
This is a repository copy of Enabling low-latency applications in LTE-A based mixed
fog/cloud computing systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136368/

Version: Accepted Version

Article:

Du, J., Zhao, L., Chu, X. orcid.org/0000-0003-1863-6149 et al. (3 more authors) (2018)
Enabling low-latency applications in LTE-A based mixed fog/cloud computing systems.
IEEE Transactions on Vehicular Technology, 68 (2). pp. 1757-1771. ISSN 0018-9545

https://doi.org/10.1109/TVT.2018.2882991

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Enabling Low-Latency Applications in LTE-A

Based Mixed Fog/Cloud Computing Systems
Jianbo Du, Liqiang Zhao Member, IEEE, Xiaoli Chu Senior Member, IEEE, F. Richard Yu Fellow, IEEE, Jie

Feng, and Chih-Lin I Senior Member, IEEE

Abstract—In order to enable low-latency computation-
intensive applications for mobile user equipments (UEs), com-
putation offloading becomes critical necessary. We tackle the
computation offloading problem in a mixed fog and cloud
computing system, which is composed of an LTE-A small-
cell based fog node, a powerful cloud center, and a group of
UEs. The optimization problem is formulated into a mixed-
integer non-linear programming (MINLP) problem, and through
a joint optimization of offloading decision making, computation
resource allocation, resource block (RB) assignment, and power
distribution, the maximum delay among all the UEs is minimized.
Due to its mixed combinatory, we propose a low-complexity
iterative suboptimal algorithm called FAJORA to solve it. In
FAJORA, first, offloading decisions are obtained via binary
tailored fireworks algorithm (FA); then computation resources
are allocated by bisection algorithm. Limited by the uplink
LTE-A constraints, we allocate feasible RB patterns instead of
RBs, and then distribute power among the RBs of each pattern,
where Lagrangian dual decomposition is adopted. Since one UE
may be allocated with multiple feasible patterns, we propose a
novel heuristic algorithm for each UE to extract the optimal
pattern from its allocated patterns. Simulation results verify the
convergence of the proposed iterative algorithms, and exhibit
significant performance gains could be obtained compared with
other algorithms.

Index Terms—Computation offloading, fireworks algorithm,
fog computing, LTE-A, resource allocation.

I. INTRODUCTION

With the proliferation of smart user equipments (UEs) and

the popularity of low-latency applications [1], the current

mobile networks have been pushed to their limits. Mobile

cloud computing (MCC) [2] has appeared as a potential way

to cope with the above challenges by offloading computations

to powerful cloud servers. More recently, fog computing

[3] (or mobile edge computing (MEC) [4]) has been put

forwarded as an effective complement to MCC and has been

deemed as an important paradigm and scenario in 5G [5].

*This work was supported in part by National Natural Science Founda-
tion of China (61771358), National Natural Science Foundation of Shaanx-
i Province (2018JM6052), Intergovernmental International Cooperation on
Science and Technology Innovation (2016YFE0123200), the Fundamental
Research Funds for the Central Universities, and the 111 Project (B08038).

J. Du, L. Zhao, J. Feng are with State Key Laboratory of ISN, Xidian
University, No.2 Taibainan-lu, Xi’an, 710071, Shaanxi, China. (Email: du-
jianboo@163.com; lqzhao@mail.xidian.edu.cn; jiefengcl@163.com).

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

F. R. Yu is with the Dept. of Systems and Computer Eng., Carleton
University, Ottawa, ON, Canada (e-mail: Richard.Yu@carleton.ca).

C.-L. I is with the Green Communication Research Center, China Mobile
Research Institute, Beijing 100053, China. (e-mail: icl@chinamobile.com).

By setting up a virtualized platform between UEs and cloud

centers, fog computing can provide computation, storage, and

networking services [6], [7] to nearby UEs, and thus to further

enhance network performance in energy conservation or delay

reduction [5].

Fig.1 shows the typical architecture of a mixed fog/cloud

computing system. Utilizing the computation resources of the

fog nodes, such as WiFi access points (APs), base stations

(BSs), or remote radio heads (RRHs), fog nodes can offer

computation services at the edge of the network [3], [4].

Fog nodes can communicate directly with each other, and

all the fog nodes are connected to the powerful cloud server

through high-speed wired links [3], [4]. The cooperation

between the cloud server and the fog nodes can provide users

with more efficient and appropriate computation offloading

services. However, this new architecture brings many new

problems, e.g., how does the fog cooperate with the cloud,

i.e., where should computation be offloaded to, and how the

resource be allocated, etc., so as to bring the advantages of

the new architecture into full play.

In this paper, in order to enable low-latency compute-

intensive user applications with fairness among UEs guaran-

teed, we propose to minimize the maximum delay consump-

tion among all UEs in an LTE-A based mixed fog/cloud com-

puting system by jointly optimizing computation offloading,

computation resource allocation, uplink RB assignment and

transmit power allocation. Since in the LTE-A uplink, if a UE

is assigned with multiple RBs, they must be adjacent RBs [8],

[9], so we allocate feasible RB patterns to UEs. Each UE then

picks out the optimal pattern from all the assigned feasible RB

patterns and then perform power allocation on the RBs of the

selected pattern. As the joint optimization problem is a mixed

integer non-linear programming (MINLP) problem, we devote

to develop low-complexity suboptimal algorithms to decouple

it into several subproblems to solve.

The main contributions of this paper are listed as follows.

• We propose a novel general iterative algorithm framework

called binary tailored fireworks algorithm based joint

computation offloading and resource allocation algorithm

(FAJORA) to solve the joint optimization problem, where

offloading decisions are first decoupled from the rest

of the problem and obtained through binary tailored

fireworks algorithm.

• We develop a bisection algorithm for computation re-

source allocation, which is nested in FAJORA.

• We solve uplink RB pattern and power allocation prob-

lem, which is still NP-hard, by relaxing , Lagrangian dual

2

decomposition, and sub-gradient projection methods, to

obtain the optimal UE and power allocation for each

feasible RB pattern, where each UE may be allocated

with multiple feasible patterns.

• We then develop a novel heuristic algorithm to extract the

optimal pattern for each UE from all its feasible patterns,

taking the exclusiveness required by RB allocation and

higher RB utilization into consideration, and thus to

obtain more performance gains.

The remainder of this paper is organized as follows. Related

works are presented in Section II. Section III introduces the

system model and problem formulation. In Section IV, we

illustrate the procedure and general structure of FAJORA.

The computation resource allocation algorithm is detailed in

Section V. In Section VI, we first present the RB pattern

and power allocation algorithm, and then detail the heuristic

pattern extracting algorithm. Complexity analysis is presented

in Section VII. Simulation results are provided in Section VIII.

Finally, the paper is concluded in Section IX.

Cloud Cloud Center

Core Network

Femto

Gateway

Macro eNB

F-RAN

Femto eNB

Fog node

Remote Radio Head

(RRH)

Backbone Link

Inter Fog node link

Fig. 1: System architecture of a mixed fog/cloud computing system.

II. RELATED WORKS

In single-UE case [10], [11], task partitioning and offloading

decision is usually optimized in order to maximize energy

savings [10] or to minimize energy consumption [11]. In the

most general multi-user scenarios, computation resources and

communication resources (e.g., bandwidth, resource blocks,

and subcarriers) are shared among UEs. Therefore, except for

offloading decisions, resource allocation is another important

issue needs to be investigated. In [12], game theory was

utilized in an MCC environment. According to other UEs’ de-

cisions, each UE optimized its offloading decision and thus to

minimize its weighted cost. In [13], offloading decisions were

optimized for all UEs to minimize the network energy con-

sumption in an MCC system. The authors in [14] investigated

transmit power optimization under given offloading decisions,

in order to minimize the system energy consumption. The

formulation in [15] combined task level offloading decision

optimization and transmit power allocation in multiuser MCC

and MEC scenarios, respectively, to minimize a weighted

system cost of delay and energy consumption. In [16], except

for optimizing offloading decisions and transmit power allo-

cation, the authors extended computation resource allocation

into the optimization framework to further reduce latency and

energy consumption of all the UEs in an MEC network. The

following references optimized the allocation of other forms

of radio resources instead of transmit power. The authors in

[17] formulated a joint optimization of the offloading decision

making, resource block (RB) allocation, and computation

resource allocation in the MEC server, with transmit power

given as a constant, to minimize the total weighted cost

of delay and energy consumption of all UEs. In [18], in

order to minimize system energy consumption, the authors

performed a joint optimization of computation offloading, sub-

carrier assignment, and computation resource allocation in

a fog computing system. The authors in [19] formulated a

system energy consumption minimization problem with the

required delay tolerance satisfied in an MCC system, by a joint

optimization of beamformer designing, computation resources

allocation and offloading decision making. The authors in

[20] first proposed to jointly optimize the offloading decision

making, computation resource allocation, and radio transmit

rate allocation pioneeringly in an MCC system, in order to

conserve energy while satisfying user delay constraints, while

radio resources were allocated in a coarse-grained unit of bit/s.

To summarize, [12], [13] only optimized offloading de-

cisions, [14] only optimized transmit power allocation, [15]

combined the two aspects for further optimization, and [16]–

[19] integrated computation resource allocation into the op-

timization framework besides offloading decision optimiza-

tion and radio resource allocation. However, in [14]–[20],

radio resource allocation only covered a certain dimension

of radio resources, such as transmit power, RB, or subcarrier

allocation, without a joint optimization of multidimensional

wireless resources for further performance gains. What’s more,

applications were offloaded either to the cloud server [12]–

[15], [19], [20] or to the fog node [16]–[18], without a

cooperation between the both for providing much stronger

offloading services. Moreover, the above related works [13]–

[20] concerned the system-level performance, without consid-

ering that of individual UEs. Consequently, UEs with higher

transmit rate will benefit from computation offloading, but at

the expense of a performance decline of the UEs with lower

transmit rate, giving rise to unfairness among UEs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the concerned scenario,

then discuss the delay consumption in local, fog, and cloud

processing modes, respectively, and finally we formulate our

optimization problem under the concerned scenario.

A. Description of the Concerned Scenario

We consider a system comprising N UEs, an LTE-A small

cell based fog node, and a distant cloud server. The fog node

and the cloud are jointed by a fiber link, while all the N UEs

are connected to the fog node through wireless links sharing

K RBs in each transmission time interval (TTI, occupying

1 ms [8], [9]). Each RB is allocated to at most one UE in

3

the small cell [8], [9], [21]. We consider a quasi-static scene

where all UEs and the wireless channels keep still within

an offloading period (usually several seconds [12], containing

several thousands of TTIs). The assumption holds for many

actual applications such as face recognition, natural language

processing, and so on, where the input is not so large that

computation offloading could be accomplished within a short

time less than the time duration of UEs’ mobility and wireless

channels’ variation. Thus, in the following, we consider the

offloading period as the time unit where the optimization is

performed [11], [12], [14], [16], [22], [23], and all the TTIs

in the same offloading period adopt the same optimization

results.

Each UE has only one inseparable application may be

executed locally or remotely in application-level through the

following process. Firstly, it sends an offloading request (in-

cluding the information about the application and the UE

itself) to the manager in the fog node [23]. The manager

collects the information about wireless channel states and the

available resources in the fog node, together with the offload-

ing requests, it determines the offloading decision (where the

application be processed, i.e., in the UE locally, in the fog,

or in the cloud) and the associated resource allocation for

each UE. The offloading decisions are then sent back to all

the UEs, and the corresponding resources will be allocated to

them in offloading. As an offloading request is usually very

tiny, we suppose that no buffer is needed for queueing the

computation requests [22]. Also, the delay in decision making

is not considered to enable tractable analysis [23].

Denote the UE set as N , and the offloading decision of

UEn as xn, yn, zn. Let xn = 1, yn = 1, zn = 1 represent that

the application is processed by UEn itself, by the fog node, or

by the cloud, respectively; otherwise, xn = 0, yn = 0, zn = 0.

Consequently, we have

xn + yn + zn = 1, ∀n ∈ N . (1)

The offloading decisions of all UEs is collected in

the offloading matrix Π, which is given by Π =




x1, ..., xN

y1, ..., yN
z1, ..., zN





3×N

, where the nth column is the offload-

ing decision of UEn.

The fog node has the ability to process applications, sub-

jecting to its computation capability. When multiple UEs

choose fog-processing, the fog node will allocate computation

resources (in CPU cycles/s) to them. When cloud-executing

is selected by multiple UEs, their applications will firstly be

transmitted from the UEs to the fog node through a shared

wireless access link, and then be forwarded by the fog node

to the cloud server through a wired fiber link. Since the

computation resources in the cloud server is sufficient, and

the capacity of the wired link is large enough, the allocation

of those resources (the decisions are made at the cloud server)

will not be discussed and these resources allocated to each UE

is given as known quantities [20]. However, the limited radio

resource needs to be assigned among all the remote-executing

UEs (including all the UEs with yn = 1 or zn = 1). Since

the output of remote processing is usually very tiny, only the

uplink is discussed [11], [12], [16].

The application of UEn can be denoted as Λn =
{Dn, λn}, n ∈ N , where Dn represents the input data size

(in bits), and λn denotes processing density or computation

complexity (in CPU cycles/bit) of the application [1]. The

number of CPU cycles Cn(aka.computation load) required to

complete executing the application is modeled as Cn = Dnλn,

which increases with both the input data Dn and the pro-

cessing density λn. Using program profilers [10], [16], the

manager can obtain Dn, Cn and λn beforehand easily. For

each UE there is a clone in the fog node, and the program

of Λn is backed up in the clone [6], [7], [11], [23], and can

be downloaded easily by the cloud server through the wired

link [10], [14], noting that the overhead for setting up and

synchronize the clone is neglected similar to many existing

works [6], [7], [11], [23]. Hence, only the input data with size

Dn bits will be transmitted from UEn when offloading.

Feasible RB allocation pattern matrix W
n = {wn

k,j} of

size K×J can be constructed for each UEn, where wn
k,j = 1

indicates that RB k is allocated to UEn in the jth pattern,

otherwise wn
k,j = 0. For example, assuming there are K = 4

RBs, the feasible pattern matrix for UEn is given by

W
n =









0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 1 1
0 0 0 0 1 0 0 1 0 1 1









K×J

, n ∈ N , (2)

where J is the total number of feasible patterns given by J =
1
2×(K2+K)+1 [8]. The uplink RB pattern allocation matrix

is formed as S = {sn,j}N×J , where the binary variable sn,j =
1 indicates that UEn selects pattern j, and otherwise sn,j = 0.

If pattern j is assigned to UEn, using Shannon’s formula,

the maximum achievable transmit rate for UEn on RB k in

pattern j can be expressed as

rn,k(j) = W0 log2

(

1 +
pn,k(j)hn,k(j)

σ2

)

= W0 log2
(

1 + pn,k(j)gn,k(j)
)

, (3)

where W0 is the bandwidth of an RB (in Hz); pn,k(j) is the

transmission power of UEn on RB k in pattern j; hn,k(j)

is channel gain, which is assumed to be known at UEn and

remain constant but may change at the boundary of each

offloading period [21]; gn,k(j) =
hn,k

σ2 , and σ2 is the power of

additive white Gaussian noise. Thus, the maximum achievable

transmit rate and power of UEn on pattern j are given by

rn,j =

K
∑

k=1

rn,k(j), (4)

pn,j =
K
∑

k=1

pn,k(j), (5)

and the total achievable transmit rate and power of UEn are

given by

rn =

J
∑

j=1

sn,jrn,j =

J
∑

j=1

K
∑

k=1

sn,jrn,k(j), (6)

4

pn =
J
∑

j=1

sn,jpn,j =
J
∑

j=1

K
∑

k=1

sn,jpn,k(j), (7)

where pn should be less than the maximum transmit power

pmax
n of UEn. It should be noted that in equations (3), (4),

and (6), we assume the wireless channel gain of each RB to

be a random value, without specifically considering the impact

of the number of antennas.

In the following we will discuss the delay consumption of

local, fog and cloud processing, respectively.

B. Delay Under Different Offloading Scenarios

Denote the local processing capability (in CPU cycles/s) of

UEn as f loc
n , then the delay of local processing is

T loc
n =

Cn

f loc
n

. (8)

If fog-processing is selected for UEn, then, it needs to

transmit the input data of size Dn to the fog node. Assume

fog processing only starts when all the input data has been

received, and denote the computation resource allocated to

UEn by ffog
n (in CPU cycles/s), then the delay of UEn under

fog processing is given by

T fog
n =

Dn

rn
+

Cn

ffog
n

. (9)

If the application of UEn is offloaded to the cloud server,

the input data is first transmitted to the fog node, and then sent

to the cloud server by the fog node. Given the rate of the high-

speed wired fiber link and the cloud processing capability for

UEn as Rfc
n (in bit/s) and f c

n (in CPU cycles/s), respectively,

then the wired transmit delay and processing delay in the cloud

are given by T fc
n = Dn/R

fc
n and T c

n = Cn/f
c
n, respectively.

Thus the total delay of UEn for cloud processing is given by

T cloud
n =

Dn

rn
+ T fc

n + T c
n. (10)

A summary of the mainly used notations are presented in

TABLE I.

C. Problem Formulation

We then formulate the joint optimization of computation

offloading and resource allocation and show its NP-hardness.

Based on (8)-(10), the delay of UEn is given by

Tn = T loc
n xn + T fog

n yn + T cloud
n zn. (11)

We intend to minimize the maximum delay consumption

among all UEs, by jointly optimizing the offloading decision

Π, the RB pattern allocation S = {sn,j}N×J , the transmit

power allocation P = {pn,k(j)}N×K×J , and the computation

resource assignment f
fog = {ffog

1 , ..., ffog
N }. The computa-

tion resources in the fog node will be allocated only to the

fog-executing UEs, the set of which is denoted as N1. RBs

will be assigned among all the remote-processing (including

fog-processing and cloud-processing) UEs, the set of which is

denoted as N2. The joint optimization problem is formulated

as

(P1) : min
Π,ffog,S,P

max
n∈N

Tn (12)

s.t. (C1) : xn, yn, zn ∈ {0, 1}, ∀n ∈ N ,

(C2) : xn + yn + zn = 1, ∀n ∈ N ,

(C3) :
∑

n∈N1

ffog
n ≤ F fog,

(C4) : ffog
n ≥ 0, ∀n ∈ N1,

(C5) : sn,j ∈ {0, 1}, ∀j ∈ J , ∀n ∈ N2,

(C6) :
∑

n∈N2

sn,j = 1, ∀j ∈ J |{j = 1},

(C7) :
∑

j∈J

sn,j = 1, ∀n ∈ N2,

(C8) :
∑

n∈N2

∑

j∈J

sn,jW
n ≤ 1, ∀k ∈ K,

(C9) : pn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K, ∀j ∈ J ,

(C10) :
∑

j∈J

sn,jpn,j ≤ pmax
n , ∀n ∈ N2.

TABLE I: Notation Definitions

Symbol Definition

T loc
n , T fog

n , Delay of UEn in local/fog/cloud processing

T cloud
n

f loc
n , ffog

n , Processing ability of UEn

fc
n in local/fog/cloud processing

Dn,Cn,λn Data size/computation load/processing
density of the application of UEn

F fog Total computation capability of the fog node

pmax
n The maximum transmit power of UEn

gn,k(j) Power gain of UEn on RB k in pattern j

sn,j Indicator whether pattern j is allocated to UEn

rn, pn Wireless transmit rate/power of UEn

Rfc
n Wired link rate of UEn between fog and cloud

rn,j , pn,j Transmit rate/power of UEn on pattern j

rn,k(j) Transmit rate/power of UEn

pn,k(j) on RB k in pattern j

S,P RB Pattern/power allocation matrix

xn, yn, zn Offloading decisions of UEn

Π Matrix of all UEs’ offloading decisions

N ,N The set/number of all UEs

N1,N1 The set/number of fog-executing UEs

N2,N2 The set/number of remote-executing UEs

K,K The set/number of RBs

J ,J The set/number of all feasible patterns

W
n Feasible RB pattern matrix for UEn

I ,M ,γ Number of fireworks/total explosion sparks/
mutation sparks

L Number of iterations of FA

In problem (P1), (C1) and (C2) give each UEn the restraints

on its offloading decisions; (C3) shows that the total allocated

computation resource should be less than the total computation

capability F fog in the fog node; (C4) indicates that the

computation resource allocated to each fog-processing UEn

should be nonnegative; (C5) is the binary constraint of RB

pattern allocation; (C6) indicates that except for pattern 1, each

pattern can be assigned to only one UE, while pattern 1 can

5

be assigned to any UE that is not allocated with RB; (C7)

requires that each UE can only be assigned with one pattern;

(C8) guarantees that each RB is allocated to only one UE;

(C9) requires the power on each RB is nonnegative; (C10) is

the maximum transmit power constraint of each UE.

Proposition 1: Problem (P1) is NP-hard.

Proof: See Appendix A.

IV. BINARY TAILORED FIREWORKS ALGORITHM BASED

JOINT COMPUTATION OFFLOADING AND RESOURCE

ALLOCATION ALGORITHM

Since problem (P1) is hard to solve, in this section, we

decouple it into two subproblems, i.e., offloading decisions

making and resource allocation, which are solved by the

proposed algorithm FAJORA.

When a firework is ignited, a burst of sparks will fill

the surrounding space around the firework. Inspired by the

phenomenon, the authors in [24] proposed a new kind of

heuristic algorithm called fireworks algorithm (FA), and have

verified that it performs well in convergence speed and global

searching, compared with other heuristic algorithms such as

genetic algorithm (GA) [25] and particle swarm optimization

algorithm (PSO) [26]. As good candidates for solving MINLP

problem, heuristic algorithms have been used widely in many

fields such as radio resource allocation [26] and fuzzy control

[27], etc. However, to the best understanding of us, seldom

have they been used efficiently in computation offloading,

especially fireworks algorithm. In the following we will intro-

duce Binary Tailored Fireworks Algorithm(BTFA) firstly, then

we propose the general framework of our proposed FAJORA

for the considered scenario.

A. Some Concepts

1) Fireworks and Sparks: Fireworks and the newly gener-

ated sparks represent feasible solutions in the solution space.

Specifically, a firework/spark indicates an offloading decision

matrix Π in the considered problem.

2) Fitness Function and Fitness Value: Fitness values are

employed to evaluate the performance of feasible solutions.

We take the objective function in (P1) as the fitness function

to obtain the fitness value of each firework.

3) Binary Matrix Distance: Binary matrix distance means

the Manhattan distance of two binary matrixes, i.e., the sum

of the distance between each element of the two matrixes.

Suppose two matrixes X and Y are m × n-dimensional, the

distance between the two matrixes is

d(X,Y) =

m
∑

i=1

n
∑

j=1

|Xi,j − Yi,j |. (13)

B. Overview of FA

The typical steps for solving a problem with FA can be

summarized as follows: First, initialize a swarm of fireworks

and obtain their fitness values according to the specified fitness

function. Then each firework performs explosion operator to

generate some explosion sparks around the firework within a

certain amplitude. The number of sparks and the explosion

amplitude are obtained according to the fitness value of each

firework. The better fitness value of a firework, the more

explosion sparks it will produce, and the smaller amplitude

will be, and vice versa. After that several Gaussian mutation

sparks are generated in order to keep population diversity.

Afterwards, from the population of fireworks and sparks,

several individuals are picked out as the fireworks of the next

iteration. The procedure of explosion, mutation and selection

is repeated until the algorithm reaches convergence, or reaches

the maximum iteration index. Finally, from the individuals

obtained in the last iteration, the individual with the best fitness

value is selected as the solution to the constructed problem.

C. Operations of BTFA

Given total I fireworks, the major operations of the binary

tailored FA are listed as follows.

1) Explosion: The number of the explosion sparks for the

ith firework Πi is given by

χi = ceil









M
fmax − f(Πi) + ϵ

I
∑

i=1

(fmax − f(Πi)) + ϵ









, (14)

where ceil(·) is round up function, M is a parameter con-

straining the total number of explosion sparks, fmax =
max(f(Πi)), i = 1, ..., I is the worst fitness value among

all the I fireworks, and ϵ is an extremely tiny number which

is used to avoid zero-division-error.

To avoid that one firework may generate too less or too

many explosion sparks, bounds are defined for each χi, which

is given by

χ̂i =







round(aM), if χi < aM
round(bM), if χi > bM, a < b < 1,
round(si), otherwise

(15)

where round(·) is the rounding off function, a and b are given

constants, and χ̂i is the number of actual generated explosion

sparks.

For firework Πi, each explosion spark is generated like

this: 1) choose β columns from the N columns randomly;

2) perform cyclic shift on each selected column; 3) the rest

columns are kept unchanged.

2) Mutation: To improve the spark diversity and thereby

to increase searching capability, mutation is introduced. From

the I fireworks, we choose γ of them randomly, each of which

will generate a mutation spark like this: 1) choose β columns

from the N columns randomly; 2) for each of the selected

column, reset it with a random feasible offloading decision;

3) the rest columns are kept unchanged.

3) Selection: After explosion and mutation, there exist

three different kinds of individuals, i.e., fireworks, explosion

sparks, and mutation sparks. The individual with the best

fitness value is always kept as the first firework of the next

generation. To keep diversity of the population, other I − 1
fireworks are selected form the rest individuals according to

their selected probabilities, which are obtained from their

binary matrix distance to all other individuals as follows.

6

According to (13), the binary matrix distance between an

individual Πi and other individuals is given by

R(Πi) =
∑

j∈K

d(Πi,Πj), (16)

where K is the population of all current individuals including

both fireworks and sparks.

Consequently, the selected probability of individual Πi is

given by

p(Πi) =
R(Πi)
∑

j∈K
R(Πi)

. (17)

D. BTFA Based Joint Computation Offloading and Resource

Allocation Algorithm (FAJORA)

Applying the proposed binary tailored operators to tradi-

tional fireworks algorithm, and adopting the same procedure

with FA, we obtain BTFA. Using BTFA we can solve the

original formulated problem (P1), i.e., the final offloading

decision Π and the corresponding resource allocation can

be obtained. Detailed algorithm framework is called BTFA

based joint Computation offloading and resource allocation

algorithm (FAJORA) and is summarized in Algorithm 1 as

folllows.

Algorithm 1 FAJORA

Initialization:

1: Set N , K, F fog , I , M , β, γ, a and b.
2: Initialize Dn, Cn, f

loc
n , pmax

n , Rfc
n , f c

n of each UE.

3: Generate I random fireworks Π1, ...,ΠI in the searching

space, perform resource allocation under each firework,

and obtain the fitness value of each firework.

Iteration:

4: while 1 or l <= L do

5: for i <= I do

6: Obtain the number of explosion sparks χi according

to (14) and (15).

7: for p <= χi do

8: Perform explosion to generate explosion spark p.

9: Perform resource allocation under p.

10: Calculate the fitness value of p.

11: end for

12: end for

13: for j <= γ do

14: Generate mutation spark j.

15: Perform resource allocation under j.

16: Obtain the fitness value of j.

17: end for

18: The best individual is considered as the first firework

of the next iteration, and the other I − 1 fireworks

are chosen from the rest individuals according to the

selected probability in (17).

19: end while

20: Among the fireworks selected in the last iteration, the one

with the minimum fitness value is considered as Π
∗.

21: Output: Π∗ and corresponding resource allocation.

V. COMPUTATION RESOURCE ALLOCATION

Next we will tackle the resource allocation subproblem em-

bedded in Steps 3, 9, and 15 in Algorithm 1, where both radio

and computation resource allocation need to be determined.

In this section, we describe how to obtain the computation

resource allocation, while radio resource allocation will be

presented in the next section.

After offloading decision Π has been obtained, problem

(P1) degrades to the joint optimization of allocating compu-

tation resources, RB patterns, and transmit power as follows

(P2) : min
ffog,S,P

max
n∈N

Tn (18)

s.t. (C3)− (C10).

To reduce the computation complexity, we divide (P2) into

two subproblems: computation resource allocation and radio

resource assignment. For computation resource allocation a-

mong UEs in N1, assuming the radio resource assignment S

and P are given, we have

(P3) : min
ffog

max
n∈N1

(

Cnyn

ffog
n

+Bn

)

(19)

s.t. (C3), (C4),

where Bn = Cnxn

f loc
n

+(T fc
n +T c

n)zn+
Dn(yn+zn)

rn
= Dn

rn
, n ∈ N1

is a constant. Letting Cnyn

f
fog
n

+ Bn = Cn

f
fog
n

+ Bn ≤ τ, n ∈ N1,

the non-smooth problem (P3) is converted to

(P4) : min
ffog,τ

τ (20)

s.t. (C3), (C4),

(C16) :
Cn

ffog
n

+Bn ≤ τ, ∀n ∈ N1.

Since Cn

f
fog
n

≥ 0, then τ −Bn ≥ 0, so we have

0 ≤
Cn

τ −Bn

≤ ffog
n , ∀n ∈ N1. (21)

Consequently, we have

∑

n∈N1

Cn

τ −Bn

≤
∑

n∈N1

ffog
n ≤ F fog. (22)

In order to minimize the maximum delay among all the

fog-executing UEs, the UE with the maximum delay (which is

denoted by UE∗) needs to be allocated with more computation

resources, so less computation resources will be left for all the

other UEs (i.e., UEs in the set N1|UE∗), leading to an increase

in the delay of those UEs. Performing the above process

iteratively, all the computation resources will be distributed

evenly among all the fog-executing UEs in the end. Thus we

have
∑

n∈N1

Cn

τ −Bn

=
∑

n∈N1

ffog
n = F fog. (23)

Thus problem (P4) can be converted to

(P5) : min
τ

τ (24)

s.t. (C17) :
∑

n∈N1

Cn

τ −Bn

= F fog.

7

Since the left-hand side of (C17) is a monotonic decreasing

function about τ , bisection method can be used to solve

problem (P5), which is detailed in Algorithm 2.

Algorithm 2 Bisection Method for Computation Resource

Allocation

Initialization:

1: Set τmin = max{Bn}, τmax =
∑

n∈N1

(

CnN1

F fog +Bn

)

.

2: Set i = 1 and the precision ε > 0.

Iteration:

3: while 1 do

4: τ i = (τmin + τmax)/2.

5: if | τmax − τmin |≤ ε then

6: τ∗ = τ i.
7: else

8: if
∑

n∈N1

Cn

τ i−Bn
> F fog then

9: τmin = τ i.
10: else

11: τmax = τ i.
12: end if

13: end if

14: i = i+ 1.

15: end while

16: Let τ∗ = τ i and substituting it into (23), ffog
∗

is obtained.

17: Output: ffog
∗
.

VI. COMMUNICATION RESOURCE ASSIGNMENT

After computational resource allocation is obtained, prob-

lem (P2) degrades to the joint optimization of RB pat-

tern assignment and power allocation among all remote-

executing UEs in N2. Denoting the RB pattern assignment

and transmit power allocation as S = {sn,j}N2×J and

P = {pn,k(j)}N2×K×J , then the radio resource allocation

subproblem is given by:

(P6) : min
S,P

max
n∈N2

(

Dn(yn + zn)

rn
+ Vn

)

(25)

s.t. (C5)− (C10),

where Vn = Cnyn

f
fog
n

+ Cnxn

f loc
n

+ (T fc
n + T c

n)zn = Cnyn

f
fog
n

+

(T fc
n + T c

n)zn is a constant. However, (P6) is still an

NP-hard problem as proven in Appendix A. To make the

problem tractable, we first relax each sn,j to a continuous

interval, i.e., 0 ≤ sn,j ≤ 1; then we define a new matrix

Φ = {ϕn,k(j)}N2×K×J = {sn,jpn,k(j)}N2×K×J to replace

P = {pn,k(j)}N2×K×J . Noting
Dn(yn+zn)

rn
= Dn

rn
, n ∈ N2,

and letting max
n∈N2

(

Dn

rn
+ Vn

)

= τ1, we have Dn

rn
+ Vn ≤

τ1, n ∈ N2, then (P6) can be rearranged as

(P7) : min
S,Φ,τ1

τ1 (26)

s.t. (C5) : 0 ≤ sn,j ≤ 1, ∀n ∈ N2, ∀j ∈ J ,

(C6)− (C8),

(C9) : ϕn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K,

(C10) :
J
∑

j=1

K
∑

k=1

ϕn,k(j) ≤ pmax
n , ∀n ∈ N2,

(C18) : rn ≥
Dn

τ1 − Vn

, ∀n ∈ N2.

Proposition 2: Problem (P7) is jointly convex in S and Φ

for given τ1.

Proof: See Appendix B.

Since (P7) is convex, Slater’s condition [28] is met and

0 duality gap can be assured, so we can solve it employing

Lagrangian dual decomposition and sub-gradient projection

method [29]. Once the optimal solution {S∗,Φ∗} to (P7) is

obtained, the optimal solution {S∗,P∗} to (P6) is obtained.

A. Lagrange Dual Decomposition Based RB Pattern and

Power Allocation

To reduce the number of dual variables and thus to improve

convergence speed, the partial Lagrange function of (P7) is

given by (27), where µ = {µn} ≽ 0, n ∈ N2 and ω =
{ωn} ≽ 0, n ∈ N2 are Lagrange dual variables corresponding

to (C10) and (C18) in (P7), respectively.

The Lagrange dual function is given by

D(µ,ω) = min
S,Φ,τ1∈{(C5)−(C9)}

L(S,Φ, τ1,µ,ω), (28)

which can be decomposed into J−1 independent subproblems

(except for pattern j = 1). The jth subproblem under given

dual variables (µ,ω) is given as

(P8) : min
sj ,Φj ,τ1

Lj(sj ,Φj , τ1) (29)

s.t. (C5)− (C9),

where sj = {sn,j}TN2∗1
, Φj = {ϕn,k(j)}N2×K is the sub-

matrix of S and Φ for RB pattern j, and

Lj(sj ,Φj , τ1) = τ1 −
∑

n∈N2

µn

K
∑

k=1

ϕn,k(j) (30)

+
∑

n∈N2

ωn

K
∑

k=1

sn,jW0 log2

(

1 +
ϕn,k(j)gn,k(j)

sn,j

)

.

From (P8) we know that sj contains only one nonzero

binary entry, because every pattern j can only be allocated to

one UE as required in constraint (C6). For pattern j, assuming

sn,j , n ∈ N2, is known, we optimize power allocation for each

RB in pattern j. Let

ξn,j = ωn

K
∑

k=1

sn,jW0 log2

(

1 +
ϕn,k(j)gn,k(j)

sn,j

)

−
K
∑

k=1

µnϕn,k(j) + τ1, (31)

8

L(S,Φ, τ1,µ,ω) (27)

= τ1 +
∑

n∈N2

µn



pmax
n −

J
∑

j=1

K
∑

k=1

ϕn,k(j)



+
∑

n∈N2

ωn





J
∑

j=1

K
∑

k=1

sn,jW0 log2

(

1 +
ϕn,k(j)gn,k(j)

sn,j

)

−
Dn(yn + zn)

τ1 − Vn



 .

(P8) reduces to the following problem

(P9) : Γn,j = min
φn,k(j)

ξn,j (32)

s.t. (C8′) : ϕn,k(j) ≥ 0, ∀n ∈ N2, k ∈ K.

Let
∂ξn,j

∂φn,k(j)
= 0, the optimal power allocation for each RB

in pattern j is obtained as follows

p∗n,k(j) =
ϕn,k(j)

sn,j
=

(

ωnW0

µn ln 2
−

1

gn,k(j)

)+

, (33)

where x+ , max{0, x}. By substituting p∗
n,k(j) in place of

φn,k(j)

sn,j
in (31), we obtain Γn,j as

Γn,j =
(

ξn,j | pn,k(j) = p∗n,k(j)

)

. (34)

Performing the procedure (31)-(34) for each UE in N2, we

obtain Γj = {Γn,j}, n ∈ N2. The UEn with the minimum

Γn,j , n ∈ N2, is selected as the optimal UE n∗ for pattern j.

We allocate pattern j to UE n∗, and set s∗n∗,j = 1. Thus, the

optimal solution s
∗
j = {s∗n∗,j} to the jth sub-problem in (P8)

is given by

s∗n∗,j =

{

1, n∗ = argmin
n

{Γn,j}

0, otherwise
. (35)

Performing the procedure (29)-(35) for every pattern j ∈ J ,

we obtain S
∗ = {s∗1, ...s

∗
J}.

B. Heuristic Algorithm to Extract the Optimal Pattern

(HAEOP)

Note that in S
∗, one UE may be allocated with more

than one pattern, while in the LTE-A uplink one UE can be

allocated with at most one pattern (as in (C7)), and the patterns

allocated to different UEs should not contain the same RBs

(as in (C8)), otherwise conflict will occur. A conflict table of

each RB in 4-RB case is listed below in Table II.

TABLE II: Conflict table in 4-RB case

Index of RB Corresponding conflicting patterns

1 2,6,9,11

2 3,6,7,9,10,11

3 4,7,8,9,10,11

4 5,8,10,11

We propose a heuristic algorithm called heuristic algorithm

to extract the optimal pattern (HAEOP) for each UE to pick

out the optimal pattern from their feasible patterns subjecting

to constraints (C7) and (C8). It is given in Algorithm 3 and

explained below.

In the sorting process (Step 4), we will give a higher

priority to the UE with less feasible patterns, since UEs with

Algorithm 3 HAEOP

1: Input: The obtained S
∗.

2: List the conflict table for each RB according to W
n.

3: List the initial feasible pattern set for each remote-

processing UE according to S
∗.

4: Sort the N2 remote-processing UEs according to the

number of their initial feasible patterns. The less it is,

the top the UE. If multiple UEs have the same number of

feasible patterns, compare the minimum feasible pattern

index. The smaller it is, the top the UE.

5: Start the first round of pattern selection among all the

valid remote UEs. If a UE has no feasible pattern, it is

deemed as an invalid UE, and allocate pattern j = 1 to

it. If there’s only one remote UE, choose pattern j = J
as its final scheme, then break. Else, the first UE chooses

the minimum pattern index from all its feasible patterns.

6: For the middle 2 ∼ (N2 − 1) UEs, perform pattern

selection according to the following rules. (i) First each

UE obtains all patterns conflicting with any its previous

UEs; (ii) take out all the conflict patterns from its initial

feasible pattern set, and the rest constitutes its new feasible

pattern set; (iii) chooses the pattern with the minimum

index from its new feasible pattern set; if the set is empty,

allocate pattern j = 1 to the UE.

7: The last UE first performs the same procedure as the

previous 2 ∼ (N2 − 1) UEs did to obtain its feasible

pattern set. If the set is nonempty, choose the maximum

index from this set; else choose pattern j = 1.

8: Calculate the total number of occupied RBs according to

the chosen pattern of each UE. If it is less than K, start

the next round of pattern selection: the first UE chooses

its next feasible pattern; then the rest valid UEs repeat the

same procedure as Steps 6 and 7 above, until either of the

following two terminal conditions are satisfied: (i) the total

number of occupied RBs equals to K, then the patterns

selected in this round are considered as the optimal pattern

allocation scheme; or (ii) if any valid UE has no feasible

pattern, then the patterns selected in the previous round

are considered as the optimal scheme.

9: Output: The optimal pattern S
∗∗ = {s∗∗n∗,j∗}.

more feasible patterns have a higher probability of finding a

feasible pattern after all other UEs have performed their pattern

selection.

According to W
n, a pattern with a smaller index contains

less RBs. So in Steps 5-6, the first 1 ∼ (N2 − 1) UEs will

choose the pattern with the smallest index among their feasible

patterns, so that the remaining UEs may have more chance of

9

finding a feasible pattern. In Step 7, the last UE will choose the

feasible pattern with the maximum index in order to maximize

RB utilization. If any UE is left with no feasible pattern in

the first round of selection, i.e., all its initial feasible patterns

conflict with the chosen patterns of its previous UEs, then the

UE is allocated with pattern j = 1 (no RBs) and is called

an invalid UE (i.e., it fails in task offloading), otherwise it is

called a valid UE.

Step 8 terminates under one of the two conditions: 1)

someone is left with no feasible pattern, then the patterns of

all remote-processing UEs selected in the previous round are

considered as the optimal pattern allocation scheme; 2) all the

K RBs have been allocated, then the patterns selected in this

round are considered as the optimal scheme. We denote the

optimal pattern allocation matrix as S
∗∗ = {s∗∗n∗,j∗}.

After the optimal RB pattern allocation S
∗∗ is obtained, we

perform the optimal power allocation for each UE n∗ on the

RBs in its selected pattern j∗ as follows

p∗∗n∗,k(j∗) =

{

p∗
n,k(j), n = n∗ and j = j∗

0, otherwise
. (36)

C. Lagrange Multipliers Update

After solving all subproblems in (P8), S and P can be

obtained for given µ and ω. The dual variables µ and ω can

be updated by resolving the dual problem of (P7), which is

given by

(P10) : max
µ,ω

D(µ,ω) (37)

s.t. µ ≽ 0,ω ≽ 0.

From (27) and (28), we know that (P10) is convex, because

D(µ,ω) is a linear function about the dual variables µ and ω.

By utilizing sub-gradient projection method, we solve (P10)
in an iterative manner to obtain dual optimum µ

∗ and ω
∗.

Proposition 3: The sub-gradients of D(µ, ω) at the tth
iteration are given in equations (38) and (39), where p∗

n,k(j)

and s∗n,j is the optimal solution to dual function (28) for a

given set of dual variables µ and ω.

Proof: See Appendix C.

Based on (38)–(39), the Lagrange multipliers are updated

with the sub-gradient projection method [30] as follows

µn(t+ 1) = [µn(t)− h(t)▽ µn(t)]
+
, ∀n, (40)

ωn(t+ 1) = [ωn(t)− j(t)▽ ωn(t)]
+
, ∀n, (41)

where t is the iteration index; h(t) and j(t) are positive

step sizes. In this paper we adopt square summable but not

summable step sizes [30], where h(t) = 1/(10 ∗ t), and

j(t) = 1/(10−1 ∗ t). The Lagrange multipliers are updated

iteratively until the required precision is satisfied. The proce-

dure for joint RB pattern and power allocation is summarized

in Algorithm 4. For a general understanding, the work flow

chart of our system is given in Fig. 2, the main body of which

is our proposed FAJORA.

Algorithm 4 Joint Uplink RB Pattern assignment and Power

Allocation

Initialization:

1: Set µ(0),ω(0) and the precision δ, set t = 0.

Iteration:

2: while 1 do

3: for each pattern j = 1 to K2

2 + K
2 + 1 do

4: for each n do

5: if k ∈ j then

6: Calculate p∗
n,k(j) via (33) and obtain Γj by (34).

7: Obtain s∗n∗,j according to (35), and s
∗
j =

{s∗n∗,j}.

8: Extract S∗∗ = {s∗∗n∗,j∗} from S
∗ = {s∗1, ..., s

∗
J}

using Algorithm 3.

9: For n = n∗ and j = j∗, set p∗∗
n∗,k(j∗) = p∗

n,k(j)

and s∗∗n∗,j∗ = 1.

10: end if

11: end for

12: end for

13: Update dual variables µ, ω from (40) and (41), respec-

tively.

14: t = t+ 1.

15: if ∥µ(t + 1) − µ(t)∥2 < δ, ∥ω(t + 1) − ω(t)∥2 < δ
then

16: break.

17: end if

18: end while

19: Output: S∗∗ = {s∗∗n∗,j∗}, P
∗∗ = {p∗∗

n∗,k(j∗)}.

Initalize I offloading decision matrixes as initial

fireworks

 Formulate the MINLP problem of joint optimization of offloading

decision, computation resource allocation, RB pattern assignment, and

power allocation in a mixed fog/cloud computing LTE-A based system

Final offloading decision and the corresponding resource allocation scheme

Yes

FAJORA

(Algorithm 1)

Resource allocation

procedure under each

firework or spark

(embedded in

Algorithm 1)

Bisection method based

computation resource

allocation (Algorithm 2)

HAEOP optimal pattern

extracting for each UE

(Algorithm 3, embedded

in Algorithm 4)

Obtain the number of explosion

sparks of firework i according

to its fitness value

Perform explosion for firework

i to generate explosion sparks

Resource allocation

i<=I ?

Yes

Generate mutation sparks

No

Calculate fitness value for each

explosion spark

Resource allocation

Calculate fitness value for each

mutation spark

Iteration end?

From the set of fireworks,

explosion sparks, and mutation

sparks, choose I individuals as the

fireworks for the next iteration

No

Among fireworks selected in the last iteration, the one with the minimum fitness

value as the optimal firework (final offloading decision)

Yes

FAJORA

(Algorithm 1)

i<=I = ?

Yes NNo

Iteration end?

No

Among fireworks selected in the last iteration, the one with the minimum fitness

value as the optimal firework (final offloading decision)

Initalize I offloading decision matrixes as initial

fireworksInitialize I offloading decision matrixes as initial

fireworks, perform resource allocation under each

firework, and calculate the fitness value for each firework

Lagrange dual

decomposition based RB

pattern and transmit

power allocation

(Algorithm 4)

Generate mutation sparks

Resource allocation

Calculate fitness value for each

mutation spark

Mutation

From the set of fireworks,

explosion sparks, and mutation

sparks, choose I individuals as the

fireworks for the next iteration

Selection

Obtain the number of explosion

sparks of firework i according

to its fitness value

Perform explosion for firework

i to generate explosion sparks

Resource allocation

Calculate fitness value for each

explosion spark

Explosion

(a) Main framework of FAJORA

(b) Detailed procedure of

resource allocation

Fig. 2: The work flow chart of our system.

VII. COMPLEXITY ANALYSIS

The computational complexity of FAJORA in Algorithm 1

mainly comes from the resource allocation procedures in Steps

9 and 15 in the ’while’ loop. In Step 9, the resource allocation

10

▽µn(t) = pmax
n −

J
∑

j=1

s∗n,jp
∗
n,j , (38)

▽ωn(t) =
J
∑

j=1

s∗n,jrn,j −
Dn(yn + zn)

τ1 − Vn

=
J
∑

j=1

K
∑

k=1

s∗n,jW0 log2

(

1 + p∗n,k(j)gn,k(j)

)

−
Dn(yn + zn)

τ1 − Vn

, (39)

procedure is performed
I
∑

i=1

iχi times for the
I
∑

i=1

iχi explo-

sion sparks, respectively. In Step 15, the resource allocation

procedure is performed γ times for the γ mutation sparks,

respectively. For notational simplicity, we define the total

number of explosion and mutation sparks as Ξ =
I
∑

i=1

iχi + γ.

In each resource allocation procedure, computation re-

sources are allocated using Algorithm 2, and then radio re-

sources are allocated employing Algorithm 4. In Algorithm 2,

it requires O
(

log2

(

τmax−τmin

ε

))

iterations for the bisection

method to converge.

In Algorithm 4, the complexity mainly comes from the

extracting of RB pattern in Step 8, i.e., Algorithm 3. The

sub-gradient projection method in the outer ’while’ loop that

needs O
(

1
δ2

)

iterations to converge [28], the K2

2 + K
2 + 1

iterations in the outer ’for’ loop, and the at most N iterations

in the inner ’for’ loop. The complexity of Algorithm 3 mainly

comes form the pattern extracting procedure in its Steps 5–

8. Since there are at most N2 = N remote-processing UEs,

the complexity of the first round of RB pattern extracting

in Steps 5–7 is O(N). Assuming that the first remote-

processing UE posses C feasible patterns, since all the remote-

processing UEs are sorted according to the ascending order

of their number of feasible patterns, C is far less than N ,

and thus the complexity of RB pattern extracting in Steps

5–8 is O(CN) = O(N). Consequently, the complexity of

Algorithm 3 is O(N). Hence, the complexity of Algorithm 4

is O
(

1
δ2

∗ (K
2

2 + K
2 + 1) ∗N ∗N

)

= O
(

1
δ2
K2N2

)

. There-

fore, the complexity of each resource allocation procedure is

O
(

log2

(

τmax−τmin

ε

))

+O
(

1
δ2
K2N2

)

= O
(

1
δ2
K2N2

)

.

Based on the above analysis and given that the outer ’while’

loop in Algorithm 1 runs for L times, the complexity of

FAJORA is O
(

1
δ2
ΞLK2N2

)

.

VIII. RESULTS AND DISCUSSIONS

In this section, simulation results are presented to evaluate

the performance of the proposed algorithms. The following

parameters remain unchanged through our simulations: L =
20, K = 15 [9], W0 = 180 KHz [9], pmax

n = 2 W [22].

The following parameters are set as default unless otherwise

specified: N = 6, I = 2, M = 4, γ = 1, a = 0.2, b = 0.8,

F fog = 5∗109 cycles/s [18], f c
n = 20∗109 cycles/s [16], f loc

n

is uniformly distributed in [50, 400] M cycles/s, and Rfc
n =

15 ∗ 106 b/s [20]. For simplicity, the wireless channel gain

gn,k(j) =
hn,k(j)

σ2 is assumed to take values in [5, 14] randomly

[29]. We adopt face recognition [12] as the default application,

where Dn = 0.42 MB and λn = 297.62 cycles/bit [12].

Next, we verify the performance gain obtained by our

proposed algorithms and the following schemes are compared.

• The proposed scheme (FAJORA): The scheme obtains

offloading decisions and resource allocation using FAJO-

RA in Algorithm 1, where in each iteration computation

resource is allocated using Algorithm 2, RB pattern and

power are allocated using Algorithm 4, and each UE picks

out the optimum RB pattern using Algorithm 3.

• Radio and computation resource allocation optimization

(RCRA): RB pattern and power are allocated using Al-

gorithms 3 and 4, computation resource are allocated

using Algorithm 2, and offloading decisions are obtained

randomly.

• Radio resource allocation with HAEOP (RRA-H): RB

pattern and power are allocated employing Algorithms

3 and 4, while offloading decisions and computation

resource allocation are obtained randomly.

• Radio resource allocation and random pattern extracting

(RRA-R): RB pattern and power are allocated using

Algorithm 4, and from the allocated patterns each UE

selects one of which randomly. Offloading decisions and

computation resource allocation are obtained randomly.

• Local processing (Local): All UEs process their applica-

tions locally without optimization.

Moreover, in the following Figs. 8 and 9, another algo-

rithm named SDR based offloading decision optimization and

optimized resource allocation algorithm (SDR-ODRA) was

considered as a benchmark to demonstrate the performance of

our proposed BTFA based offloading decision making algo-

rithm. In SDR-ODRA, the offloading decisions are obtained

using the SDR based algorithm in [20], where in each iteration

computation resource is allocated using Algorithm 2, RB

pattern and power are allocated using Algorithm 4, and each

UE picks out the optimum RB pattern using Algorithm 3.

Remark: SDR based offloading decision making algorithm

was first novelly proposed by the authors in [20], and now

has been widely used in many existing works. Similar to our

previous work [23], the number of runs (i.e., randomization

trails) [23] in SDR-ODRA is set as 6.

Five metrics are adopted, including: 1) three kinds of delay,

i.e., the maximum, minimum and average delay of all UEs,

which are denoted as Tmax (i.e., objective value), Tmin, and

Tav, respectively; 2) the number of benefited UEs, where

a benefited UE means the UE whose delay consumption is

reduced compared with local processing; 3) the probability of

failure in offloading, where a UE fails in offloading means it

is allocated with pattern j = 1.

11

A. Convergence of Algorithms 1, 2 and 4

0 10 20 30 40 50
3.5

4

4.5

5

5.5

6

6.5

7

Number of iterations

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

Fig. 3: Convergence of Algorithm 1 (FAJORA).

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

Number of iterations

ζ 1

Ffog=1*109

Ffog=3*109

Ffog=5*109

Ffog=8*109

Fig. 4: Convergence of Algorithm 2.

0 5 10 15 20
0

5

10

15
x 10

10

D
u

a
l v

a
ri
a

b
le

s
µ n

µ

1

µ
2

µ
3

µ
4

0 5 10 15 20
0

2

4

6
x 10

7

Number of iterations

D
u

a
l v

a
ri
a

b
le

s
ω

n

ω

1

ω
2

ω
3

ω
4

Fig. 5: Convergence of Algorithm 4.

Fig. 3 verifies the convergence of the outer loop of FAJORA

in Algorithm 1, from which we can see FAJORA converges

fast within 10 iterations. Figs. 4 and 5 evaluate the convergence

rate of the main loop of Algorithms 2 and 4, respectively, both

of which are embedded in Steps 3, 9 and 15 in Algorithm 1.

As discussed in Section V, τ is the maximum delay of all

fog-processing UEs, and Fig. 4 shows that τ decreases under

different F fog after each iteration until convergence. Fig. 5

shows that the dual variables in Algorithm 4 converge fast.

According to the three figures, we know that the proposed

algorithms are cost-efficient in solving the NP-hard problem

(P1).

1 2 3 4 5
1

1.5

2

2.5

3

3.5

Number of UEs
(a)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
Exhaustive

1 2 3 4 5
0

100

200

300

400

500

600

Number of UEs
 (b)

E
xe

cu
tio

n
 t

im
e

 o
f

a
lg

o
ri
th

m
 (

s)

FAJORA
Exhaustive

Fig. 6: Effectiveness and complexity of FAJORA.

Fig. 6 shows the comparisons in effectiveness and com-

plexity between the proposed algorithm FAJORA and ex-

haustive algorithm, where offloading decisions are obtained

by exhaustive search, and computation and communication

resource allocation employ our proposed Algorithms 2, 3,

and 4. From the Fig. 6(a), it can be known that FAJORA

is slightly inferior to exhaustive search in performance, i.e.,

a little increase in objective value. However, the complexity

comparison in Fig. 6(b) indicates that the execution time of

exhaustive algorithm increases exponentially with the number

of UEs, while FAJORA only takes a little execution time even

with more UEs, indicating that is good in scalability.

B. Effectiveness of Algorithm 3 (HAEOP)

Maximum delay (s) Minimum delay (s) Average delay (s)
0

5

10

15

RRA−H
RRA−R

Number of benefited UEs Probability of failure in offloading (%)
0

2

4

6

RRA−H
RRA−R

Fig. 7: Performance evaluation of Algorithm 3.

In Fig. 7 the performance of HAEOP in Algorithm 3 is

evaluated by comparing RRA-H and RRA-R, where all the

parameters adopt their default values. As shown in the first

sub-figure, the three delays Tmax, Tmin and Tav of RRA-H

12

are always much shorter than that of RRA-R. The second sub-

figure indicates RRA-H could benefit more UEs and reduce

the probability of failures in offloading effectively.

The reason for Fig. 7 is that: in RRA-R, each UE selects a

random pattern from its feasible patterns, thus its chosen pat-

tern may contain the same RB with the patterns chosen by its

previous UEs, and consequently conflict will happen, leading

to higher failure probability and less benefited UEs. While in

RRA-H, since HAEOP is adopted in pattern selection, each

UE picks out the optimum feasible pattern, considering exclu-

siveness of RBs, thus failures could be avoided effectively,

and therefore more UEs will be benefited as is shown in

the second sub-figure. On the other hand, HAEOP takes RB

utilization into account, thus the maximum RB utilization can

be obtained under the final selected pattern allocation scheme.

Consequently, Tmax, Tmin and Tav can be reduced greatly as

shown in the first sub-figure.

C. Performance Comparisons versus Different Application

parameters

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Processing density λ
n
 (CPU cycles/bit)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x(s

)

FAJORA
SDR−ODRA
RRA−H
RCRA
RRA−R
Local

Fig. 8: Objective value Tmax comparison under different processing
density λn.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

Input data size D
n
 (MByte)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
SDR−ODRA
RRA−H
RCRA
RRA−R
Local

Fig. 9: Objective value Tmax comparison under different input data
size Dn.

Figs. 8 and 9 shows how application parameters including

processing density λn and input data size Dn affect the

objective value Tmax, respectively. The two figures are in

accordance with our intuition that more input data Dn or

the higher computation complexity λn, higher delay will be

brought in, and consequently a lager value of Tmax. Moreover,

as a joint optimization of offloading decisions and resource

allocation, FAJORA performs always the best, followed by

SDR-ODRA, RCRA, RRA-H, and RRA-R successively, and

Local is the worst in performance.

However, some differences exist between the two figures. In

Fig. 8, Dn takes the default value 0.42 MB, which is relatively

large. When λn is very small, local processing is usually a

good choice, while offloading will consume more time in data

transmission. In Fig. 9, λn = 297.62 cycles/bit. When Dn is

very small, the computation workload Cn is also very small, so

all the algorithms will consumes quite less time, and therefore

Tmax is very small for all the algorithms.

It should be noted that, although SDR-ODRA can obtain

almost the same performance as FAJORA, the computational

complexity of SDR-ODRA is much higher than FAJORA in

the offloading decision making process. In SDR-ODRA, of-

floading decisions are obtained using CVX and randomization,

where interior point method is adopted, leading to higher

complexity. In FAJORA, the outer fireworks algorithm need

several iterations to converge, and in each iteration each spark

(i.e., an offloading decision) can be generated using fireworks

operators with very tiny complexity.

D. Performance Comparisons versus Channel State

0.5~2 4~6 8~10 12~14 16~18
0

2

4

6

8

10

12

14

Wireless channel gain g
n,k(j)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 10: Objective value Tmax comparison under different different
wireless channel gain gn,k(j).

Figs. 10 and 11 display how channel state affects the

objective value Tmax, including the wireless access channel

gain gn,k(j) between UEs and the fog node, and the wired

link rate Rfc
n between fog and cloud, respectively. As channel

state has no influence on local processing, its objective value

always keeps still. However, when the channel state gets better

and better, less time will be consumed in data transmission for

all other algorithms, leading to a decrease in Tmax for them.

From the two figures we can also find that FAJORA always

performs the best, with its objective value Tmax far less than

other algorithms.

13

1 3 5 10 15 20
0

2

4

6

8

10

12

Wired rate R
n
fc between fog and cloud (Mbit/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

 FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 11: Objective value Tmax comparison under different different
wired rate Rfc

n between fog and cloud.

50 100 150 200 250 300 350 400
0

5

10

15

20

25

Computation capabicity f
n
loc of UE (M cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 T
m

a
x (

s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 12: Objective value Tmax comparison under different local
processing capability f loc

n .

E. Performance Comparisons versus the Processing Capabil-

ities

The impact of local processing capability f loc
n on Tmax is

shown in Fig. 12, where Tmax decreases quickly with the

increase of f loc
n for all the algorithms. When the value of

f loc
n is large, Local performs the best in delay reduction.

This is reasonable, because when the processing capability

of a UE is strong enough, it is capable in processing most

applications with good performance, and there’s no need to

offload. However, the obtained Tmax of FAJORA is only a

little higher than Local, indicating FAJORA performs well

in this case. On the other hand, when f loc
n is very small,

FAJORA still performs very well, whereas the delay of all

other algorithms are too long to bear.

In Figs. 13 and 14, we evaluate the impact of the fog

processing capability F fog and cloud processing ability f c
n

on Tmax. When either of the two parameters increase, Tmax

decrease, which is the same for all the algorithms (except for

Local) and is in line with our intuition. Besides, FAJORA

performs the best in delay reduction and far outdistances other

algorithms.

0 1 2 3 4 5
2

4

6

8

10

12

14

16

Total computation capabicity Ffog of the fog node (G cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 13: Objective value Tmax comparison under different total fog
processing capability F fog .

0 5 10 15 20
0

5

10

15

20

Computation capabicity f
n
c of the cloud server (G cycles/s)

O
b

je
ct

iv
e

 v
a

lu
e

 (
s)

FAJORA
RRA−H
RCRA
RRA−R
Local

Fig. 14: Objective value Tmax comparison under different cloud
processing capability fc

n.

I=1,U=2 I=2,U=4 I=3,U=6 I=4,U=8 I=5,U=10
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of fireworks I and sparks U

T
h

re
e

 d
iff

e
re

n
t

d
e

la
y

m
e

tr
ic

s
(s

)

T

max
T

min
T

av

Fig. 15: Objective value Tmax comparison under different number
of fireworks I and sparks M .

14

F. Performance Comparisons versus FA’s Parameters

Fig. 15 presents the influence of the parameters in fireworks

algorithm on three different delay metrics Tmax, Tmin and

Tav . For notational simplicity, we define the total number of

explosion and mutation sparks as U =
I
∑

i=1

iχi + γ. As is

shown, with the number of fireworks I and sparks U increase,

the three delays all decrease. This is because, as was men-

tioned, each of the fireworks or sparks is an offloading decision

matrix and corresponds to a resource allocation scheme. So

the more fireworks and sparks, the more joint computation

offloading and resource allocation schemes, consequently the

better searching capabilities and the shorter obtained delays.

However, the more fireworks and sparks, the more computation

complexity, whereas the delay reduction is not so significantly

as is shown in Fig. 15. Thus we choose I = 2 and U = 4
as the default number of fireworks and sparks, respectively, to

strike a balance between searching capability and computation

complexity.

IX. CONCLUSIONS

In this paper, we have proposed a framework to optimize

computation offloading, computation resource allocation, RB

pattern assignment, and transmit power allocation. In the

optimization framework, we have considered the maximum

delay reduction problem, which was modeled as an MINLP

problem. We have proposed a low-complexity general al-

gorithm framework FAJORA to decompose it into several

subproblems, where offloading decisions was obtained within

the main framework of FAJORA, and computation and radio

resources allocation was solved by the embedded Algorithms

2, 3, and 4. Abundant simulation results have demonstrated

the convergence and effectiveness of our proposed algorithms.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: In problem (P1), there are four sets of mutually

coupled variables to be optimized. If the optimal offloading

decision Π
∗ and computation resource allocation f

fog∗ are

given, then (P1) reduces to the joint optimization of RB

pattern assignment and transmit power control among all the

remote-processing UEs in N2. If the optimal RB pattern

assignment S
∗ is also obtained, then the problem can be

further reduced to

(P1

1) : min
P

max
n∈N2

(

Dn

rn
+ Vn

)

(42)

s.t. (C9) : pn,k(j) ≥ 0, ∀n ∈ N2, ∀k ∈ K, ∀j ∈ J ,

(C10) :
∑

j∈J

∑

k∈K

pn,k(j) ≤ pmax
n , ∀n ∈ N2,

where Vn = Cnyn

f
fog
n

+ Cnxn

f loc
n

+ (T fc
n + T c

n)zn = Cnyn

f
fog
n

+ (T fc
n +

T c
n)zn is a constant, so problem (P1

1) is equivalent to

(P2

1) : min
P

max
n∈N2

Dn

rn
(43)

s.t. (C9), (C10).

In the following, we show that problem (P2
1) is NP-hard. As

a special case, we assume there is no max
n∈N2

operation, then

problem (P2
1) becomes

(P3

1) : min
P

Dn

∑

k∈K

W0 log2

(

1 +
pn,k(j)hn,k(j)

σ2

) (44)

s.t. (C9), (C10),

which can be transformed into

(P4

1) : max
P

1

Dn

∑

k∈K

W0 log2

(

1 +
pn,k(j)hn,k(j)

σ2

)

(45)

s.t. (C9), (C10).

We can see that the objective function in (P4
1) is a sigmoidal

function.

Definition: A continuous function f [l, u] → R is defined

as a sigmoidal if: either it is convex, concave, or convex for

x ≤ z, z ∈ [l, u] and concave for x ≥ z [31], [32].

Since all the constraints of (P4
1) are linear, (P4

1) maximizes

the sum of a set of sigmoidal functions over a convex

set, which is a sigmoidal programming problem and is NP-

hard [31], [32]. Consequently, problem (P1) is NP-hard, and

Proposition 1 holds.

APPENDIX B

PROOF OF PROPOSITION 2

Proof: When f(x) is concave, then the perspective

function g(x, t) = tf(x/t) is concave, too [28]. Since

sn,j log2(1 +
φn,k(j)gn,k(j)

sn,j
) is the perspective function of

the concave function log2(1 + ϕn,k(j)gn,k(j)), it preserves

concavity, too. As the sum of several concave functions is still

concave,
J
∑

j=1

K
∑

k=1

sn,j log2(1 +
φn,k(j)gn,k(j)

sn,j
) is also concave.

On the other hand, the super-level set of concave function

is convex [28], so (C18) is convex. Moreover, (C5)− (C10)
are all linear constraints. Thus, (P7) is a convex optimization

programming that minimize a convex function over a convex

set.

APPENDIX C

PROOF OF PROPOSITION 3

Proof: Observing the definition of D(µ,ω) of (28), we

have

D(µ′,ω′) ≥ τ1 +
∑

n∈N2

µ′
n



pmax
n −

J
∑

j=1

K
∑

k=1

ϕ∗
n,k(j)



+

∑

n∈N2

ω′
n





J
∑

j=1

K
∑

k=1

W0s
∗
n,j log2(1+

ϕ∗
n,k(j)gn,k(j)

s∗n,j
)−

Dn(yn+zn)

τ1 − Vn



. (46)

15

Rearranging (46), we have

D(µ′,ω′)≥D(µ,ω)+
∑

n∈N2

(µ′
n−µn)



pmax
n −

J
∑

j=1

K
∑

k=1

ϕ∗
n,k(j)





+
∑

n∈N2

(ω′
n−ωn)





J
∑

j=1

K
∑

k=1

W0s
∗
n,j log2

(

1+
ϕ∗
n,k(j)gn,k(j)

s∗n,j

)

−
Dn(yn + zn)

τ1 − Vn

]

. (47)

Note that a sub-gradient η of a convex function f(·)
is defined as: if f(x) ≥ f(y) + ηT (x − y), ∀x, y. Thus,

Proposition 3 holds.

REFERENCES

[1] J. Kwak, Y. Kim, J. Lee, et al., “DREAM: Dynamic Resource and Task
Allocation for Energy Minimization in Mobile Cloud Systems,” IEEE J.

on Sel. Areas in Commun., vol. 33, no. 12, pp. 2510-2523, 2015.

[2] H. T. Dinh , C. Lee, D. Niyato et al., “A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches,” Wireless com-

munications and mobile computing, vol. 13, no. 18, pp. 1587-1611, 2013.

[3] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy,
Survey and Future Directions,” Springer Internet of Everything, 103-130,
2018.

[4] W. Shi, J. Cao, Q. Zhang, et al., “Edge Computing: Vision and Chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
2016.

[5] T. X. Tran, A. Hajisami, P. Pandey, et al., “Collaborative Mobile Edge
Computing in 5G Networks: New Paradigms, Scenarios, and Challenges,”
IEEE Commun. Mag., vol. 55, no, 4, pp. 54-61, 2017.

[6] B. G. Chun, S. Ihm, P. Maniatis, et al., “Clonecloud: Elastic Execution
Between Mobile Device and Cloud,” in ACM Proc. 6th Eur. Conf.

Comput. Syst., pp. 301-314, 2011.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, et al., “The Case for VM-Based
Cloudlets in Mobile Computing,” IEEE TPervasive Comput., vol. 8, no.
4, pp. 14-23, 2009.

[8] F. Ghavimi, Y. W. Lu, and H. H. Chen, “Uplink Scheduling and
Power Allocation for M2M Communications in SC-FDMA based LTE-A
Networks with QoS Guarantees,” IEEE Trans. on Veh. Technol., vol. 66,
no. 7, pp. 6160-6170, 2017.

[9] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Chan-

nels and Modulation, 3GPP TS 36.211 V8.6.0 Std., Mar. 2009.

[10] E. Cuervo, A. Balasubramanian, D. Cho, et al., “MAUI: Making
Smartphones Last Longer with Code Offload,” in ACM Proc. 8th Int.

Conf. Mobile Syst., Appl., Services, pp. 49-62, 2010.

[11] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative Task Execution in
Mobile Cloud Computing Under a Stochastic Wireless Channel,” IEEE

Trans. Wireless Commun., vol. 14, no. 1, pp. 81-93, 2015.

[12] X. Chen, “Decentralized Computation Offloading Game for Mobile
Cloud Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974-983, 2015.

[13] K. Liu, X. Zhang, and Z. Huang. “A Combinatorial Optimization for
Energy-Efficient Mobile Cloud Offloading over Cellular Networks,” in
Proc. IEEE GLOBECOM, pp. 1-6, 2016.

[14] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint Optimization of Radio
and Computational Resources for Multicell Mobile-Edge Computing,”
IEEE Trans. Signal and Information Processing over Networks, vol. 1,
no. 2, pp. 89-103, 2015.

[15] S. Guo, B. Xiao, Y. Yang, et al., “Energy-Efficient Dynamic Offloading
and Resource Scheduling in Mobile Cloud Computing,” in Proc. IEEE

INFORCOM, pp. 1-9, 2016.

[16] X. Lyu, H. Tian, C. Sengul, et al., “Multiuser Joint Task Offloading
and Resource Optimization in Proximate Clouds,” IEEE Trans. on Veh.

Technol., vol. 66, no. 4, pp. 3435-3447, 2017.

[17] C. Wang, F. R. Yu, C. Liang, et al., “Joint Computation Offloading and
Interference Management in Wireless Cellular Networks With Mobile
Edge Computing,” IEEE Trans. on Veh. Technol., 2017.

[18] P. Zhao, H. Tian, C. Qin, et al., “Energy-Saving Offloading by Jointly
Allocating Radio and Computational Resources for Mobile Edge Com-
puting,” IEEE Access, 2017.

[19] J. Cheng, Y. Shi, B. Bai, et al, “Computation Offloading in Cloud-RAN
Based Mobile Cloud Computing System,” in Proc. IEEE ICC, pp. 1-6,
2016.

[20] M. H. Chen, B. Liang, and M. Dong, “Joint Offloading Decision and
Resource Allocation for Multi-User Multi-Task Mobile Cloud,” in Proc.

IEEE ICC, pp. 1-6, 2016.
[21] Y. Li, M. Sheng, C. W. Tan, et al., “Energy-Efficient Subcarrier Assign-

ment and Power Allocation in OFDMA Systems with Max-min Fairness
Guarantees,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3183-3195, 2015.

[22] Y. Mao, J. Zhang, and K. B. Letaief. “Dynamic Computation Offloading
For Mobile-Edge Computing with Energy Harvesting Devices,” IEEE J.

on Sel. Areas in Commun., vol. 34, no. 12, pp. 3590-3605, 2016.
[23] J. Du, L. Zhao, J. Feng and X. Chu, “Computation Offloading and

Resource Allocation in Mixed Fog/Cloud Computing Systems with Min-
Max Fairness Guarantee.” IEEE Transactions on Communications, vol.
66, no. 4, pp. 1594 - 1608, 2018.

[24] Y. Tan, and Y. Zhu, “Fireworks Algorithm for Optimization,” in Ad-

vances in Swarm Intelligence, Springer, pp. 355-364, 2010.
[25] N. Sharma, and A.S. Madhukumar, “Genetic Algorithm Aided Pro-

portional Fair Resource Allocation in Multicast OFDM Systems,” IEEE

Trans. Broadcasting, vol. 61, no. 1, pp. 16-29, 2015.
[26] Y.J. Gong, J. Zhang, H. S. H. Chung, et al., “An Efficient Resource

Allocation Scheme Using Particle Swarm Optimization,” IEEE Trans.

Evolutionary Computation, vol. 16, no. 6, pp. 801-816, 2012.
[27] S. C. Wang, and Y. H. Liu, “A PSO-Based Fuzzy-Controlled Search-

ing for The Optimal Charge Pattern of Li-ion Batteries,” IEEE Trans.

Industrial Electronics, vol. 62, no. 5, pp. 2983-2993, 2015.
[28] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge,

U.K.: Cambridge Univ. Press, 2004.
[29] D.S. Zhai, M. Sheng, X Wang, et al., “Leakage-Aware Dynamic Re-

source Allocation in Hybrid Energy Powered Cellular Networks,” IEEE

Trans. Commun., vol. 63, no. 11, pp. 4591-4603, 2015.
[30] S. Boyd, “Subgradient Methods,” [Online]. Lecture notes of EE364b,

Stanford University, Winter Quarter 2007 (2006).
[31] M. Udell, and S. Boyd, S, “Maximizing a sum of sigmoids,” Optimiza-

tion and Engineering, 2013.
[32] Y. Li, M. Sheng M, X. Wang, et al., “Max-min energy-efficient power

allocation in interference-limited wireless networks”, IEEE Trans. Veh.

Technol., vol. 64, no. 9, pp. 4321-4326, 2015.

