
This is a repository copy of Enabling low-latency applications in LTE-A based mixed
fog/cloud computing systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136368/

Version: Accepted Version

Article:
Du, J., Zhao, L., Chu, X. orcid.org/0000-0003-1863-6149 et al. (3 more authors) (2018)
Enabling low-latency applications in LTE-A based mixed fog/cloud computing systems.
IEEE Transactions on Vehicular Technology. ISSN 0018-9545

https://doi.org/10.1109/TVT.2018.2882991

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Enabling Low-Latency Applications in LTE-A
Based Mixed Fog/Cloud Computing Systems

Jianbo Du, Liqiang Zhao Member, IEEE, Xiaoli Chu Senior Member, IEEE, F. Richard Yu Fellow, IEEE, Jie
Feng, and Chih-Lin I Senior Member, IEEE

Abstract—In order to enable low-latency computation-
intensive applications for mobile user equipments (UEs), com-
putation offloading becomes critical necessary. We tackle the
computation offloading problem in a mixed fog and cloud
computing system, which is composed of an LTE-A small-
cell based fog node, a powerful cloud center, and a group of
UEs. The optimization problem is formulated into a mixed-
integer non-linear programming (MINLP) problem, and through
a joint optimization of offloading decision making, computation
resource allocation, resource block (RB) assignment, and power
distribution, the maximum delay among all the UEs is minimized.
Due to its mixed combinatory, we propose a low-complexity
iterative suboptimal algorithm called FAJORA to solve it. In
FAJORA, first, offloading decisions are obtained via binary
tailored fireworks algorithm (FA); then computation resources
are allocated by bisection algorithm. Limited by the uplink
LTE-A constraints, we allocate feasible RB patterns instead of
RBs, and then distribute power among the RBs of each pattern,
where Lagrangian dual decomposition is adopted. Since one UE
may be allocated with multiple feasible patterns, we propose a
novel heuristic algorithm for each UE to extract the optimal
pattern from its allocated patterns. Simulation results verify the
convergence of the proposed iterative algorithms, and exhibit
significant performance gains could be obtained compared with
other algorithms.

Index Terms—Computation offloading, fireworks algorithm,
fog computing, LTE-A, resource allocation.

I. INTRODUCTION

With the proliferation of smart user equipments (UEs) and
the popularity of low-latency applications [1], the current
mobile networks have been pushed to their limits. Mobile
cloud computing (MCC) [2] has appeared as a potential way
to cope with the above challenges by offloading computations
to powerful cloud servers. More recently, fog computing
[3] (or mobile edge computing (MEC) [4]) has been put
forwarded as an effective complement to MCC and has been
deemed as an important paradigm and scenario in 5G [5].

*This work was supported in part by National Natural Science Founda-
tion of China (61771358), National Natural Science Foundation of Shaanx-
i Province (2018JM6052), Intergovernmental International Cooperation on
Science and Technology Innovation (2016YFE0123200), the Fundamental
Research Funds for the Central Universities, and the 111 Project (B08038).

J. Du, L. Zhao, J. Feng are with State Key Laboratory of ISN, Xidian
University, No.2 Taibainan-lu, Xi’an, 710071, Shaanxi, China. (Email: du-
jianboo@163.com; lqzhao@mail.xidian.edu.cn; jiefengcl@163.com).

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

F. R. Yu is with the Dept. of Systems and Computer Eng., Carleton
University, Ottawa, ON, Canada (e-mail: Richard.Yu@carleton.ca).

C.-L. I is with the Green Communication Research Center, China Mobile
Research Institute, Beijing 100053, China. (e-mail: icl@chinamobile.com).

By setting up a virtualized platform between UEs and cloud
centers, fog computing can provide computation, storage, and
networking services [6], [7] to nearby UEs, and thus to further
enhance network performance in energy conservation or delay
reduction [5].

Fig.1 shows the typical architecture of a mixed fog/cloud
computing system. Utilizing the computation resources of the
fog nodes, such as WiFi access points (APs), base stations
(BSs), or remote radio heads (RRHs), fog nodes can offer
computation services at the edge of the network [3], [4].
Fog nodes can communicate directly with each other, and
all the fog nodes are connected to the powerful cloud server
through high-speed wired links [3], [4]. The cooperation
between the cloud server and the fog nodes can provide users
with more efficient and appropriate computation offloading
services. However, this new architecture brings many new
problems, e.g., how does the fog cooperate with the cloud,
i.e., where should computation be offloaded to, and how the
resource be allocated, etc., so as to bring the advantages of
the new architecture into full play.

In this paper, in order to enable low-latency compute-
intensive user applications with fairness among UEs guaran-
teed, we propose to minimize the maximum delay consump-
tion among all UEs in an LTE-A based mixed fog/cloud com-
puting system by jointly optimizing computation offloading,
computation resource allocation, uplink RB assignment and
transmit power allocation. Since in the LTE-A uplink, if a UE
is assigned with multiple RBs, they must be adjacent RBs [8],
[9], so we allocate feasible RB patterns to UEs. Each UE then
picks out the optimal pattern from all the assigned feasible RB
patterns and then perform power allocation on the RBs of the
selected pattern. As the joint optimization problem is a mixed
integer non-linear programming (MINLP) problem, we devote
to develop low-complexity suboptimal algorithms to decouple
it into several subproblems to solve.

The main contributions of this paper are listed as follows.
• We propose a novel general iterative algorithm framework

called binary tailored fireworks algorithm based joint
computation offloading and resource allocation algorithm
(FAJORA) to solve the joint optimization problem, where
offloading decisions are first decoupled from the rest
of the problem and obtained through binary tailored
fireworks algorithm.

• We develop a bisection algorithm for computation re-
source allocation, which is nested in FAJORA.

• We solve uplink RB pattern and power allocation prob-
lem, which is still NP-hard, by relaxing , Lagrangian dual

2

decomposition, and sub-gradient projection methods, to
obtain the optimal UE and power allocation for each
feasible RB pattern, where each UE may be allocated
with multiple feasible patterns.

• We then develop a novel heuristic algorithm to extract the
optimal pattern for each UE from all its feasible patterns,
taking the exclusiveness required by RB allocation and
higher RB utilization into consideration, and thus to
obtain more performance gains.

The remainder of this paper is organized as follows. Related
works are presented in Section II. Section III introduces the
system model and problem formulation. In Section IV, we
illustrate the procedure and general structure of FAJORA.
The computation resource allocation algorithm is detailed in
Section V. In Section VI, we first present the RB pattern
and power allocation algorithm, and then detail the heuristic
pattern extracting algorithm. Complexity analysis is presented
in Section VII. Simulation results are provided in Section VIII.
Finally, the paper is concluded in Section IX.

Cloud Cloud Center

Core Network

Femto
Gateway

Macro eNB

F-RAN

Femto eNB

Fog node

Remote Radio Head
(RRH)

Backbone Link

Inter Fog node link

Fig. 1: System architecture of a mixed fog/cloud computing system.

II. RELATED WORKS

In single-UE case [10], [11], task partitioning and offloading
decision is usually optimized in order to maximize energy
savings [10] or to minimize energy consumption [11]. In the
most general multi-user scenarios, computation resources and
communication resources (e.g., bandwidth, resource blocks,
and subcarriers) are shared among UEs. Therefore, except for
offloading decisions, resource allocation is another important
issue needs to be investigated. In [12], game theory was
utilized in an MCC environment. According to other UEs’ de-
cisions, each UE optimized its offloading decision and thus to
minimize its weighted cost. In [13], offloading decisions were
optimized for all UEs to minimize the network energy con-
sumption in an MCC system. The authors in [14] investigated
transmit power optimization under given offloading decisions,
in order to minimize the system energy consumption. The
formulation in [15] combined task level offloading decision
optimization and transmit power allocation in multiuser MCC
and MEC scenarios, respectively, to minimize a weighted
system cost of delay and energy consumption. In [16], except

for optimizing offloading decisions and transmit power allo-
cation, the authors extended computation resource allocation
into the optimization framework to further reduce latency and
energy consumption of all the UEs in an MEC network. The
following references optimized the allocation of other forms
of radio resources instead of transmit power. The authors in
[17] formulated a joint optimization of the offloading decision
making, resource block (RB) allocation, and computation
resource allocation in the MEC server, with transmit power
given as a constant, to minimize the total weighted cost
of delay and energy consumption of all UEs. In [18], in
order to minimize system energy consumption, the authors
performed a joint optimization of computation offloading, sub-
carrier assignment, and computation resource allocation in
a fog computing system. The authors in [19] formulated a
system energy consumption minimization problem with the
required delay tolerance satisfied in an MCC system, by a joint
optimization of beamformer designing, computation resources
allocation and offloading decision making. The authors in
[20] first proposed to jointly optimize the offloading decision
making, computation resource allocation, and radio transmit
rate allocation pioneeringly in an MCC system, in order to
conserve energy while satisfying user delay constraints, while
radio resources were allocated in a coarse-grained unit of bit/s.

To summarize, [12], [13] only optimized offloading de-
cisions, [14] only optimized transmit power allocation, [15]
combined the two aspects for further optimization, and [16]–
[19] integrated computation resource allocation into the op-
timization framework besides offloading decision optimiza-
tion and radio resource allocation. However, in [14]–[20],
radio resource allocation only covered a certain dimension
of radio resources, such as transmit power, RB, or subcarrier
allocation, without a joint optimization of multidimensional
wireless resources for further performance gains. What’s more,
applications were offloaded either to the cloud server [12]–
[15], [19], [20] or to the fog node [16]–[18], without a
cooperation between the both for providing much stronger
offloading services. Moreover, the above related works [13]–
[20] concerned the system-level performance, without consid-
ering that of individual UEs. Consequently, UEs with higher
transmit rate will benefit from computation offloading, but at
the expense of a performance decline of the UEs with lower
transmit rate, giving rise to unfairness among UEs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the concerned scenario,
then discuss the delay consumption in local, fog, and cloud
processing modes, respectively, and finally we formulate our
optimization problem under the concerned scenario.

A. Description of the Concerned Scenario
We consider a system comprising N UEs, an LTE-A small

cell based fog node, and a distant cloud server. The fog node
and the cloud are jointed by a fiber link, while all the N UEs
are connected to the fog node through wireless links sharing
K RBs in each transmission time interval (TTI, occupying
1 ms [8], [9]). Each RB is allocated to at most one UE in

3

the small cell [8], [9], [21]. We consider a quasi-static scene
where all UEs and the wireless channels keep still within
an offloading period (usually several seconds [12], containing
several thousands of TTIs). The assumption holds for many
actual applications such as face recognition, natural language
processing, and so on, where the input is not so large that
computation offloading could be accomplished within a short
time less than the time duration of UEs’ mobility and wireless
channels’ variation. Thus, in the following, we consider the
offloading period as the time unit where the optimization is
performed [11], [12], [14], [16], [22], [23], and all the TTIs
in the same offloading period adopt the same optimization
results.

Each UE has only one inseparable application may be
executed locally or remotely in application-level through the
following process. Firstly, it sends an offloading request (in-
cluding the information about the application and the UE
itself) to the manager in the fog node [23]. The manager
collects the information about wireless channel states and the
available resources in the fog node, together with the offload-
ing requests, it determines the offloading decision (where the
application be processed, i.e., in the UE locally, in the fog,
or in the cloud) and the associated resource allocation for
each UE. The offloading decisions are then sent back to all
the UEs, and the corresponding resources will be allocated to
them in offloading. As an offloading request is usually very
tiny, we suppose that no buffer is needed for queueing the
computation requests [22]. Also, the delay in decision making
is not considered to enable tractable analysis [23].

Denote the UE set as N , and the offloading decision of
UEn as xn, yn, zn. Let xn = 1, yn = 1, zn = 1 represent that
the application is processed by UEn itself, by the fog node, or
by the cloud, respectively; otherwise, xn = 0, yn = 0, zn = 0.
Consequently, we have

xn + yn + zn = 1, ∀n ∈ N . (1)

The offloading decisions of all UEs is collected in
the offloading matrix Π, which is given by Π =

x1, ..., xN
y1, ..., yN
z1, ..., zN

3×N

, where the nth column is the offload-

ing decision of UEn.
The fog node has the ability to process applications, sub-

jecting to its computation capability. When multiple UEs
choose fog-processing, the fog node will allocate computation
resources (in CPU cycles/s) to them. When cloud-executing
is selected by multiple UEs, their applications will firstly be
transmitted from the UEs to the fog node through a shared
wireless access link, and then be forwarded by the fog node
to the cloud server through a wired fiber link. Since the
computation resources in the cloud server is sufficient, and
the capacity of the wired link is large enough, the allocation
of those resources (the decisions are made at the cloud server)
will not be discussed and these resources allocated to each UE
is given as known quantities [20]. However, the limited radio
resource needs to be assigned among all the remote-executing
UEs (including all the UEs with yn = 1 or zn = 1). Since

the output of remote processing is usually very tiny, only the
uplink is discussed [11], [12], [16].

The application of UEn can be denoted as Λn =
{Dn, λn}, n ∈ N , where Dn represents the input data size
(in bits), and λn denotes processing density or computation
complexity (in CPU cycles/bit) of the application [1]. The
number of CPU cycles Cn(aka.computation load) required to
complete executing the application is modeled as Cn = Dnλn,
which increases with both the input data Dn and the pro-
cessing density λn. Using program profilers [10], [16], the
manager can obtain Dn, Cn and λn beforehand easily. For
each UE there is a clone in the fog node, and the program
of Λn is backed up in the clone [6], [7], [11], [23], and can
be downloaded easily by the cloud server through the wired
link [10], [14], noting that the overhead for setting up and
synchronize the clone is neglected similar to many existing
works [6], [7], [11], [23]. Hence, only the input data with size
Dn bits will be transmitted from UEn when offloading.

Feasible RB allocation pattern matrix Wn = {wn
k,j} of

size K × J can be constructed for each UEn, where wn
k,j = 1

indicates that RB k is allocated to UEn in the jth pattern,
otherwise wn

k,j = 0. For example, assuming there are K = 4
RBs, the feasible pattern matrix for UEn is given by

Wn =

0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 1 1
0 0 0 0 1 0 0 1 0 1 1

K×J

, n ∈ N , (2)

where J is the total number of feasible patterns given by J =
1
2 ×(K2 +K)+1 [8]. The uplink RB pattern allocation matrix
is formed as S = {sn,j}N×J , where the binary variable sn,j =
1 indicates that UEn selects pattern j, and otherwise sn,j = 0.

If pattern j is assigned to UEn, using Shannon’s formula,
the maximum achievable transmit rate for UEn on RB k in
pattern j can be expressed as

rn,k(j) = W0 log2

(
1 +

pn,k(j)hn,k(j)

σ2

)

= W0 log2
(
1 + pn,k(j)gn,k(j)

)
, (3)

where W0 is the bandwidth of an RB (in Hz); pn,k(j) is the
transmission power of UEn on RB k in pattern j; hn,k(j)
is channel gain, which is assumed to be known at UEn and
remain constant but may change at the boundary of each
offloading period [21]; gn,k(j) = hn,k

σ2 , and σ2 is the power of
additive white Gaussian noise. Thus, the maximum achievable
transmit rate and power of UEn on pattern j are given by

rn,j =
K∑

k=1

rn,k(j), (4)

pn,j =
K∑

k=1

pn,k(j), (5)

and the total achievable transmit rate and power of UEn are
given by

rn =
J∑

j=1

sn,jrn,j =
J∑

j=1

K∑

k=1

sn,jrn,k(j), (6)

4

pn =
J∑

j=1

sn,jpn,j =
J∑

j=1

K∑

k=1

sn,jpn,k(j), (7)

where pn should be less than the maximum transmit power
pmax

n of UEn. It should be noted that in equations (3), (4),
and (6), we assume the wireless channel gain of each RB to
be a random value, without specifically considering the impact
of the number of antennas.

In the following we will discuss the delay consumption of
local, fog and cloud processing, respectively.

B. Delay Under Different Offloading Scenarios

Denote the local processing capability (in CPU cycles/s) of
UEn as f loc

n , then the delay of local processing is

T loc
n =

Cn

f loc
n

. (8)

If fog-processing is selected for UEn, then, it needs to
transmit the input data of size Dn to the fog node. Assume
fog processing only starts when all the input data has been
received, and denote the computation resource allocated to
UEn by ffog

n (in CPU cycles/s), then the delay of UEn under
fog processing is given by

T fog
n =

Dn

rn
+

Cn

ffog
n

. (9)

If the application of UEn is offloaded to the cloud server,
the input data is first transmitted to the fog node, and then sent
to the cloud server by the fog node. Given the rate of the high-
speed wired fiber link and the cloud processing capability for
UEn as Rfc

n (in bit/s) and f c
n (in CPU cycles/s), respectively,

then the wired transmit delay and processing delay in the cloud
are given by T fc

n = Dn/Rfc
n and T c

n = Cn/f c
n, respectively.

Thus the total delay of UEn for cloud processing is given by

T cloud
n =

Dn

rn
+ T fc

n + T c
n. (10)

A summary of the mainly used notations are presented in
TABLE I.

C. Problem Formulation

We then formulate the joint optimization of computation
offloading and resource allocation and show its NP-hardness.

Based on (8)-(10), the delay of UEn is given by

Tn = T loc
n xn + T fog

n yn + T cloud
n zn. (11)

We intend to minimize the maximum delay consumption
among all UEs, by jointly optimizing the offloading decision
Π, the RB pattern allocation S = {sn,j}N×J , the transmit
power allocation P = {pn,k(j)}N×K×J , and the computation
resource assignment ffog = {ffog

1 , ..., ffog
N }. The computa-

tion resources in the fog node will be allocated only to the
fog-executing UEs, the set of which is denoted as N1. RBs
will be assigned among all the remote-processing (including
fog-processing and cloud-processing) UEs, the set of which is

denoted as N2. The joint optimization problem is formulated
as

(P1) : min
Π,f fog,S,P

max
n∈N

Tn (12)

s.t. (C1) : xn, yn, zn ∈ {0, 1}, ∀n ∈ N ,
(C2) : xn + yn + zn = 1, ∀n ∈ N ,
(C3) :

∑

n∈N1

ffog
n ≤ F fog,

(C4) : ffog
n ≥ 0, ∀n ∈ N1,

(C5) : sn,j ∈ {0, 1}, ∀j ∈ J , ∀n ∈ N2,

(C6) :
∑

n∈N2

sn,j = 1, ∀j ∈ J |{j = 1},

(C7) :
∑

j∈J

sn,j = 1, ∀n ∈ N2,

(C8) :
∑

n∈N2

∑

j∈J

sn,jWn ≤ 1, ∀k ∈ K,

(C9) : pn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K, ∀j ∈ J ,

(C10) :
∑

j∈J

sn,jpn,j ≤ pmax
n , ∀n ∈ N2.

TABLE I: Notation Definitions

Symbol Definition
T loc

n , T fog
n , Delay of UEn in local/fog/cloud processing

T cloud
n

f loc
n , ffog

n , Processing ability of UEn
fc

n in local/fog/cloud processing
Dn,Cn,λn Data size/computation load/processing

density of the application of UEn

F fog Total computation capability of the fog node
pmax

n The maximum transmit power of UEn
gn,k(j) Power gain of UEn on RB k in pattern j
sn,j Indicator whether pattern j is allocated to UEn

rn, pn Wireless transmit rate/power of UEn

Rfc
n Wired link rate of UEn between fog and cloud

rn,j , pn,j Transmit rate/power of UEn on pattern j
rn,k(j) Transmit rate/power of UEn
pn,k(j) on RB k in pattern j
S,P RB Pattern/power allocation matrix

xn, yn, zn Offloading decisions of UEn
Π Matrix of all UEs’ offloading decisions

N ,N The set/number of all UEs
N1,N1 The set/number of fog-executing UEs
N2,N2 The set/number of remote-executing UEs
K, K The set/number of RBs
J ,J The set/number of all feasible patterns
Wn Feasible RB pattern matrix for UEn

I ,M ,γ Number of fireworks/total explosion sparks/
mutation sparks

L Number of iterations of FA

In problem (P1), (C1) and (C2) give each UEn the restraints
on its offloading decisions; (C3) shows that the total allocated
computation resource should be less than the total computation
capability F fog in the fog node; (C4) indicates that the
computation resource allocated to each fog-processing UEn
should be nonnegative; (C5) is the binary constraint of RB
pattern allocation; (C6) indicates that except for pattern 1, each
pattern can be assigned to only one UE, while pattern 1 can

5

be assigned to any UE that is not allocated with RB; (C7)
requires that each UE can only be assigned with one pattern;
(C8) guarantees that each RB is allocated to only one UE;
(C9) requires the power on each RB is nonnegative; (C10) is
the maximum transmit power constraint of each UE.

Proposition 1: Problem (P1) is NP-hard.
Proof: See Appendix A.

IV. BINARY TAILORED FIREWORKS ALGORITHM BASED
JOINT COMPUTATION OFFLOADING AND RESOURCE

ALLOCATION ALGORITHM

Since problem (P1) is hard to solve, in this section, we
decouple it into two subproblems, i.e., offloading decisions
making and resource allocation, which are solved by the
proposed algorithm FAJORA.

When a firework is ignited, a burst of sparks will fill
the surrounding space around the firework. Inspired by the
phenomenon, the authors in [24] proposed a new kind of
heuristic algorithm called fireworks algorithm (FA), and have
verified that it performs well in convergence speed and global
searching, compared with other heuristic algorithms such as
genetic algorithm (GA) [25] and particle swarm optimization
algorithm (PSO) [26]. As good candidates for solving MINLP
problem, heuristic algorithms have been used widely in many
fields such as radio resource allocation [26] and fuzzy control
[27], etc. However, to the best understanding of us, seldom
have they been used efficiently in computation offloading,
especially fireworks algorithm. In the following we will intro-
duce Binary Tailored Fireworks Algorithm(BTFA) firstly, then
we propose the general framework of our proposed FAJORA
for the considered scenario.

A. Some Concepts
1) Fireworks and Sparks: Fireworks and the newly gener-

ated sparks represent feasible solutions in the solution space.
Specifically, a firework/spark indicates an offloading decision
matrix Π in the considered problem.

2) Fitness Function and Fitness Value: Fitness values are
employed to evaluate the performance of feasible solutions.
We take the objective function in (P1) as the fitness function
to obtain the fitness value of each firework.

3) Binary Matrix Distance: Binary matrix distance means
the Manhattan distance of two binary matrixes, i.e., the sum
of the distance between each element of the two matrixes.
Suppose two matrixes X and Y are m × n-dimensional, the
distance between the two matrixes is

d(X, Y) =
m∑

i=1

n∑

j=1

|Xi,j − Yi,j |. (13)

B. Overview of FA
The typical steps for solving a problem with FA can be

summarized as follows: First, initialize a swarm of fireworks
and obtain their fitness values according to the specified fitness
function. Then each firework performs explosion operator to
generate some explosion sparks around the firework within a
certain amplitude. The number of sparks and the explosion

amplitude are obtained according to the fitness value of each
firework. The better fitness value of a firework, the more
explosion sparks it will produce, and the smaller amplitude
will be, and vice versa. After that several Gaussian mutation
sparks are generated in order to keep population diversity.
Afterwards, from the population of fireworks and sparks,
several individuals are picked out as the fireworks of the next
iteration. The procedure of explosion, mutation and selection
is repeated until the algorithm reaches convergence, or reaches
the maximum iteration index. Finally, from the individuals
obtained in the last iteration, the individual with the best fitness
value is selected as the solution to the constructed problem.

C. Operations of BTFA
Given total I fireworks, the major operations of the binary

tailored FA are listed as follows.
1) Explosion: The number of the explosion sparks for the

ith firework Πi is given by

χi = ceil

M
fmax − f(Πi) + ϵ

I∑

i=1
(fmax − f(Πi)) + ϵ

 , (14)

where ceil(·) is round up function, M is a parameter con-
straining the total number of explosion sparks, fmax =
max(f(Πi)), i = 1, ..., I is the worst fitness value among
all the I fireworks, and ϵ is an extremely tiny number which
is used to avoid zero-division-error.

To avoid that one firework may generate too less or too
many explosion sparks, bounds are defined for each χi, which
is given by

χ̂i =

round(aM), if χi < aM
round(bM), if χi > bM, a < b < 1,
round(si), otherwise

(15)

where round(·) is the rounding off function, a and b are given
constants, and χ̂i is the number of actual generated explosion
sparks.

For firework Πi, each explosion spark is generated like
this: 1) choose β columns from the N columns randomly;
2) perform cyclic shift on each selected column; 3) the rest
columns are kept unchanged.

2) Mutation: To improve the spark diversity and thereby
to increase searching capability, mutation is introduced. From
the I fireworks, we choose γ of them randomly, each of which
will generate a mutation spark like this: 1) choose β columns
from the N columns randomly; 2) for each of the selected
column, reset it with a random feasible offloading decision;
3) the rest columns are kept unchanged.

3) Selection: After explosion and mutation, there exist
three different kinds of individuals, i.e., fireworks, explosion
sparks, and mutation sparks. The individual with the best
fitness value is always kept as the first firework of the next
generation. To keep diversity of the population, other I − 1
fireworks are selected form the rest individuals according to
their selected probabilities, which are obtained from their
binary matrix distance to all other individuals as follows.

6

According to (13), the binary matrix distance between an
individual Πi and other individuals is given by

R(Πi) =
∑

j∈K

d(Πi, Πj), (16)

where K is the population of all current individuals including
both fireworks and sparks.

Consequently, the selected probability of individual Πi is
given by

p(Πi) =
R(Πi)∑

j∈K
R(Πi)

. (17)

D. BTFA Based Joint Computation Offloading and Resource
Allocation Algorithm (FAJORA)

Applying the proposed binary tailored operators to tradi-
tional fireworks algorithm, and adopting the same procedure
with FA, we obtain BTFA. Using BTFA we can solve the
original formulated problem (P1), i.e., the final offloading
decision Π and the corresponding resource allocation can
be obtained. Detailed algorithm framework is called BTFA
based joint Computation offloading and resource allocation
algorithm (FAJORA) and is summarized in Algorithm 1 as
folllows.

Algorithm 1 FAJORA
Initialization:

1: Set N , K, F fog , I , M , β, γ, a and b.
2: Initialize Dn, Cn, f loc

n , pmax
n , Rfc

n , f c
n of each UE.

3: Generate I random fireworks Π1, ..., ΠI in the searching
space, perform resource allocation under each firework,
and obtain the fitness value of each firework.

Iteration:
4: while 1 or l <= L do
5: for i <= I do
6: Obtain the number of explosion sparks χi according

to (14) and (15).
7: for p <= χi do
8: Perform explosion to generate explosion spark p.
9: Perform resource allocation under p.

10: Calculate the fitness value of p.
11: end for
12: end for
13: for j <= γ do
14: Generate mutation spark j.
15: Perform resource allocation under j.
16: Obtain the fitness value of j.
17: end for
18: The best individual is considered as the first firework

of the next iteration, and the other I − 1 fireworks
are chosen from the rest individuals according to the
selected probability in (17).

19: end while
20: Among the fireworks selected in the last iteration, the one

with the minimum fitness value is considered as Π∗.
21: Output: Π∗ and corresponding resource allocation.

V. COMPUTATION RESOURCE ALLOCATION

Next we will tackle the resource allocation subproblem em-
bedded in Steps 3, 9, and 15 in Algorithm 1, where both radio
and computation resource allocation need to be determined.
In this section, we describe how to obtain the computation
resource allocation, while radio resource allocation will be
presented in the next section.

After offloading decision Π has been obtained, problem
(P1) degrades to the joint optimization of allocating compu-
tation resources, RB patterns, and transmit power as follows

(P2) : min
f fog,S,P

max
n∈N

Tn (18)

s.t. (C3) − (C10).

To reduce the computation complexity, we divide (P2) into
two subproblems: computation resource allocation and radio
resource assignment. For computation resource allocation a-
mong UEs in N1, assuming the radio resource assignment S
and P are given, we have

(P3) : min
f fog

max
n∈N1

(
Cnyn

ffog
n

+ Bn

)
(19)

s.t. (C3), (C4),

where Bn = Cnxn
f loc

n
+(T fc

n +T c
n)zn+ Dn(yn+zn)

rn
= Dn

rn
, n ∈ N1

is a constant. Letting Cnyn

ffog
n

+ Bn = Cn

ffog
n

+ Bn ≤ τ, n ∈ N1,
the non-smooth problem (P3) is converted to

(P4) : min
f fog,τ

τ (20)

s.t. (C3), (C4),

(C16) :
Cn

ffog
n

+ Bn ≤ τ, ∀n ∈ N1.

Since Cn

ffog
n

≥ 0, then τ − Bn ≥ 0, so we have

0 ≤
Cn

τ − Bn
≤ ffog

n , ∀n ∈ N1. (21)

Consequently, we have
∑

n∈N1

Cn

τ − Bn
≤

∑

n∈N1

ffog
n ≤ F fog. (22)

In order to minimize the maximum delay among all the
fog-executing UEs, the UE with the maximum delay (which is
denoted by UE∗) needs to be allocated with more computation
resources, so less computation resources will be left for all the
other UEs (i.e., UEs in the set N1|UE∗), leading to an increase
in the delay of those UEs. Performing the above process
iteratively, all the computation resources will be distributed
evenly among all the fog-executing UEs in the end. Thus we
have

∑

n∈N1

Cn

τ − Bn
=

∑

n∈N1

ffog
n = F fog. (23)

Thus problem (P4) can be converted to

(P5) : min
τ

τ (24)

s.t. (C17) :
∑

n∈N1

Cn

τ − Bn
= F fog.

7

Since the left-hand side of (C17) is a monotonic decreasing
function about τ , bisection method can be used to solve
problem (P5), which is detailed in Algorithm 2.

Algorithm 2 Bisection Method for Computation Resource
Allocation
Initialization:

1: Set τmin = max{Bn}, τmax =
∑

n∈N1

(CnN1
F fog + Bn

)
.

2: Set i = 1 and the precision ε > 0.
Iteration:

3: while 1 do
4: τ i = (τmin + τmax)/2.
5: if | τmax − τmin |≤ ε then
6: τ∗ = τ i.
7: else
8: if

∑

n∈N1

Cn
τ i−Bn

> F fog then

9: τmin = τ i.
10: else
11: τmax = τ i.
12: end if
13: end if
14: i = i + 1.
15: end while
16: Let τ∗ = τ i and substituting it into (23), ffog∗ is obtained.
17: Output: ffog∗.

VI. COMMUNICATION RESOURCE ASSIGNMENT

After computational resource allocation is obtained, prob-
lem (P2) degrades to the joint optimization of RB pat-
tern assignment and power allocation among all remote-
executing UEs in N2. Denoting the RB pattern assignment
and transmit power allocation as S = {sn,j}N2×J and
P = {pn,k(j)}N2×K×J , then the radio resource allocation
subproblem is given by:

(P6) : min
S,P

max
n∈N2

(
Dn(yn + zn)

rn
+ Vn

)
(25)

s.t. (C5) − (C10),

where Vn = Cnyn

ffog
n

+ Cnxn
f loc

n
+ (T fc

n + T c
n)zn = Cnyn

ffog
n

+
(T fc

n + T c
n)zn is a constant. However, (P6) is still an

NP-hard problem as proven in Appendix A. To make the
problem tractable, we first relax each sn,j to a continuous
interval, i.e., 0 ≤ sn,j ≤ 1; then we define a new matrix
Φ = {ϕn,k(j)}N2×K×J = {sn,jpn,k(j)}N2×K×J to replace
P = {pn,k(j)}N2×K×J . Noting Dn(yn+zn)

rn
= Dn

rn
, n ∈ N2,

and letting max
n∈N2

(
Dn
rn

+ Vn

)
= τ1, we have Dn

rn
+ Vn ≤

τ1, n ∈ N2, then (P6) can be rearranged as

(P7) : min
S,Φ,τ1

τ1 (26)

s.t. (C5) : 0 ≤ sn,j ≤ 1, ∀n ∈ N2, ∀j ∈ J ,
(C6) − (C8),
(C9) : ϕn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K,

(C10) :
J∑

j=1

K∑

k=1

ϕn,k(j) ≤ pmax
n , ∀n ∈ N2,

(C18) : rn ≥
Dn

τ1 − Vn
, ∀n ∈ N2.

Proposition 2: Problem (P7) is jointly convex in S and Φ
for given τ1.

Proof: See Appendix B.
Since (P7) is convex, Slater’s condition [28] is met and

0 duality gap can be assured, so we can solve it employing
Lagrangian dual decomposition and sub-gradient projection
method [29]. Once the optimal solution {S∗, Φ∗} to (P7) is
obtained, the optimal solution {S∗, P∗} to (P6) is obtained.

A. Lagrange Dual Decomposition Based RB Pattern and
Power Allocation

To reduce the number of dual variables and thus to improve
convergence speed, the partial Lagrange function of (P7) is
given by (27), where µ = {µn} ≽ 0, n ∈ N2 and ω =
{ωn} ≽ 0, n ∈ N2 are Lagrange dual variables corresponding
to (C10) and (C18) in (P7), respectively.

The Lagrange dual function is given by

D(µ, ω) = min
S,Φ,τ1∈{(C5)−(C9)}

L(S, Φ, τ1, µ, ω), (28)

which can be decomposed into J −1 independent subproblems
(except for pattern j = 1). The jth subproblem under given
dual variables (µ, ω) is given as

(P8) : min
sj ,Φj ,τ1

Lj(sj , Φj , τ1) (29)

s.t. (C5) − (C9),

where sj = {sn,j}T
N2∗1, Φj = {ϕn,k(j)}N2×K is the sub-

matrix of S and Φ for RB pattern j, and

Lj(sj , Φj , τ1) = τ1 −
∑

n∈N2

µn

K∑

k=1

ϕn,k(j) (30)

+
∑

n∈N2

ωn

K∑

k=1

sn,jW0 log2

(
1 +

ϕn,k(j)gn,k(j)

sn,j

)
.

From (P8) we know that sj contains only one nonzero
binary entry, because every pattern j can only be allocated to
one UE as required in constraint (C6). For pattern j, assuming
sn,j , n ∈ N2, is known, we optimize power allocation for each
RB in pattern j. Let

ξn,j = ωn

K∑

k=1

sn,jW0 log2

(
1 +

ϕn,k(j)gn,k(j)

sn,j

)

−
K∑

k=1

µnϕn,k(j) + τ1, (31)

8

L(S, Φ, τ1, µ, ω) (27)

= τ1 +
∑

n∈N2

µn

pmax
n −

J∑

j=1

K∑

k=1

ϕn,k(j)

 +
∑

n∈N2

ωn

J∑

j=1

K∑

k=1

sn,jW0 log2

(
1 +

ϕn,k(j)gn,k(j)

sn,j

)
−

Dn(yn + zn)
τ1 − Vn

 .

(P8) reduces to the following problem

(P9) : Γn,j = min
φn,k(j)

ξn,j (32)

s.t. (C8′) : ϕn,k(j) ≥ 0, ∀n ∈ N2, k ∈ K.

Let ∂ξn,j
∂φn,k(j)

= 0, the optimal power allocation for each RB
in pattern j is obtained as follows

p∗
n,k(j) =

ϕn,k(j)

sn,j
=

(
ωnW0

µn ln 2
−

1
gn,k(j)

)+

, (33)

where x+ , max{0, x}. By substituting p∗
n,k(j) in place of

φn,k(j)
sn,j

in (31), we obtain Γn,j as

Γn,j =
(

ξn,j | pn,k(j) = p∗
n,k(j)

)
. (34)

Performing the procedure (31)-(34) for each UE in N2, we
obtain Γj = {Γn,j}, n ∈ N2. The UEn with the minimum
Γn,j , n ∈ N2, is selected as the optimal UE n∗ for pattern j.
We allocate pattern j to UE n∗, and set s∗

n∗,j = 1. Thus, the
optimal solution s∗

j = {s∗
n∗,j} to the jth sub-problem in (P8)

is given by

s∗
n∗,j =

{
1, n∗ = arg min

n
{Γn,j}

0, otherwise
. (35)

Performing the procedure (29)-(35) for every pattern j ∈ J ,
we obtain S∗ = {s∗

1, ...s∗
J}.

B. Heuristic Algorithm to Extract the Optimal Pattern
(HAEOP)

Note that in S∗, one UE may be allocated with more
than one pattern, while in the LTE-A uplink one UE can be
allocated with at most one pattern (as in (C7)), and the patterns
allocated to different UEs should not contain the same RBs
(as in (C8)), otherwise conflict will occur. A conflict table of
each RB in 4-RB case is listed below in Table II.

TABLE II: Conflict table in 4-RB case

Index of RB Corresponding conflicting patterns
1 2,6,9,11
2 3,6,7,9,10,11
3 4,7,8,9,10,11
4 5,8,10,11

We propose a heuristic algorithm called heuristic algorithm
to extract the optimal pattern (HAEOP) for each UE to pick
out the optimal pattern from their feasible patterns subjecting
to constraints (C7) and (C8). It is given in Algorithm 3 and
explained below.

In the sorting process (Step 4), we will give a higher
priority to the UE with less feasible patterns, since UEs with

Algorithm 3 HAEOP
1: Input: The obtained S∗.
2: List the conflict table for each RB according to Wn.
3: List the initial feasible pattern set for each remote-

processing UE according to S∗.
4: Sort the N2 remote-processing UEs according to the

number of their initial feasible patterns. The less it is,
the top the UE. If multiple UEs have the same number of
feasible patterns, compare the minimum feasible pattern
index. The smaller it is, the top the UE.

5: Start the first round of pattern selection among all the
valid remote UEs. If a UE has no feasible pattern, it is
deemed as an invalid UE, and allocate pattern j = 1 to
it. If there’s only one remote UE, choose pattern j = J
as its final scheme, then break. Else, the first UE chooses
the minimum pattern index from all its feasible patterns.

6: For the middle 2 ∼ (N2 − 1) UEs, perform pattern
selection according to the following rules. (i) First each
UE obtains all patterns conflicting with any its previous
UEs; (ii) take out all the conflict patterns from its initial
feasible pattern set, and the rest constitutes its new feasible
pattern set; (iii) chooses the pattern with the minimum
index from its new feasible pattern set; if the set is empty,
allocate pattern j = 1 to the UE.

7: The last UE first performs the same procedure as the
previous 2 ∼ (N2 − 1) UEs did to obtain its feasible
pattern set. If the set is nonempty, choose the maximum
index from this set; else choose pattern j = 1.

8: Calculate the total number of occupied RBs according to
the chosen pattern of each UE. If it is less than K, start
the next round of pattern selection: the first UE chooses
its next feasible pattern; then the rest valid UEs repeat the
same procedure as Steps 6 and 7 above, until either of the
following two terminal conditions are satisfied: (i) the total
number of occupied RBs equals to K, then the patterns
selected in this round are considered as the optimal pattern
allocation scheme; or (ii) if any valid UE has no feasible
pattern, then the patterns selected in the previous round
are considered as the optimal scheme.

9: Output: The optimal pattern S∗∗ = {s∗∗
n∗,j∗}.

more feasible patterns have a higher probability of finding a
feasible pattern after all other UEs have performed their pattern
selection.

According to Wn, a pattern with a smaller index contains
less RBs. So in Steps 5-6, the first 1 ∼ (N2 − 1) UEs will
choose the pattern with the smallest index among their feasible
patterns, so that the remaining UEs may have more chance of

9

finding a feasible pattern. In Step 7, the last UE will choose the
feasible pattern with the maximum index in order to maximize
RB utilization. If any UE is left with no feasible pattern in
the first round of selection, i.e., all its initial feasible patterns
conflict with the chosen patterns of its previous UEs, then the
UE is allocated with pattern j = 1 (no RBs) and is called
an invalid UE (i.e., it fails in task offloading), otherwise it is
called a valid UE.

Step 8 terminates under one of the two conditions: 1)
someone is left with no feasible pattern, then the patterns of
all remote-processing UEs selected in the previous round are
considered as the optimal pattern allocation scheme; 2) all the
K RBs have been allocated, then the patterns selected in this
round are considered as the optimal scheme. We denote the
optimal pattern allocation matrix as S∗∗ = {s∗∗

n∗,j∗}.
After the optimal RB pattern allocation S∗∗ is obtained, we

perform the optimal power allocation for each UE n∗ on the
RBs in its selected pattern j∗ as follows

p∗∗
n∗,k(j∗) =

{
p∗

n,k(j), n = n∗ and j = j∗

0, otherwise
. (36)

C. Lagrange Multipliers Update

After solving all subproblems in (P8), S and P can be
obtained for given µ and ω. The dual variables µ and ω can
be updated by resolving the dual problem of (P7), which is
given by

(P10) : max
µ,ω

D(µ, ω) (37)

s.t. µ ≽ 0, ω ≽ 0.

From (27) and (28), we know that (P10) is convex, because
D(µ, ω) is a linear function about the dual variables µ and ω.
By utilizing sub-gradient projection method, we solve (P10)
in an iterative manner to obtain dual optimum µ∗ and ω∗.

Proposition 3: The sub-gradients of D(µ, ω) at the tth
iteration are given in equations (38) and (39), where p∗

n,k(j)
and s∗

n,j is the optimal solution to dual function (28) for a
given set of dual variables µ and ω.

Proof: See Appendix C.
Based on (38)–(39), the Lagrange multipliers are updated

with the sub-gradient projection method [30] as follows

µn(t + 1) = [µn(t) − h(t) ▽ µn(t)]+ , ∀n, (40)
ωn(t + 1) = [ωn(t) − j(t) ▽ ωn(t)]+ , ∀n, (41)

where t is the iteration index; h(t) and j(t) are positive
step sizes. In this paper we adopt square summable but not
summable step sizes [30], where h(t) = 1/(10 ∗ t), and
j(t) = 1/(10−1 ∗ t). The Lagrange multipliers are updated
iteratively until the required precision is satisfied. The proce-
dure for joint RB pattern and power allocation is summarized
in Algorithm 4. For a general understanding, the work flow
chart of our system is given in Fig. 2, the main body of which
is our proposed FAJORA.

Algorithm 4 Joint Uplink RB Pattern assignment and Power
Allocation
Initialization:

1: Set µ(0), ω(0) and the precision δ, set t = 0.
Iteration:

2: while 1 do
3: for each pattern j = 1 to K2

2 + K
2 + 1 do

4: for each n do
5: if k ∈ j then
6: Calculate p∗

n,k(j) via (33) and obtain Γj by (34).
7: Obtain s∗

n∗,j according to (35), and s∗
j =

{s∗
n∗,j}.

8: Extract S∗∗ = {s∗∗
n∗,j∗} from S∗ = {s∗

1, ..., s∗
J}

using Algorithm 3.
9: For n = n∗ and j = j∗, set p∗∗

n∗,k(j∗) = p∗
n,k(j)

and s∗∗
n∗,j∗ = 1.

10: end if
11: end for
12: end for
13: Update dual variables µ, ω from (40) and (41), respec-

tively.
14: t = t + 1.
15: if ∥µ(t + 1) − µ(t)∥2 < δ, ∥ω(t + 1) − ω(t)∥2 < δ

then
16: break.
17: end if
18: end while
19: Output: S∗∗ = {s∗∗

n∗,j∗}, P∗∗ = {p∗∗
n∗,k(j∗)}.

Initalize I offloading decision matrixes as initial
fireworks

 Formulate the MINLP problem of joint optimization of offloading
decision, computation resource allocation, RB pattern assignment, and
power allocation in a mixed fog/cloud computing LTE-A based system

Final offloading decision and the corresponding resource allocation scheme

Yes

FAJORA
(Algorithm 1)

Resource allocation
procedure under each

firework or spark
(embedded in
Algorithm 1)

Bisection method based
computation resource

allocation (Algorithm 2)

HAEOP optimal pattern
extracting for each UE

(Algorithm 3, embedded
in Algorithm 4)

Obtain the number of explosion
sparks of firework i according

to its fitness value

Perform explosion for firework
i to generate explosion sparks

Resource allocation

i<=I ?
Yes

Generate mutation sparks

No

Calculate fitness value for each
explosion spark

Resource allocation

Calculate fitness value for each
mutation spark

Iteration end?

From the set of fireworks,
explosion sparks, and mutation

sparks, choose I individuals as the
fireworks for the next iteration

No

Among fireworks selected in the last iteration, the one with the minimum fitness
value as the optimal firework (final offloading decision)

Yes

FAJORA
(Algorithm 1)

i<=I = ?
Yes NNo

Iteration end?

No

Among fireworks selected in the last iteration, the one with the minimum fitness
value as the optimal firework (final offloading decision)

Initalize I offloading decision matrixes as initial
fireworksInitialize I offloading decision matrixes as initial

fireworks, perform resource allocation under each
firework, and calculate the fitness value for each firework

Lagrange dual
decomposition based RB

pattern and transmit
power allocation

(Algorithm 4)

Generate mutation sparks

Resource allocation

Calculate fitness value for each
mutation spark

Mutation

From the set of fireworks,
explosion sparks, and mutation

sparks, choose I individuals as the
fireworks for the next iteration

Selection

Obtain the number of explosion
sparks of firework i according

to its fitness value

Perform explosion for firework
i to generate explosion sparks

Resource allocation

Calculate fitness value for each
explosion spark

Explosion

(a) Main framework of FAJORA
(b) Detailed procedure of

resource allocation

Fig. 2: The work flow chart of our system.

VII. COMPLEXITY ANALYSIS

The computational complexity of FAJORA in Algorithm 1
mainly comes from the resource allocation procedures in Steps
9 and 15 in the ’while’ loop. In Step 9, the resource allocation

10

▽µn(t) = pmax
n −

J∑

j=1

s∗
n,jp∗

n,j , (38)

▽ωn(t) =
J∑

j=1

s∗
n,jrn,j −

Dn(yn + zn)
τ1 − Vn

=
J∑

j=1

K∑

k=1

s∗
n,jW0 log2

(
1 + p∗

n,k(j)gn,k(j)

)
−

Dn(yn + zn)
τ1 − Vn

, (39)

procedure is performed
I∑

i=1
iχi times for the

I∑

i=1
iχi explo-

sion sparks, respectively. In Step 15, the resource allocation
procedure is performed γ times for the γ mutation sparks,
respectively. For notational simplicity, we define the total

number of explosion and mutation sparks as Ξ =
I∑

i=1
iχi + γ.

In each resource allocation procedure, computation re-
sources are allocated using Algorithm 2, and then radio re-
sources are allocated employing Algorithm 4. In Algorithm 2,
it requires O

(
log2

(
τmax−τmin

ε

))
iterations for the bisection

method to converge.
In Algorithm 4, the complexity mainly comes from the

extracting of RB pattern in Step 8, i.e., Algorithm 3. The
sub-gradient projection method in the outer ’while’ loop that
needs O

(1
δ2

)
iterations to converge [28], the K2

2 + K
2 + 1

iterations in the outer ’for’ loop, and the at most N iterations
in the inner ’for’ loop. The complexity of Algorithm 3 mainly
comes form the pattern extracting procedure in its Steps 5–
8. Since there are at most N2 = N remote-processing UEs,
the complexity of the first round of RB pattern extracting
in Steps 5–7 is O(N). Assuming that the first remote-
processing UE posses C feasible patterns, since all the remote-
processing UEs are sorted according to the ascending order
of their number of feasible patterns, C is far less than N ,
and thus the complexity of RB pattern extracting in Steps
5–8 is O(CN) = O(N). Consequently, the complexity of
Algorithm 3 is O(N). Hence, the complexity of Algorithm 4
is O

(
1
δ2 ∗ (K2

2 + K
2 + 1) ∗ N ∗ N

)
= O

(1
δ2 K2N2)

. There-
fore, the complexity of each resource allocation procedure is
O

(
log2

(
τmax−τmin

ε

))
+ O

(1
δ2 K2N2)

= O
(1

δ2 K2N2)
.

Based on the above analysis and given that the outer ’while’
loop in Algorithm 1 runs for L times, the complexity of
FAJORA is O

(1
δ2 ΞLK2N2)

.

VIII. RESULTS AND DISCUSSIONS

In this section, simulation results are presented to evaluate
the performance of the proposed algorithms. The following
parameters remain unchanged through our simulations: L =
20, K = 15 [9], W0 = 180 KHz [9], pmax

n = 2 W [22].
The following parameters are set as default unless otherwise

specified: N = 6, I = 2, M = 4, γ = 1, a = 0.2, b = 0.8,
F fog = 5∗109 cycles/s [18], f c

n = 20∗109 cycles/s [16], f loc
n

is uniformly distributed in [50, 400] M cycles/s, and Rfc
n =

15 ∗ 106 b/s [20]. For simplicity, the wireless channel gain
gn,k(j) = hn,k(j)

σ2 is assumed to take values in [5, 14] randomly
[29]. We adopt face recognition [12] as the default application,
where Dn = 0.42 MB and λn = 297.62 cycles/bit [12].

Next, we verify the performance gain obtained by our
proposed algorithms and the following schemes are compared.

• The proposed scheme (FAJORA): The scheme obtains
offloading decisions and resource allocation using FAJO-
RA in Algorithm 1, where in each iteration computation
resource is allocated using Algorithm 2, RB pattern and
power are allocated using Algorithm 4, and each UE picks
out the optimum RB pattern using Algorithm 3.

• Radio and computation resource allocation optimization
(RCRA): RB pattern and power are allocated using Al-
gorithms 3 and 4, computation resource are allocated
using Algorithm 2, and offloading decisions are obtained
randomly.

• Radio resource allocation with HAEOP (RRA-H): RB
pattern and power are allocated employing Algorithms
3 and 4, while offloading decisions and computation
resource allocation are obtained randomly.

• Radio resource allocation and random pattern extracting
(RRA-R): RB pattern and power are allocated using
Algorithm 4, and from the allocated patterns each UE
selects one of which randomly. Offloading decisions and
computation resource allocation are obtained randomly.

• Local processing (Local): All UEs process their applica-
tions locally without optimization.

Moreover, in the following Figs. 8 and 9, another algo-
rithm named SDR based offloading decision optimization and
optimized resource allocation algorithm (SDR-ODRA) was
considered as a benchmark to demonstrate the performance of
our proposed BTFA based offloading decision making algo-
rithm. In SDR-ODRA, the offloading decisions are obtained
using the SDR based algorithm in [20], where in each iteration
computation resource is allocated using Algorithm 2, RB
pattern and power are allocated using Algorithm 4, and each
UE picks out the optimum RB pattern using Algorithm 3.

Remark: SDR based offloading decision making algorithm
was first novelly proposed by the authors in [20], and now
has been widely used in many existing works. Similar to our
previous work [23], the number of runs (i.e., randomization
trails) [23] in SDR-ODRA is set as 6.

Five metrics are adopted, including: 1) three kinds of delay,
i.e., the maximum, minimum and average delay of all UEs,
which are denoted as Tmax (i.e., objective value), Tmin, and
Tav, respectively; 2) the number of benefited UEs, where
a benefited UE means the UE whose delay consumption is
reduced compared with local processing; 3) the probability of
failure in offloading, where a UE fails in offloading means it
is allocated with pattern j = 1.

11

A. Convergence of Algorithms 1, 2 and 4

0 10 20 30 40 50
3.5

4

4.5

5

5.5

6

6.5

7

Number of iterations

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

Fig. 3: Convergence of Algorithm 1 (FAJORA).

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

Number of iterations

ζ 1

Ffog=1*109

Ffog=3*109

Ffog=5*109

Ffog=8*109

Fig. 4: Convergence of Algorithm 2.

0 5 10 15 20
0

5

10

15
x 10

10

D
u

a
l v

a
ri
a

b
le

s
µ n

µ

1

µ
2

µ
3

µ
4

0 5 10 15 20
0

2

4

6
x 10

7

Number of iterations

D
u

a
l v

a
ri
a

b
le

s
ω

n

ω

1

ω
2

ω
3

ω
4

Fig. 5: Convergence of Algorithm 4.

Fig. 3 verifies the convergence of the outer loop of FAJORA
in Algorithm 1, from which we can see FAJORA converges
fast within 10 iterations. Figs. 4 and 5 evaluate the convergence
rate of the main loop of Algorithms 2 and 4, respectively, both
of which are embedded in Steps 3, 9 and 15 in Algorithm 1.
As discussed in Section V, τ is the maximum delay of all

fog-processing UEs, and Fig. 4 shows that τ decreases under
different F fog after each iteration until convergence. Fig. 5
shows that the dual variables in Algorithm 4 converge fast.
According to the three figures, we know that the proposed
algorithms are cost-efficient in solving the NP-hard problem
(P1).

1 2 3 4 5
1

1.5

2

2.5

3

3.5

Number of UEs
(a)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
Exhaustive

1 2 3 4 5
0

100

200

300

400

500

600

Number of UEs
 (b)

E
xe

cu
tio

n
 t

im
e

 o
f

a
lg

o
ri
th

m
 (

s)

FAJORA
Exhaustive

Fig. 6: Effectiveness and complexity of FAJORA.

Fig. 6 shows the comparisons in effectiveness and com-
plexity between the proposed algorithm FAJORA and ex-
haustive algorithm, where offloading decisions are obtained
by exhaustive search, and computation and communication
resource allocation employ our proposed Algorithms 2, 3,
and 4. From the Fig. 6(a), it can be known that FAJORA
is slightly inferior to exhaustive search in performance, i.e.,
a little increase in objective value. However, the complexity
comparison in Fig. 6(b) indicates that the execution time of
exhaustive algorithm increases exponentially with the number
of UEs, while FAJORA only takes a little execution time even
with more UEs, indicating that is good in scalability.

B. Effectiveness of Algorithm 3 (HAEOP)

Maximum delay (s) Minimum delay (s) Average delay (s)
0

5

10

15

RRA−H
RRA−R

Number of benefited UEs Probability of failure in offloading (%)
0

2

4

6

RRA−H
RRA−R

Fig. 7: Performance evaluation of Algorithm 3.

In Fig. 7 the performance of HAEOP in Algorithm 3 is
evaluated by comparing RRA-H and RRA-R, where all the
parameters adopt their default values. As shown in the first
sub-figure, the three delays Tmax, Tmin and Tav of RRA-H

12

are always much shorter than that of RRA-R. The second sub-
figure indicates RRA-H could benefit more UEs and reduce
the probability of failures in offloading effectively.

The reason for Fig. 7 is that: in RRA-R, each UE selects a
random pattern from its feasible patterns, thus its chosen pat-
tern may contain the same RB with the patterns chosen by its
previous UEs, and consequently conflict will happen, leading
to higher failure probability and less benefited UEs. While in
RRA-H, since HAEOP is adopted in pattern selection, each
UE picks out the optimum feasible pattern, considering exclu-
siveness of RBs, thus failures could be avoided effectively,
and therefore more UEs will be benefited as is shown in
the second sub-figure. On the other hand, HAEOP takes RB
utilization into account, thus the maximum RB utilization can
be obtained under the final selected pattern allocation scheme.
Consequently, Tmax, Tmin and Tav can be reduced greatly as
shown in the first sub-figure.

C. Performance Comparisons versus Different Application
parameters

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Processing density λ
n
 (CPU cycles/bit)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x(s

)

FAJORA
SDR−ODRA
RRA−H
RCRA
RRA−R
Local

Fig. 8: Objective value Tmax comparison under different processing
density λn.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

Input data size D
n
 (MByte)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
SDR−ODRA
RRA−H
RCRA
RRA−R
Local

Fig. 9: Objective value Tmax comparison under different input data
size Dn.

Figs. 8 and 9 shows how application parameters including
processing density λn and input data size Dn affect the
objective value Tmax, respectively. The two figures are in

accordance with our intuition that more input data Dn or
the higher computation complexity λn, higher delay will be
brought in, and consequently a lager value of Tmax. Moreover,
as a joint optimization of offloading decisions and resource
allocation, FAJORA performs always the best, followed by
SDR-ODRA, RCRA, RRA-H, and RRA-R successively, and
Local is the worst in performance.

However, some differences exist between the two figures. In
Fig. 8, Dn takes the default value 0.42 MB, which is relatively
large. When λn is very small, local processing is usually a
good choice, while offloading will consume more time in data
transmission. In Fig. 9, λn = 297.62 cycles/bit. When Dn is
very small, the computation workload Cn is also very small, so
all the algorithms will consumes quite less time, and therefore
Tmax is very small for all the algorithms.

It should be noted that, although SDR-ODRA can obtain
almost the same performance as FAJORA, the computational
complexity of SDR-ODRA is much higher than FAJORA in
the offloading decision making process. In SDR-ODRA, of-
floading decisions are obtained using CVX and randomization,
where interior point method is adopted, leading to higher
complexity. In FAJORA, the outer fireworks algorithm need
several iterations to converge, and in each iteration each spark
(i.e., an offloading decision) can be generated using fireworks
operators with very tiny complexity.

D. Performance Comparisons versus Channel State

0.5~2 4~6 8~10 12~14 16~18
0

2

4

6

8

10

12

14

Wireless channel gain g
n,k(j)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 10: Objective value Tmax comparison under different different
wireless channel gain gn,k(j).

Figs. 10 and 11 display how channel state affects the
objective value Tmax, including the wireless access channel
gain gn,k(j) between UEs and the fog node, and the wired
link rate Rfc

n between fog and cloud, respectively. As channel
state has no influence on local processing, its objective value
always keeps still. However, when the channel state gets better
and better, less time will be consumed in data transmission for
all other algorithms, leading to a decrease in Tmax for them.
From the two figures we can also find that FAJORA always
performs the best, with its objective value Tmax far less than
other algorithms.

13

1 3 5 10 15 20
0

2

4

6

8

10

12

Wired rate R
n
fc between fog and cloud (Mbit/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

 FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 11: Objective value Tmax comparison under different different
wired rate Rfc

n between fog and cloud.

50 100 150 200 250 300 350 400
0

5

10

15

20

25

Computation capabicity f
n
loc of UE (M cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 12: Objective value Tmax comparison under different local
processing capability f loc

n .

E. Performance Comparisons versus the Processing Capabil-
ities

The impact of local processing capability f loc
n on Tmax is

shown in Fig. 12, where Tmax decreases quickly with the
increase of f loc

n for all the algorithms. When the value of
f loc

n is large, Local performs the best in delay reduction.
This is reasonable, because when the processing capability
of a UE is strong enough, it is capable in processing most
applications with good performance, and there’s no need to
offload. However, the obtained Tmax of FAJORA is only a
little higher than Local, indicating FAJORA performs well
in this case. On the other hand, when f loc

n is very small,
FAJORA still performs very well, whereas the delay of all
other algorithms are too long to bear.

In Figs. 13 and 14, we evaluate the impact of the fog
processing capability F fog and cloud processing ability f c

n
on Tmax. When either of the two parameters increase, Tmax
decrease, which is the same for all the algorithms (except for
Local) and is in line with our intuition. Besides, FAJORA
performs the best in delay reduction and far outdistances other
algorithms.

0 1 2 3 4 5
2

4

6

8

10

12

14

16

Total computation capabicity Ffog of the fog node (G cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 13: Objective value Tmax comparison under different total fog
processing capability F fog .

0 5 10 15 20
0

5

10

15

20

Computation capabicity f
n
c of the cloud server (G cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 14: Objective value Tmax comparison under different cloud
processing capability fc

n.

I=1,U=2 I=2,U=4 I=3,U=6 I=4,U=8 I=5,U=10
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of fireworks I and sparks U

T
h

re
e

 d
iff

e
re

n
t

d
e

la
y

m
e

tr
ic

s
(s

)

T

max
T

min
T

av

Fig. 15: Objective value Tmax comparison under different number
of fireworks I and sparks M .

14

F. Performance Comparisons versus FA’s Parameters

Fig. 15 presents the influence of the parameters in fireworks
algorithm on three different delay metrics Tmax, Tmin and
Tav . For notational simplicity, we define the total number of

explosion and mutation sparks as U =
I∑

i=1
iχi + γ. As is

shown, with the number of fireworks I and sparks U increase,
the three delays all decrease. This is because, as was men-
tioned, each of the fireworks or sparks is an offloading decision
matrix and corresponds to a resource allocation scheme. So
the more fireworks and sparks, the more joint computation
offloading and resource allocation schemes, consequently the
better searching capabilities and the shorter obtained delays.
However, the more fireworks and sparks, the more computation
complexity, whereas the delay reduction is not so significantly
as is shown in Fig. 15. Thus we choose I = 2 and U = 4
as the default number of fireworks and sparks, respectively, to
strike a balance between searching capability and computation
complexity.

IX. CONCLUSIONS

In this paper, we have proposed a framework to optimize
computation offloading, computation resource allocation, RB
pattern assignment, and transmit power allocation. In the
optimization framework, we have considered the maximum
delay reduction problem, which was modeled as an MINLP
problem. We have proposed a low-complexity general al-
gorithm framework FAJORA to decompose it into several
subproblems, where offloading decisions was obtained within
the main framework of FAJORA, and computation and radio
resources allocation was solved by the embedded Algorithms
2, 3, and 4. Abundant simulation results have demonstrated
the convergence and effectiveness of our proposed algorithms.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: In problem (P1), there are four sets of mutually
coupled variables to be optimized. If the optimal offloading
decision Π∗ and computation resource allocation ffog∗ are
given, then (P1) reduces to the joint optimization of RB
pattern assignment and transmit power control among all the
remote-processing UEs in N2. If the optimal RB pattern
assignment S∗ is also obtained, then the problem can be
further reduced to

(P1
1) : min

P
max
n∈N2

(
Dn

rn
+ Vn

)
(42)

s.t. (C9) : pn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K, ∀j ∈ J ,

(C10) :
∑

j∈J

∑

k∈K

pn,k(j) ≤ pmax
n , ∀n ∈ N2,

where Vn = Cnyn

ffog
n

+ Cnxn
f loc

n
+ (T fc

n + T c
n)zn = Cnyn

ffog
n

+ (T fc
n +

T c
n)zn is a constant, so problem (P1

1) is equivalent to

(P2
1) : min

P
max
n∈N2

Dn

rn
(43)

s.t. (C9), (C10).

In the following, we show that problem (P2
1) is NP-hard. As

a special case, we assume there is no max
n∈N2

operation, then

problem (P2
1) becomes

(P3
1) : min

P

Dn
∑

k∈K
W0 log2

(
1 + pn,k(j)hn,k(j)

σ2

) (44)

s.t. (C9), (C10),

which can be transformed into

(P4
1) : max

P

1
Dn

∑

k∈K

W0 log2

(
1 +

pn,k(j)hn,k(j)

σ2

)
(45)

s.t. (C9), (C10).

We can see that the objective function in (P4
1) is a sigmoidal

function.
Definition: A continuous function f [l, u] → R is defined

as a sigmoidal if: either it is convex, concave, or convex for
x ≤ z, z ∈ [l, u] and concave for x ≥ z [31], [32].

Since all the constraints of (P4
1) are linear, (P4

1) maximizes
the sum of a set of sigmoidal functions over a convex
set, which is a sigmoidal programming problem and is NP-
hard [31], [32]. Consequently, problem (P1) is NP-hard, and
Proposition 1 holds.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: When f(x) is concave, then the perspective
function g(x, t) = tf(x/t) is concave, too [28]. Since
sn,j log2(1 + φn,k(j)gn,k(j)

sn,j
) is the perspective function of

the concave function log2(1 + ϕn,k(j)gn,k(j)), it preserves
concavity, too. As the sum of several concave functions is still

concave,
J∑

j=1

K∑

k=1
sn,j log2(1 + φn,k(j)gn,k(j)

sn,j
) is also concave.

On the other hand, the super-level set of concave function
is convex [28], so (C18) is convex. Moreover, (C5) − (C10)
are all linear constraints. Thus, (P7) is a convex optimization
programming that minimize a convex function over a convex
set.

APPENDIX C
PROOF OF PROPOSITION 3

Proof: Observing the definition of D(µ, ω) of (28), we
have

D(µ′, ω′) ≥ τ1 +
∑

n∈N2

µ′
n

pmax
n −

J∑

j=1

K∑

k=1

ϕ∗
n,k(j)

 +

∑

n∈N2

ω′
n

J∑

j=1

K∑

k=1

W0s∗
n,j log2(1+

ϕ∗
n,k(j)gn,k(j)

s∗
n,j

)−
Dn(yn+zn)

τ1 − Vn

. (46)

15

Rearranging (46), we have

D(µ′, ω′)≥D(µ, ω)+
∑

n∈N2

(µ′
n−µn)

pmax
n −

J∑

j=1

K∑

k=1

ϕ∗
n,k(j)

+
∑

n∈N2

(ω′
n−ωn)

J∑

j=1

K∑

k=1

W0s∗
n,j log2

(

1+
ϕ∗

n,k(j)gn,k(j)

s∗
n,j

)

−
Dn(yn + zn)

τ1 − Vn

]
. (47)

Note that a sub-gradient η of a convex function f(·)
is defined as: if f(x) ≥ f(y) + ηT (x − y), ∀x, y. Thus,
Proposition 3 holds.

REFERENCES

[1] J. Kwak, Y. Kim, J. Lee, et al., “DREAM: Dynamic Resource and Task
Allocation for Energy Minimization in Mobile Cloud Systems,” IEEE J.
on Sel. Areas in Commun., vol. 33, no. 12, pp. 2510-2523, 2015.

[2] H. T. Dinh , C. Lee, D. Niyato et al., “A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches,” Wireless com-
munications and mobile computing, vol. 13, no. 18, pp. 1587-1611, 2013.

[3] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy,
Survey and Future Directions,” Springer Internet of Everything, 103-130,
2018.

[4] W. Shi, J. Cao, Q. Zhang, et al., “Edge Computing: Vision and Chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
2016.

[5] T. X. Tran, A. Hajisami, P. Pandey, et al., “Collaborative Mobile Edge
Computing in 5G Networks: New Paradigms, Scenarios, and Challenges,”
IEEE Commun. Mag., vol. 55, no, 4, pp. 54-61, 2017.

[6] B. G. Chun, S. Ihm, P. Maniatis, et al., “Clonecloud: Elastic Execution
Between Mobile Device and Cloud,” in ACM Proc. 6th Eur. Conf.
Comput. Syst., pp. 301-314, 2011.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, et al., “The Case for VM-Based
Cloudlets in Mobile Computing,” IEEE TPervasive Comput., vol. 8, no.
4, pp. 14-23, 2009.

[8] F. Ghavimi, Y. W. Lu, and H. H. Chen, “Uplink Scheduling and
Power Allocation for M2M Communications in SC-FDMA based LTE-A
Networks with QoS Guarantees,” IEEE Trans. on Veh. Technol., vol. 66,
no. 7, pp. 6160-6170, 2017.

[9] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Chan-
nels and Modulation, 3GPP TS 36.211 V8.6.0 Std., Mar. 2009.

[10] E. Cuervo, A. Balasubramanian, D. Cho, et al., “MAUI: Making
Smartphones Last Longer with Code Offload,” in ACM Proc. 8th Int.
Conf. Mobile Syst., Appl., Services, pp. 49-62, 2010.

[11] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative Task Execution in
Mobile Cloud Computing Under a Stochastic Wireless Channel,” IEEE
Trans. Wireless Commun., vol. 14, no. 1, pp. 81-93, 2015.

[12] X. Chen, “Decentralized Computation Offloading Game for Mobile
Cloud Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974-983, 2015.

[13] K. Liu, X. Zhang, and Z. Huang. “A Combinatorial Optimization for
Energy-Efficient Mobile Cloud Offloading over Cellular Networks,” in
Proc. IEEE GLOBECOM, pp. 1-6, 2016.

[14] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint Optimization of Radio
and Computational Resources for Multicell Mobile-Edge Computing,”
IEEE Trans. Signal and Information Processing over Networks, vol. 1,
no. 2, pp. 89-103, 2015.

[15] S. Guo, B. Xiao, Y. Yang, et al., “Energy-Efficient Dynamic Offloading
and Resource Scheduling in Mobile Cloud Computing,” in Proc. IEEE
INFORCOM, pp. 1-9, 2016.

[16] X. Lyu, H. Tian, C. Sengul, et al., “Multiuser Joint Task Offloading
and Resource Optimization in Proximate Clouds,” IEEE Trans. on Veh.
Technol., vol. 66, no. 4, pp. 3435-3447, 2017.

[17] C. Wang, F. R. Yu, C. Liang, et al., “Joint Computation Offloading and
Interference Management in Wireless Cellular Networks With Mobile
Edge Computing,” IEEE Trans. on Veh. Technol., 2017.

[18] P. Zhao, H. Tian, C. Qin, et al., “Energy-Saving Offloading by Jointly
Allocating Radio and Computational Resources for Mobile Edge Com-
puting,” IEEE Access, 2017.

[19] J. Cheng, Y. Shi, B. Bai, et al, “Computation Offloading in Cloud-RAN
Based Mobile Cloud Computing System,” in Proc. IEEE ICC, pp. 1-6,
2016.

[20] M. H. Chen, B. Liang, and M. Dong, “Joint Offloading Decision and
Resource Allocation for Multi-User Multi-Task Mobile Cloud,” in Proc.
IEEE ICC, pp. 1-6, 2016.

[21] Y. Li, M. Sheng, C. W. Tan, et al., “Energy-Efficient Subcarrier Assign-
ment and Power Allocation in OFDMA Systems with Max-min Fairness
Guarantees,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3183-3195, 2015.

[22] Y. Mao, J. Zhang, and K. B. Letaief. “Dynamic Computation Offloading
For Mobile-Edge Computing with Energy Harvesting Devices,” IEEE J.
on Sel. Areas in Commun., vol. 34, no. 12, pp. 3590-3605, 2016.

[23] J. Du, L. Zhao, J. Feng and X. Chu, “Computation Offloading and
Resource Allocation in Mixed Fog/Cloud Computing Systems with Min-
Max Fairness Guarantee.” IEEE Transactions on Communications, vol.
66, no. 4, pp. 1594 - 1608, 2018.

[24] Y. Tan, and Y. Zhu, “Fireworks Algorithm for Optimization,” in Ad-
vances in Swarm Intelligence, Springer, pp. 355-364, 2010.

[25] N. Sharma, and A.S. Madhukumar, “Genetic Algorithm Aided Pro-
portional Fair Resource Allocation in Multicast OFDM Systems,” IEEE
Trans. Broadcasting, vol. 61, no. 1, pp. 16-29, 2015.

[26] Y.J. Gong, J. Zhang, H. S. H. Chung, et al., “An Efficient Resource
Allocation Scheme Using Particle Swarm Optimization,” IEEE Trans.
Evolutionary Computation, vol. 16, no. 6, pp. 801-816, 2012.

[27] S. C. Wang, and Y. H. Liu, “A PSO-Based Fuzzy-Controlled Search-
ing for The Optimal Charge Pattern of Li-ion Batteries,” IEEE Trans.
Industrial Electronics, vol. 62, no. 5, pp. 2983-2993, 2015.

[28] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[29] D.S. Zhai, M. Sheng, X Wang, et al., “Leakage-Aware Dynamic Re-
source Allocation in Hybrid Energy Powered Cellular Networks,” IEEE
Trans. Commun., vol. 63, no. 11, pp. 4591-4603, 2015.

[30] S. Boyd, “Subgradient Methods,” [Online]. Lecture notes of EE364b,
Stanford University, Winter Quarter 2007 (2006).

[31] M. Udell, and S. Boyd, S, “Maximizing a sum of sigmoids,” Optimiza-
tion and Engineering, 2013.

[32] Y. Li, M. Sheng M, X. Wang, et al., “Max-min energy-efficient power
allocation in interference-limited wireless networks”, IEEE Trans. Veh.
Technol., vol. 64, no. 9, pp. 4321-4326, 2015.

