House,	2013).

Another	approach	is	to	think	of	the	ecosystem	models	as	coming	
from	a	population	of	such	models	(Chandler,	2013;	Leith	&	Chandler,	
2010;	Tebaldi	&	Sansó,	2009)	and	then	describe	how	the	population	
differs	from	reality.	It	makes	sense	that	several	models	in	an	ensemble	
model	would	inform	one	another.	For	example,	one	model	(m1)	may	
contain	several	demersal	fish	species	and	the	other	(m2)	a	functional	
group	called	“demersal	fish.”	Although	m2	does	not	explicitly	contain	
the	species	Atlantic	cod	(Gadus morhua,	Gadidae)	its	relationship	with	
m1	may	be	 able	 to	 tell	 us	 something	 about	Atlantic	 cod	 indirectly.	
In	other	words,	modelling	the	models	allows	us	to	sample	the	unob-

served	outputs,	conditional	on	the	models’	observed	outputs.
In	 this	 study,	we	 describe	 an	 ensemble	model	which	 is	 based	

on	 the	 principles	 of	 Chandler	 (2013)	 but	 which	 models	 the	 out-
puts	themselves,	varying	in	form	between	the	different	ecosystem	

models,	 rather	 than	 statistical	descriptors	of	 the	outputs.	Our	ap-

proach	involves	statistical	modelling	of	the	relationship	between	an	
“ensemble”	of	ecosystem	models.	To	avoid	ambiguity,	we	will	refer	
to	the	latter	henceforth	as	“simulators”	and	we	refer	to	the	way	in	
which	a	simulator	output	differs	from	reality	as	its	discrepancy.	As	
we	 are	 interested	 in	measuring	 uncertainty,	 our	 statistical	model-
ling	will	apply	Bayesian	inference	methods	(Robert,	2007),	and	our	
analysis	will	consider	any	relevant	prior	knowledge	as	well	as	simu-

lator	outputs	 that	predict	what	would	happen	 in	 the	 future	under	
different	 management	 scenarios.	 The	 Bayesian	 approach	 is	 sub-

jective;	 for	 an	 introduction	 to	 subjective	uncertainty	 and	decision	
theory	(Berger,	1985).	Strictly	speaking,	any	fully	Bayesian	analysis	
involves	obtaining	the	posterior	beliefs	of	a	particular	individual,	by	
combining	their	prior	beliefs	with	information	from	data	and	model-
ling.	Depending	on	the	context,	that	individual	may	be,	for	example,	
either	a	scientist	or	a	policymaker.	Our	framework	includes	the	elic-
itation	of	prior	beliefs	to	combine	with	information	from	the	model	
ensemble,	 allowing	 different	 individuals’	 posterior	 distributions	 to	
be	obtained.	For	the	purpose	of	our	case	study,	the	individual	chosen	
is	one	of	the	authors.

In	Section	2,	we	set	up	the	general	framework,	and	in	Section	3,	we	
demonstrate	the	model	by	looking	at	a	specific	case	study:	What	would	
have	happened	in	the	North	Sea	if	we	had	stopped	fishing	in	2014?	We	
conclude	by	discussing	wider	applications	of	the	approach	in	Section	4.

2  | GENER AL FR AME WORK

We	think	of	the	available	simulators	as	coming	from	some	concep-

tual	population.	Our	a	priori	beliefs	about	each	one	are	 the	same;	
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we	are	 treating	 the	 simulators	 as	unlabelled	 “black	boxes.”	More	
formally,	 we	 regard	 the	 simulators	 as	 “exchangeable”	 (Gelman	
et	al.,	 2013).	We	 consider	 relaxing	 this	 assumption	 in	 Section	 4.	
This	 idea	 is	 formalized	 using	 a	 hierarchical	model	 (for	more	 infor-
mation	 (Gelman	et	al.,	 2013)	 to	 represent	 the	 ensemble	of	 simula-
tors.	However,	there	 is	no	reason	to	believe	that	the	population	of	
simulators	will	either	contain,	or	be	centred	on,	the	truth	(Chandler,	
2013),	so	we	need	to	allow	some	difference	between	the	population	
of	simulators	and	the	truth.

To	 describe	 the	 relationship	 between	 the	 simulators	 and	 the	
truth,	we	developed	an	ensemble	model	that	describes	the	popula-
tion	of	simulators,	its	dynamics	and	its	relation	with	the	true	quantity	
of	interest.	We	are	interested	in	n	true	quantities,	y(t)= (y

(t)

1
,… ,y

(t)
n )

�,	
for	example	the	biomass	of	n	species	at	a	time	t,	for	times	t=1,… ,T

. We regard m	 simulators,	 each	 giving	 an	 output	 representing	 the	
quantities	of	interest,	x(t)

i
= (x

(t)

i1
,… ,x

(t)
in
)� for i=1,… ,m,	as	coming	from	

a	population	with	expected	output	�(t)
= (�

(t)

1
,… ,�

(t)
n )

�,	 the	simulator	
consensus.	To	define	our	ensemble	model,	we	describe	separately	
the	difference	between	y(t) and �(t),	the	shared	discrepancy,	and	the	
difference	between	x(t)

i
 and �(t),	simulator	 i ’s	individual	discrepancy.	

Figure	1	 illustrates	an	example	of	the	ensemble	model	at	time	 t.	 It	
can	be	read	as	a	geometrical	representation	of	how	the	simulators	
and	 reality	 relate	 to	one	another	 (see	also	Chandler,	2013).	 In	 the	
subsequent	subsections,	we	describe	the	specific	details	of	the	gen-

eral	ensemble	model.	A	summary	of	the	variables	and	the	model	can	
be	found	in	Table	1.

2.1 | Uncertainty in simulator outputs

The	outputs	from	simulator	 i ,	an	ni	dimensional	vector	u
(t)
i
,	may	not	

always	represent	the	elements	of	x(t)
i
,	 its	“best	guess,”	directly.	For	

example,	the	elements	of	x(t)
i
	may	represent	biomasses	of	individual	

fish	species	and	the	elements	of	u(t)
i
	may	represent	 the	biomass	of	

functional	groups,	for	example	biomass	of	demersal	fish.
We	say	that	

for	 some	 simulator-	specific	 function	 fi( ⋅ ).	 For	 example,	 if	 the	 ele-

ments	of	u(t)
i
	are	elements	of	x(t)

i
	or	are	sums	of	those	elements,	per-

haps	with	some	rescaling,	then	the	relationship	is	linear	

where Mi	is	an	ni×n	matrix.	For	other	examples,	see	Table	2.
In	general,	the	simulators	are	run	with	uncertain	inputs	and	pa-

rameter	values.	This	leads	to	uncertainty	in	the	outputs	and	is	com-

monly	known	as	parameter	uncertainty.	We	say	that	

for t∈Si,	where	�ui	has	expectation	0	and	is	sampled	from	a	simulator-	
specific	 distribution	 and	 û(t)

i
	 is	 the	 expectation	 of	 the	 i th	 simula-

tor’s	 output	 at	 time	 t.	 The	 simulator-	specific	 distribution	 is	 found	
from	fitting	the	simulator	to	a	finite	data	set	(Spence,	Blackwell,	&	
Blanchard,	 2016;	 Thorpe,	 Le	Quesne,	 Luxford,	 Collie,	 &	 Jennings,	
2015)	or	by	performing	sensitivity	analysis	of	 the	simulator	 inputs	
(Morris,	Speirs,	Cameron,	&	Heath,	2014).

u
(t)
i = fi(x

(t)
i ),

u
(t)
i =Mix

(t)
i ,

u
(t)
i = û

(t)

i
+�ui

,

F IGURE  1 A	schematic	that	shows	an	
example	of	the	ensemble	model	at	time	t.  
In	this	example,	we	have	four	simulators	
that	are	all	able	to	predict	the	elements	of	
y(t).	Each	simulator’s	“best	guess,”	x(t)i ,	 
is	observed	with	parameter	uncertainty	
where û

(t)

i
	is	the	expected	output	of	the	i th	

simulator	(see	Section	2.1).	The	difference	
between	the	i th	simulator’s	“best	guess,”	
x
(t)
i ,	and	the	simulator	consensus,	�(t),	 
is	known	as	simulator	i ’s	individual	
discrepancy	and	is	split	between	its	long-	
term,	�i,	and	short-	term,	z

(t)
i ,	individual	

discrepancy	(see	Section	2.2).	The	
difference	between	the	truth,	y(t)	and	the	
simulator	consensus,	�(t),	is	known	as	the	
shared	discrepancy	and	is	divided	into	
long-	term,	δ,	and	short-	term,	�(t),	shared	
discrepancy	(see	Section	2.3).	In	addition,	
we	do	not	directly	observe	the	truth	but	
we	do	observe	a	noisy	version	of	it,	ŵ(t)

 

(see	Section	2.4)
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2.2 | Individual discrepancy

At	time	t,	the	difference	between	simulator	 i ’s	“best	guess,”	x(t)i ,	and	
the	simulator	consensus,	�(t),	is	simulator	 i ’s	individual	discrepancy,	

	This	divides	the	individual	discrepancy	between	the	long-	term	in-

dividual	discrepancy,	�i,	and	the	short-	term	individual	discrepancy,	

z
(t)
i . �i	is	an	n	dimensional	random	variable	with	expectation	0 and 

covariance C.	It	seems	natural	to	allow	z(t)i  and z
(t+1)
i 	to	be	depend-

ent	on	each	other;	 for	example,	 if	 at	 time	 t ,	z(t)i 	was	 less	 than	0,	 
then	 we	might	 also	 expect	 z(t+1)i 	 to	 be	 less	 than	0.	With	 this	 in	
mind,	we	say	that	z(t)i 	 follows	a	stationary	auto-	regressive	model	
of	order	1,	

x
(t)
i
−�

(t)
=�i+z

(t)
i

(1)z
(t)
i =Riz

(t−1)
i

+�z,t,i,

Variable Dimension Times Description Relationship

y(t) n t	=	1	…	T The	truth y(t)=y(t−1)+�Λ,t

w(t) ny t	=	1	…	T Possibly	incomplete	
version	of	the	truth

w(t)
= fy(y

(t))

ŵ
(t)

i
ny t∈S0 Noisy	observation	of	w(t)

ŵ
(t)
∼p(ŵ

(t)
|w(t))

δ n NA Long-	term	shared	
discrepancy

�
(t) n t	=	1	…	T Short-	term	shared	

discrepancy
�
(t)
=R

�
�
(t−1)+�

�,t

�(t) n t	=	1	…	T Simulator	consensus �(t)
=y(t)+�+�(t)

�i n NA Simulator	 i ’s	long-	term	
individual	discrepancy

z
(t)
i

n t	=	1	…	T Simulator	 i ’s	short-	term	
individual	discrepancy

z
(t)
i =Riz

(t−1)
i +�z,t,i

x
(t)
i

n t	=	1	…	T Simulator	 i ’s	best	guess x
(t)
i =�(t)

+�i+z
(t)
i

u
(t)
i

ni t	=	1	…	T Simulator	 i ’s	incomplete	
version	of	x(t)i

u
(t)
i = fi(x

(t)
i )

û
(t)

i
ni t∈Si The	expectation	of	

simulator	 i ’s	output	u(t)i
u
(t)
i = û

(t)

i
+�ui

TABLE  1 A	summary	of	the	variables	in	
the	ensemble	model.	The	ensemble	model	
is	run	for	t = 1 … T

TABLE  2 A	summary	of	the	simulators,	their	outputs	used	in	the	case	study,	the	simulator-	specific	function,	u(t)i = fix
(t)
i =Mi10

x
(t)
i  and a 

reference	to	where	the	parameter	uncertainty,	Σi,	was	calculated

Simulator Description Outputs Mi

Reference for 
Σi

EcoPath	with	
EcoSim	(EwE)

Total	biomass	is	modelled	at	
the	species	level

1) Common demersal

2) Sole

3)	Monkfish etc.  

4)	Sum	of	Poor cod and Rays and Other 

demersal fish

for t	=	1991–2023

M1=

⎛
⎜
⎜
⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

⎞
⎟
⎟
⎟
⎠

Mackinson,	
Platts,	Garcia,	
and	Lynam	
(2018)

mizer Total	weight	is	modelled	in	
weight	classes	by	species

1) Common demersal

2) Sole

for t	=	1968–2100

M2=

(

1 0 0 0 0

0 1 0 0 0

)

Spence	et	al.	
(2016)

FishSUMs Abundance	in	length	classes	
is	modelled	by	species

1) Common demersal

 for t	=	1990–2098
M3= (1 0 0 0 0 ) This	study,	see	

Supporting	
information	
Appendix	B

StrathE2E Biomass	is	modelled	for	
different	functional	groups

1) Sum of Common demersal,	Sole,	Monkfish 

etc.,	Poor cod and Rays and Other demersal fish

 for t	=	1983–2050

M4= (1 1 1 1 1 ) This	study,	see	
Supporting	
information	
Appendix	B

LeMans Abundance	in	length	classes	
is	modelled	by	species

1) Common demersal

2) Sole

3)	Monkfish etc.

4)	Poor cod and Rays

 for t	=	2000–2099

M5=

⎛
⎜
⎜
⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞
⎟
⎟
⎟
⎠

Thorpe	et	al.	
(2015)
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 for t>1,	where	each	�z,t,i	is	an	independent	n-	dimensional	random	vari-
able	centred	on	0	with	covariance	Λi and Ri	is	an	n×n	matrix	with	the	
constraint	such	that	Ri	is	stable,	that	is	limk→∞ Rk

i
=0. Ri and Λi	describe	

the	 dynamics	 of	 simulator	 i 	 with	Ri∼gR( ⋅ ) and Λi∼g
Λ
( ⋅ )}	 for	 some	

distributions	gR and g
Λ
.	At	t=1,	z(1)

i
	is	sampled	from	the	stationary	dis-

tribution	 of	 the	 auto-	regressive	model	 described	 in	 Equation	2	 (See	
Supporting	information	Appendix	A	for	more	details).	This	formulation	
means	that	the	expectation	of	the	long-	run	behaviour	of	the	individual	
discrepancy	is	the	long-	term	individual	discrepancy,	that	is	

2.3 | Shared discrepancy

The	shared	discrepancy,	the	difference	between	the	simulator	con-

sensus,	�(t),	and	truth,	y(t),	 is	split	up	 into	the	 long-	term	shared	dis-
crepancy,	δ,	and	the	short-	term	shared	discrepancy,	�(t),	that	is	

	 The	 short-	term	 shared	 discrepancy	 is	 described	 by	 a	 stationary	
auto-	regressive	model	of	order	1	

 for t>1,	where	R
�
	is	stable	and	�

�,t	is	an	n	dimensional	random	variable	
centred	on	0	with	covariance	Δ.	At	t=1,	�(1)	is	sampled	from	the	station-

ary	distribution	of	the	auto-	regressive	model	described	in	Equation	3	
(See	 Supporting	 information	Appendix	 A	 for	more	 details).	 This	 for-
mulation	means	that	the	expectation	of	the	long-	run	behaviour	of	the	
shared	discrepancy	is	the	long-	term	shared	discrepancy,	that	is	

2.4 | The truth

In	 the	absence	of	any	simulators,	our	prior	beliefs	 for	 the	 truth	at	
time	t,	y(t),	follow	a	random	walk,	

 for t>1,	where	each	�
Λ,t	is	centred	on	0	with	covariance	Λy.	At	t=1,	

the	truth,	y(1),	follows	a	generic	prior	distribution	p(y(1)).
At	times	t∈S0,	there	are	ny	noisy	and	possibly	indirect	observa-

tions,	ŵ(t),	of	the	truth	which	come	from	some	distribution,	p(ŵ(t)
|y(t)) 

that	is	problem	specific	and	is	caused	by	data	uncertainty	(Li	&	Wu,	
2006).	The	elements	of	ŵ(t)	may	not	be	the	same	as	that	of	y(t),	 for	
example	if	observations	are	incomplete	or	aggregated.	We	assume	
that	the	sampling	distribution	of	observations	depends	on	the	truth	
through	some	function	fy( ⋅ ),	such	that	

and p(ŵ
(t)
|y(t))=p(ŵ

(t)
|w(t)).

For	example,	if	w(t)	is	some	linear	transformation	of	y(t),	then	

where My	is	an	ny×n	matrix.

3  | C A SE STUDY

We	 illustrate	our	model	by	 looking	at	a	problem	where	a	scientist	
needs	to	formally	summarize	uncertain	model	results,	for	example	to	
present	to	other	scientists	or	to	decision-	makers	about	what	would	
happen	to	the	biomass	of	demersal	species	in	the	North	Sea	if	fish-

ing	were	to	stop	completely	in	2014.	We	use	outputs	from	five	eco-

system	simulators:	Ecopath	with	Ecosim	(EwE;	Lynam	&	Mackinson,	
2015),	mizer	(Blanchard	et	al.,	2014),	FishSUMs	(Speirs	et	al.,	2010),	
StrathE2E	(Heath,	Speirs,	&	Steele,	2014)	and	LeMans	(Thorpe	et	al.,	
2015)	 (see	 Supporting	 information	 Appendix	 B	 for	 more	 details	
about	the	simulators),	as	well	as	data	from	the	International	Bottom	
Trawl	 Survey	 (IBTS)	 (ICES	 Database	 of	 Trawl	 Surveys	 (DATRAS),	
2015).	In	this	example,	one	of	the	authors,	JLB,	has	taken	this	role.	
Her	prior	 beliefs	 are	 elicited	 and	expressed	 as	 a	prior	 distribution	
and	the	posterior	distribution	captures	her	uncertainty	about	the	fu-

ture	of	the	ecosystem	in	this	scenario	give	the	relationships	among	
the	simulators	and	observations.

3.1 | Groups of species

The	five	simulators	represent	demersal	fish	in	different	ways,	with	
different	species	resolution	and	coverage.	Although	our	main	inter-
est	is	in	demersal	fish	collectively,	we	need	to	represent	the	state	of	
the	ecosystem	at	a	resolution	that	enables	us	to	link	these	simulator	
outputs	together.

In	representing	the	state	of	the	ecosystem,	 it	would	be	com-

putationally	inefficient	to	treat	each	species	separately,	given	that	
we	are	 interested	 in	demersal	 fish	 in	aggregate.	 Instead,	we	can	
reduce	the	dimension	of	the	problem	by	grouping	the	species	to-

gether.	This	grouping	needs	to	have	the	property	that	any	simula-
tor	output	that	we	can	use	can	be	expressed	as	the	sum	of	one	or	
more	of	our	groups.	The	groups	do	not	necessarily	need	to	have	
any	direct	biological	interpretation,	provided	the	groups	meet	the	
criterion	above,	and	allow	us	to	represent	the	quantities	of	inter-
est—here,	demersal	fish,	given	by	the	sum	of	all	groups—the	pre-

cise	choice	will	not	affect	the	answer	obtained.	For	computational	
efficiency,	we	choose	the	minimum	number	of	groups	that	meets	
this	criterion	while	covering	all	demersal	species.	For	example,	we	
grouped	together	monkfish,	long	rough	dab,	lemon	sole	and	witch	
because	they	all	occur	in	exactly	the	same	simulators,	as	individual	
species	in	EwE	and	LeMans	and	implicitly	in	StrathE2E,	but	are	not	
contained	 in	any	 larger	set	of	species	for	which	this	 is	 true.	This	
minimal	set	consists	of	five	groups,	which	we	will	model	explicitly.	
The	groups	are	as	follows:

limk→∞ E(�i+z
(t+k)
i |�i+z

(t)
i )=�i+ limk→∞ E(z

(t+k)
i |z

(t)
i )

=�i+E(z
(t)
i )

=�i.

y(t)−�(t)
=�+�(t).

(2)�
(t)
=R

�
�
(t−1)

+�
�,t,

limk→∞ E(�+�(t+k)|�+�(t))=�+ limk→∞ E(�(t+k)|�(t))

=�+E(�(t))

=�.

y(t)=y(t−1)+�Λ,t,

w(t)
= fy(y

(t))

w(t)
=Myy

(t)
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1. Common demersal:	 These	 are	 Atlantic	 cod	 (Gadus morhua,	
Gadidae),	haddock	(Melanogrammus aeglefinus,	Gadidae),	whiting	
(Merlangius merlangus,	 Gadidae),	 Norway	 pout	 (Trisopterus es-

markii,	 Gadidae),	 European	 plaice	 (Pleuronectes platessa,	
Pleuronectidae),	common	dab	(Limanda limanda,	Pleuronectidae)	
and	 grey	 gurnard	 (Eutrigla gurnardus,	 Triglidae).

2. Sole:	This	is	common	sole	(Solea solea,	Soleidae).
3. Monkfish etc.:	These	are	monkfish	(Lophius piscatorius,	Lophiidae),	
{long	 rough	 dab}	 (Hippoglossoides platessoides,	 Pleuronectidae),	
{lemon	 sole}	 (Microstomus kitt,	 Pleuronectidae)	 and	 {witch}	
(Glyptocephalus cynoglossus,	Pleuronectidae).

4. Poor Cod and Rays:	 These	 are	 poor	 cod	 (Trisopterus minutus,	
Gadidae),	starry	rays	(Amblyraja radiata,	Rajidae)	and	cuckoo	rays	
(Leucoraja naevus,	Rajidae).

5. Other demersal fish:	This	consists	of	all	other	demersal	fish.

We	consider	the	total	biomass	densities	for	each	of	these	groups,	
in	tonnes	per	square	kilometre,	modelled	on	the	log	scale	(to	base	10,	
for	ease	of	interpretation).

3.2 | Data and elements of the statistical model

The	 IBTS	data	were	extracted	 as	 in	Fung,	 Farnsworth,	Reid,	 and	
Rossberg	(2012),	to	reveal	the	total	catch	on	the	survey	for	each	
of	 the	 five	 groups	 for	 the	 first	 (1986–2013)	 and	 third	 quarter	
(1991–2013).	How	 this	 value	 relates	 to	 the	 true	biomass	 density	
in	 the	North	Sea	 is	 not	 trivial,	 and	 these	 values	 are	often	multi-
plied	by	catchability	coefficients	(Walker,	Maxwell,	Le	Quesne,	&	
Jennings,	2017),	which	are	themselves	uncertain	and	model-	based.	
In	this	example,	we	are	only	interested	in	the	biomass	density	rela-
tive	to	2010,	and	therefore,	the	total	catch	from	the	IBTS	survey	
is	 enough	 provided	we	 assume	 that	 catchability	 coefficients	 are	
constant	over	time.	Thus,	each	element	of	yt	represents	the	log	to	
base	10	of	the	total	biomass	(tonnes	per	kilometre	squared)	for	one	
of	our	 groups	of	 species,	 averaged	over	 year	 t ,	 relative	 to	2010.	
Therefore,	

	The	measurement	error	on	the	observations	of	the	truth	is	assumed	
to	be	normally	distributed	on	the	log10	scale	such	that	

 for t≠2010.	In	this	work,	we	take	Σy	to	be	2	log10(1.15)	on	the	diago-

nal	elements	and	0	on	the	off-	diagonal	elements.	This	was	chosen	so	
that	it	means	that	the	standard	deviation	of	the	true	biomass	would	
be	15%	of	the	actual	amount	caught.

3.3 | Simulators

We	have	outputs	from	five	different	simulators	all	of	which	have	been	
run	with	zero	fishing	pressure	from	2014	onwards.	A	short	summary	
of	 the	simulators,	 their	outputs	with	respect	to	this	case	study	and	
their	simulator-	specific	function,	fi( ⋅ ),	can	be	found	in	Table	2.	The	ith	

simulator’s	output	is	assumed	to	be	normally	distributed	on	the	log10 
scale,	

with	Σi	 fitted	based	on	 running	 simulator	 i 	many	 times	 (Chandler,	
2013;	Leith	&	Chandler,	2010).	However,	if	this	was	not	the	case,	Σi 

could	be	estimated	within	the	hierarchical	system.

3.4 | Ensemble model

Each	element	of	x(t)i 	is	the	“best	guess”	of	simulator	i 	of	the	elements	of	
y(t),	for	t=1968,… ,2100,	in	log	(base	10)	tonnes	per	km	squared	of	wet	
biomass.	In	this	example,	we	expect	each	of	the	simulators	to	converge	
to	its	own	steady	state,	given	that	all	external	drivers	are	constant.	This	
means	that	in	Equation	2	we	expect	Ri	to	tend	towards	1	and	Λi	to	tend	
towards	0.	Furthermore,	if	a	simulator	reaches	a	stationary	state	before	
it	has	stopped	running,	then	we	know	that	it	will	be	in	that	state	forever.	
Simulator	i ’s	individual	discrepancy,	�i+z

(t)
i
,	is	thus	modelled	as	

 and 

 where 

 and 

	This	is	saying	that,	after	the	end	of	fishing,	the	variance	of	the	truth	of	
model i 	reduces	and	the	amount	that	the	last	value	of	z(t)i 	relates	to	the	
next	moves	towards	1	by	a	factor	of	exp (ki)	each	year.	We	take	ki∈ [0,6],	 
as	there	is	not	much	difference	numerically	if	ki	goes	above	6,	with	

	The	diagonal	elements	of	Ri	fall	between	−1	and	1	with	

and	 the	 off-	diagonal	 elements	 are	 set	 to	 0.	 The	 simulator-	specific	
variance	parameter,	Λi,	is	decomposed	into	a	diagonal	matrix	of	vari-
ances,	Πi,	and	a	correlation	matrix,	Pi,	such	that	

	The	form	of	the	prior	distribution	for	the	 jth	diagonal	element	of	
Πi	was	

	Distributions	over	correlation	matrices	are	complicated	by	the	math-

ematical	requirement	of	positive	definiteness.	In	practice,	we	specify	
separate	priors	on	the	elements,	and	then	condition	on	positive	defi-
niteness;	the	unconditional	prior	for	the	j,kth	element	of	Pi	is	given	by	

w(t)
= fy(y

(t))=10y
(t)

.

log10

(

ŵ
(t)
∕ŵ

(2010)
)

∼N(y(t),Σy),

log10u
(t)
i ∼N( log10 û

(t)
i ,Σi)

�i∼N(0,C)

z
(t)
i ∼

{

N(Riz
(t−1)
i ,Λi) if t≤2013,

N(hz(Ri,ki,t)z
t−1
i

,h
Λ
(t,ki)Λi) if 2014≥ t.

hz(Ri,k,t)=Ri+ (1−Ri)(1−h
Λ
(t,ki))

h
Λ(t,ki)

=exp{−ki
(

t−2013
)

}.

ki∕6∼Beta(ak,bk).

Ri+1

2
∼Beta(aR,bR)

(3)Λi=ΠiPiΠi.

�ij∼Gamma(��,j,��,j).

�ijk+1

2
∼

{

Beta(a
�jk,b�jk) if j≠k,

1 otherwise.
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	The	difference	between	the	truth	at	time	t	and	the	corresponding	
simulator	consensus,	�(t),	is	then	

	with	

	When	the	fishing	is	turned	off,	we	are	particularly	uncertain	about	
what	will	happen;	thus	we	will	remove	any	direct	relation	between	yt 
and yt+1	beyond	that	time.	We	will	say	that	

 where k
�
∈ [0,6],	so	that	the	simulator	consensus	reaches	a	station-

ary	point,	as	the	individual	simulators	do.
We	focus	on	the	subjective	probabilities	of	a	particular	individ-

ual,	in	this	case	JLB.	Her	prior	beliefs	were	elicited	using	the	method	

described	in	O’Hagan	et	al.	(2006)	and	Alhussain	and	Oakley	(2017).	
Details	of	the	prior	elicitation	can	be	found	in	Supporting	informa-
tion	Appendix	C.	Due	to	the	dimensionality	and	correlation	of	 the	
uncertain	 parameter	 space,	 we	 fitted	 the	model	 using	 No	 U-	turn	
Hamiltonian	Monte	Carlo	(Hoffman	&	Gelman,	2014)	in	the	package	
Stan	(Gelman,	Lee,	&	Guo,	2015).

3.5 | Results

The	ensemble	model	predictions	 show	changes	 in	 the	uncertainty	
of	 relative	 biomass	over	 time	 for	 each	 group	of	 species,	 including	
projections	following	a	fishing	closure	in	2014	(Figure	2).	Each	plot	
shows	the	marginal	posterior	distributions	of	each	element	of	y(t),	for	
all t.	Unsurprisingly,	 the	 ensemble	model	 predicts	 common demer-

sal	fish	increase	following	the	fishery	closure,	as	this	group	contains	
many	species	targeted	by	fisheries.

(

y(t)
)

−

(

�(t)
−�(2010)

)

=�(t)+�

(4)�
(t)
∼N(R

�
�
(t−1),Δ

�
).

(5)�(t)
∼N(�(t−1),h

Λ
(t,k

�
)Δ

�
)

F IGURE  2 Estimates	of	the	log	biomass	of	each	group	of	species	relative	to	2010.	The	solid	line	is	the	median,	and	the	dotted	lines	are	
the	upper	and	lower	quartiles.	The	first	vertical	line	is	at	1986,	the	year	that	we	first	have	data,	and	the	second	line	is	in	2013,	the	simulated	
cessation	of	fishing
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According	to	the	ensemble	model	the	probability	that	there	will	
be	a	greater	total	biomass	of	common demersal	in	2050	than	in	2010	
is	0.90.	There	is	a	similar	number	for	sole	(0.93)	and	for	monkfish etc. 

(0.88)	but	 it	 is	 lower	 for	poor cod and rays	 (0.55)	and	 for	 the	other 

demersal	species	(0.17).
The	 ensemble	 model	 also	 “predicts”	 what	 happened	 before	

the	data;	 that	 is,	 it	 gives	posterior	distributions	 for	 the	actual	val-
ues	given	the	imperfect	data	and	the	simulator	runs.	Only	sole and 

common demersal	are	output	by	simulators	prior	to	1986	and	this	is	
reflected	 in	 the	 increased	uncertainty	as	we	move	 further	back	 in	
time	from	1986.

The	uncertainty	in	the	prediction	increases	the	further	away	from	
the	observations	of	 the	truth,	both	when	projecting	and	hindcast-
ing.	The	uncertainty	also	increases	when	there	are	fewer	simulators	
that	give	outputs.	All	of	the	simulators	give	outputs	for	the	common 

demersal	group,	four	explicitly	and	one	implicitly,	and	therefore	we	
are	more	certain	about	what	will	happen	to	it	in	the	future	than	for	
poor cod and rays,	where	only	three	simulators	predict	values	for	the	
future	and	only	one	explicitly.	The	uncertainty	is	highest	for	other de-

mersal	species.	This	is	understandable	as	only	two	simulators	predict	
values	for	this	group	of	species,	neither	of	which	does	so	explicitly.

The	 absolute	 total	 biomass	 of	 demersal	 species	 is	 difficult	 to	
calculate	here	without	information	on	the	discrepancy	between	the	
simulator	consensus	and	the	truth.	Although	survey	data	are	avail-
able,	their	relationship	with	the	truth	depends	on	the	varying,	and	
unknown,	catchability	coefficients	for	each	of	the	groups.	Although	
catchabilities	can	be	estimated,	for	simplicity	here	we	examine	the	

total	demersal	biomass	under	 the	assumption	 that	 the	groups	had	
the	 same	 catchability	 coefficients	 (Figure	3).	 Again	 there	 is	 high	
uncertainty	 about	 whether	 the	 biomass	 will	 grow	 relative	 to	 the	
biomass	 in	 2010.	However,	what	 it	was	 before	 1986	 is	 also	 quite	
uncertain.	This	 is	because	of	the	uncertainty	 in	the	populations	of	
Other demersal species.

The	median	“best	guess”	of	each	of	 the	simulators	can	also	be	
compared	across	the	different	simulators	(Figure	4).	StrathE2E	pre-

dicts	quite	a	large	increase	in	common demersal	despite	not	explicitly	
outputting	 it.	Mizer	does	not	do	a	very	good	 job	of	predicting	the	
dynamics	of	sole,	therefore	the	dynamics	of	the	simulator	consensus	
do	not	match	the	dynamics	of	mizer.

The	posterior	predictive	distribution	for	the	relative	truth	in	2025	
for common demersal and monkfish etc.	are	positively	correlated	with	
each	other	 (0.28),	albeit	weakly.	This	suggests	that	 learning	some-

thing	about	 the	common demersal	 group	would	 tell	 you	something	
about	monkfish etc.	Hence	the	mizer	simulator	gives	some	informa-
tion	 regarding	 the	monkfish etc.	 despite	 not	 actually	 predicting	 it.	
See	Supporting	 information	Appendix	D	for	 the	other	correlations	
between	the	groups.

4  | DISCUSSION

By	treating	the	simulator	outputs	as	coming	from	a	population	of	simu-

lators	and	modelling	this	population,	we	have	presented	in	this	study	
a	general	way	of	combining	ecosystem	simulators	to	inform	scientists	

F IGURE  3 The	total	biomass	of	
demersal	species	as	predicted	by	the	
models	relative	to	2010
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and	decision-	makers	about	the	consequences	of	management	strate-

gies.	Our	model	combines	many	different	simulators,	exploiting	their	
strengths	and	discounting	their	weaknesses	(Chandler,	2013)	to	provide	
synthetic	and	comprehensive	information	to	support	decision	making.

4.1 | General model features

One	of	the	difficulties	in	building	an	ensemble	model	with	ecosystem	
simulators	 is	 that	 the	 simulator	 outputs	 are	 often	 done	 on	 different	
scales	and	are	not	directly	comparable,	for	example	StrathE2E	models	
groups	of	species	(e.g.	pelagic,	demersal),	whereas	mizer	models	major	
species	individually.	Our	approach,	unlike	existing	methods	of	combin-

ing	simulators	 (e.g.	Bayesian	model	averaging	(Banner	&	Higgs,	2017;	
Ianelli	 et	al.,	 2016)),	 allows	us	 to	 combine	outputs	 from	 these	widely	
differing	simulators.	We	achieve	this	by	modelling	what	each	simulator	
would	predict	for	each	of	the	groups	of	species	we	are	 interested	in,	

whether	it	is	explicitly	modelled	or	not	by	the	simulator.	For	example,	in	
the	case	study,	StrathE2E	only	models	the	total	demersal	species.	Using	
information	from	the	other	simulators	regarding	the	breakdown	of	de-
mersal	species	and	how	the	dynamics	between	species	work,	the	en-

semble	model	can	say	what	StrathE2E	would	predict	on	a	species	level.	
In	the	case	study,	EwE	and	StrathE2E	both	implicitly	predict	groups	of	
species.	For	EwE,	it	is	the	sum	of	poor cod and rays and other demersal,	
and	for	StrathE2E,	it	is	the	sums	of	all	of	the	groups.	As	with	the	simula-
tors	that	do	not	predict	specific	groups,	we	are	able	to	infer	what	these	
simulators	predict	about	 implicit	groups	 through	correlations	 learned	
from	other	simulators.	In	this	sense,	the	mizer	model,	which	only	pre-
dicts	common demersal and sole,	gives	information	about	how	StrathE2E	
divides	its	demersal	species	and	therefore	gives	some	information	about	
other	groups.	Therefore,	if	we	were	interested	in	what	would	happen	to	
the	other	demersals	if	we	were	to	stop	fishing,	we	should	include	all	the	
simulators	despite	only	two	of	them	predicting	it.

F IGURE  4 The	median	best	guess	for	the	simulators	(xi)	for	mizer	(black),	FishSUMs	(purple),	LeMans	(green),	EwE	(red)	and	StrathE2E	
(pink)	and	the	median	simulator	consensus	(�)	and	its	quartiles	in	solid	grey	and	dotted	grey,	respectively
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Simulators	that	are	predictably	wrong	are	more	informative	than	
those	that	are	unpredictably	wrong,	even	if	the	latter	are	less	wrong	
in	 the	 absolute	 sense.	 In	 our	 framework,	 we	 distinguish	 between	
short-	term	 and	 long-	term	 individual	 discrepancies,	 which	 allows	
us	to	distinguish	between	predictably	wrong	simulators	with	small	
short-	term	 individual	 discrepancies,	 zi,	 and	 unpredictably	 wrong	
simulators.	Furthermore,	we	allow	the	short-	term	individual	discrep-

ancies	 to	be	different	 for	each	group,	 thus	allowing	a	simulator	 to	
contribute	to	the	ensemble	model	 for	groups	that	 it	 is	 informative	
about	and	be	ignored	for	groups	that	it	is	not.	In	the	case	study,	mizer	
does	not	predict	the	dynamics	of	sole	very	well	and	so	the	simula-
tor	consensus,	�,	only	weakly	follows	the	mizer	predictions.	On	the	
other	hand,	mizer	does	a	reasonable	job	of	predicting	the	dynamics	
of common demersal	and	therefore	it	contributes	more	to	the	simula-
tor	consensus	for	this	group.	Thus,	the	ensemble	model	exploits	miz-
er’s	strengths,	common demersal	and	discounts	its	weaknesses,	sole.

The	ensemble	model	enables	formal	quantification	of	uncertainty.	
This	uncertainty	reflects	a	specific	individual’s	updated	beliefs	having	
observed	 the	 simulators	 and	 the	 observation	 data	 (Robert,	 2007).	
The	individual	could	be	a	scientist	or	a	decision-	maker	and	could	be	
informed	by	multiple	experts	(Albert	et	al.,	2012).	Such	a	framework	
could	be	used	to	help	communicate	uncertainty	or	enable	decision-	
makers	to	directly	quantify	risks	and	therefore	evaluate	management	
trade-	offs	more	rigorously	(Finkle,	1990;	Harwood	&	Stokes,	2003).	
The	ensemble	model	takes	account	of	uncertainty	from	each	of	the	
simulators,	 through	 parameter	 uncertainty	 and	 structural	 uncer-
tainty,	data	uncertainty,	through	noisy	and	possibly	indirect	observa-
tions	of	the	truth,	and	uncertainty	in	the	ensemble	model	parameters.

As	 the	 simulators	 are	 describing	 the	 same	 system,	 we	 might	
expect	 the	 dynamics	 in	 the	 individual	 discrepancies	 to	 be	 similar.	
To	 reflect	 this,	we	 allow	 the	 short-	term	 individual	 discrepancies	 to	
come	from	some	underlying	distribution.	Furthermore,	in	ecosystems	
simulators,	the	dynamics	may	be	similar	in	direction	but	likely	not	in	
magnitude.	To	include	this	information	in	the	case	study,	we	split	the	
short-	term	individual	discrepancies,	Λi,	 into	correlations	and	magni-
tude	 (Equation	3),	 allowing	 different	 levels	 of	 confidence	 for	 each.	
We	used	beta	distributions	for	each	of	the	off-	diagonal	elements	of	
the	correlation	matrix	and	then	conditioned	on	positive	definiteness.	
This	enabled	us	to	learn	about	each	element	of	the	correlation	matrix	
separately	which	 is	not	possible	 in	other	 formulations	of	 the	cova-
riance	matrix	 (Alvarez,	Niemi,	&	Simpson,	2014).	By	acknowledging	
these	 features	 of	 simulators,	 we	 were	 able	 to	 better	 quantify	 the	
uncertainty.

It	was	also	important	to	use	informative	priors	as	none	of	the	
simulators	 explicitly	 model	 other demersal.	 As	 there	 is	 no	 lower	
bound	(on	the	log	scale)	for	the	values	of	the	“best	guess”	of	other 

demersal,	we	required	some	prior	information	about	the	distribu-

tion	of	the	standard	deviations,	Π.	This	does	suggest	that	the	en-

semble	prediction	is	somewhat	based	on	that	of	the	priors	for	Λi. In 

practice,	we	suggest	checking	that	your	ensemble	model	predicts	
in	 a	 way	 that	 the	 decision-	maker	 believes	 before	 observing	 the	
truth,	similar	to	the	hypothetical	data	method	of	Kadane,	Dickey,	
Winkler,	 Smith,	 and	 Peters	 (1980).	 In	 the	 case	 study	 described	

here,	 we	 checked	 that	 the	 dynamics	 of	 the	 biomasses	 prior	 to	
1986	followed	JLB’s	beliefs.

When	building	the	ensemble	model,	how	the	species	groups	are	
decided	depends	on	the	question	being	asked.	In	the	case	study,	we	
were	interested	in	what	would	happen	to	demersal	fish	if	we	were	to	
stop	fishing,	so	we	grouped	the	species	into	as	few	groups	as	possi-
ble.	However,	if	we	were	interested	in	another	question,	for	exam-

ple	if	we	had	been	interested	in	what	would	happen	to	commercial	
fish,	we	would	divide	the	species	 into	groups	with	commercial	and	
noncommercial	fish	conditioned	on	species	in	each	group	being	pre-

sented	in	exactly	the	same	simulators.	As	the	number	of	groups	in-

creases,	the	dimensions	of	the	covariance	matrices	increase,	so	we	
advise	that	the	number	ofgroups	be	kept	to	a	minimum	as	this	would	
aid	computation	time	and	require	less	simulators	and	prior	elicitation.

Using	 the	 ensemble	 model	 developed	 here,	 there	 is	 no	 need	
to	 identify	 the	 `̀ best	 model”	 driven	 by	 the	 question	 being	 asked	
(Dickey-	Collas,	 Payne,	 Trenkel,	 &	Nash,	 2014),	 but	 one	 should	 in-

clude	 all	 available	 simulators.	 Rather	 than	 developing	many	 simu-

lation	models	to	answer	different	specific	questions,	the	ensemble	
model	can	be	designed	to	answer	the	question	at	hand	thus	reducing	
computational	costs.	Furthermore,	as	the	ensemble	model	implicitly	
weights	the	simulators	by	their	strengths	and	weaknesses,	it	is	bet-
ter	for	a	simulator	to	be	good	at	modelling	one	aspect	of	the	ecosys-
tem	rather	than	being	average	at	modelling	many	things	(Anderson	
et	al.,	2017).	Due	to	tractability	it	is	not	possible	to	explicitly	show	
these	weightings	in	the	case	study	presented	here,	for	an	example	of	
weightings	in	a	more	tractable	example	see	(Chandler,	2013).

The	nature	of	the	different	ecosystem	simulators	capturing	dif-
ferent	 processes	 can	 limit	 the	 number	 of	models	 available	 to	 run	
certain	 scenarios	 (e.g.	 in	climate	scenarios	where	some	but	not	all	
the	simulators	contain	links	to	temperature).	If	we	were	interested	in	
one	of	the	scenarios	that	a	specific	simulator	was	unable	to	run,	we	
should	still	include	that	simulators	in	the	ensemble	model	as	it	gives	
information	about	how	species	interact	with	one	another	as	well	as	
the	state	of	the	ecosystem	up	until	the	current	time.	To	include	this	
simulator	in	the	ensemble,	we	could	learn	about	how	it	differs	from	
the	 simulators	 that	were	 able	 to	 run	 the	 specific	 scenario	 and	 in-

crease	a	simulator’s	parameter	uncertainty,	Σi,	as	a	function	of	time	
with	in	the	future	(Szuwalski	&	Thorson,	2017).

4.2 | Future work and extensions

Some	 ecosystem	 simulators	 are	 more	 similar	 than	 others;	 for	 ex-
ample,	 there	 are	 a	 number	 of	 size-	based	 simulators	 in	 the	marine	
literature	 (Blanchard	 et	al.,	 2009;	 Scott,	 Blanchard,	 &	 Andersen,	
2014)	 that	 are	 very	 similar,	which	may	violate	 the	exchangeability	
assumption	made	in	Section	2.	Additional	hierarchy	could	be	added	
to	 the	 ensemble	model	 that	would	 allow	 such	 simulators	 to	 have	
more	similar	discrepancies.	In	climate	science,	where	the	simulators	
are	very	similar	to	one	another	and	phylogenetic	trees	show	the	de-

velopment	history	of	each	simulator	(Knutti,	Masson,	&	Gettelman,	
2013;	Demetriou,	2016)	added	additional	hierarchy	allowing	closely	
related	simulators	to	have	similar	discrepancies.	They	found	that	the	
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major	source	of	uncertainty	was	due	to	the	shared	discrepancy,	and	
the	results	of	the	ensemble	model	were	close	to	when	all	the	simula-
tors	were	assumed	to	be	exchangeable.

In	 this	study,	we	have	demonstrated	 the	 ideas	and	methods	 in	
cases	where	 the	quantities	 of	 interest	 are	 of	 fairly	 low	dimension	
and	have	joint	Gaussian	distributions.	However,	with	the	increased	
efficiency	 of	 new	 statistical	 software	 and	 algorithms	 (Girolami	 &	
Calderhead,	2011),	it	is	possible	to	address	larger	problems	involving	
more	general	distributions.

The	 framework	 presented	 here	 is	 not	 exclusive	 to	 ecosystem	
simulators	 in	 fisheries,	 but	 can	 be	 used	 to	 combine	 any	mechanis-
tic	simulators	in	many	areas	of	ecology	(e.g.	individual-	based	models,	
Railsback	&	Grimm,	2012)	or	even	other	areas	of	research	such	as	sys-
tems	biology	(Kuepfer,	Peter,	Sauer,	&	Stelling,	2007)	and	epidemiol-
ogy	(Lessler,	Azman,	Grabowski,	Salje,	&	Rodriguez-	Barraquer,	2016).

4.3 | Conclusion

This	work	allows	for	a	synthesis	of	many	modelling	studies	that	have	
been	and	are	being	conducted	in	such	a	way	that	we	can	obtain	more	
holistic	knowledge	over	a	wide	scope	of	complex	ecological	systems.	
It	 also	 allows	 for	 including	 a	 formal	 quantitative	understanding	of	
uncertainties	and	knowledge	gaps.	This	enables	us	to	make	compre-

hensive	model	projections	 that	 take	 into	account	 all	 that	we	have	
learnt	from	the	simulators	collectively.
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