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Abstract 

Purpose Radon is a risk factor for lung cancer and uranium miners are more exposed than the general popula-

tion. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify 

the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. Methods Samples 

from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former 

uranium miners collected by the German Federal Office of Radiation Protection. In total 15,077 cases and 

13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all 

participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and per-

formed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. Results 

We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 

(OR=0.26, 95%.CI: 0.11-0.60, p=0.0386 corrected for multiple testing). At least suggestive significant interac-

tion of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p=1.2x10-6), 5q23.2 

(p=2.5x10-6), 1q21.3 (p=3.2x10-6), 10p13 (p=1.3x10-5) and 12p12.1 (p=7.1x10-5). Genes belonging to the Gene 

Ontology term „DNA dealkylation involved in DNA repair“ (GO:0006307; p=0.0139) or the gene-family 

HGNC:476 „microRNAs“ (p=0.0159) were enriched with LD-block-wise significance. Conclusion The well-

established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon 

among uranium miners. Further, lung cancer susceptibility is related to the functional capability of DNA damage 

signalling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand 

annealing mechanism. 
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Introduction 

You cannot see it; you cannot hear it and you cannot smell it; but be aware it is omnipresent in indoor and out-

door air and contaminates many underground mines (Sethi et al. 2012). Radon is a radioactive noble gas released 

by the uranium decay chain. An increased risk for lung cancer (LC), the main cause of cancer-related death 

worldwide (Jemal et al. 2011; Siegel et al. 2016; Torre et al. 2016), caused by inhalation of radon has been con-

sistently demonstrated in several studies of indoor-exposure in dwellings as well as for uranium miners (Darby et 

al. 2005; Grosche et al. 2006; National Research Council 1999; Sethi et al. 2012). It was estimated, that ionising 

radiation due to residential radon causes 3% to 15% of LC cases in the general population (Sethi et al. 2012). 

That is why radon is the second strongest risk factor for LC and among the top 4 environmental risks to public 

health in the United States (McColl et al. 2015; Sethi et al. 2012). 

Pooled analyses of genome-wide association studies (GWASs) within the International Lung Cancer Consortium 

(ILCCO) have revealed that genomic variations at e.g. 5p15.33, 6p21-22 and 15q25 and further 42 LC suscepti-

bility loci influence LC risk in European populations (Bosse and Amos 2018). In total 92 genes are postulated to 

be suspected causal genes for LC. Although the strongest genetic association with an odds ratio (OR) of 7.2 was 

reported for 15q25 in a familial form of LC, for sporadic LC an OR of only ~1.3 was observed, albeit highly 

significant (p = 3.08 x 10-103). However, “cumulative effects of loci have shown promising results to improve the 

discriminatory performance of risk prediction models”(Bosse and Amos 2018) Nevertheless, genes can be asso-

ciated to several traits and contribute to the functional efficacy of multiple interlocked biological processes. One 

may assume that for example nicotine dependency or DNA repair play a role in an individual’s susceptibility to 

developing LC (Brennan et al. 2011; Romero-Laorden and Castro 2017). For example, some genetic variants in 

CHRNA5 on chromosome 15q25.1 increase the risk for smoking-related disorders such as LC and chronic ob-

structive pulmonary disease (COPD) but are also associated with delayed smoking cessation (Amos et al. 2008; 

Chen et al. 2015b). Taken together, the harming mechanisms of smoking consist at least in parts of a complex 

interplay between tobacco exposure, previous diseases and genetics. However, smoking is the most important 

but an avoidable risk factor. 

Exposure to radon is ubiquitous and not self-inflicted, but can be reduced in homes and buildings; the related 

biological defence mechanisms are complex (McColl et al. 2015). DNA damage, induced by radioactive alpha 

particles emitted by radon progenies, is considered as pivotal mechanism of carcinogenesis in the lung (Sethi et 

al. 2012). A heritable component in the capacity to repair DNA-damage was demonstrated (Rosenberger et al. 
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2012). Ionizing radiation induces oxidation of DNA bases and generates single-strand breaks (SSBs) and double-

strand breaks (DSBs) (Rosenberger et al. 2012). An individual’s capacity to repair DSBs is recognised as a risk 

factor or an effect modifier in LC (Ishida et al. 2014; Ridge et al. 2013). DSBs capacity determining genes are 

widely investigated as susceptibility genes for lung cancer.(Chen et al. 2015a; Kazma et al. 2012) The interaction 

of radon with some genes belonging to biological mechanisms other than DNA damage response was also inves-

tigated with candidate gene approaches in either high dose exposed uranium miners (SIRT1; P53; CDKN2A and 

MGMT; IL6) or low dose exposed humans in dwellings (GSTM, GSTT and EPHX1; P53) (Leng et al. 2013; 

Leng et al. 2016; Ruano-Ravina et al. 2014; Vahakangas et al. 1992; Yngveson et al. 1999). Nevertheless, it is 

still unclear which genomic dispositions make one susceptible to radiation-induced LC. 

The uranium miners of the former German Wismut mining company, with about 400 000 employees, form a 

large population with documented radiation exposure. In 2009 the German Federal Office of Radiation Protec-

tion (Bundesamt für Strahlenschutz, BfS) started to build up the German Uranium Miners Bio- and Databank 

(GUMB) with DNA from blood and/or tissue samples from LC cases and healthy controls of former uranium 

miners of this company. Exposure estimations and data are captured in the same way as for a large cohort study 

of the same population and includes an estimate of the cumulative occupational exposure to radon progeny 

(Kreuzer et al. 2010b; Walsh et al. 2010). 

This work was conducted as collaboration between the Transdisciplinary Research of Cancer in Lung and the 

International Lung Cancer Consortium (TRICL/ILCCO), the German Federal Office of Radiation Protection 

(BfS) and the University Medical Centre Göttingen. We merged phenotypic and genotypic information from 

TRICL/ILCCO and from BfS. Genotypes were yielded by the OncoArray, to perform a genome-wide search for 

radon x gene interaction –without restricting the investigation to any presumed mode of action.  

Materials and methods 

The participating studies of TRICL/ILCCO are individually described in the supplement of McKay et al. (2017), 

Table 1 and Supplementary Table I (Online Resource 1). The LC cases of the BfS sample collection were re-

cruited for a study investigating indoor-radon exposure between 1990 und 1997 (Brüske-Hohlfeld et al. 2006). 

The cancer-free BfS controls are former uranium miners recruited from 2009-2012, who continuously participat-

ed in health surveillance program of the German Social Accident Insurance and are long term survivors (Pesch et 

al. 2015). This control samples stored in German Uranium Miners Biobank (GUMB) of the BfS were drawn 
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from these miners, which were either very high (>750 Working Level Months, WLM) or low (≤50 WLM) radia-

tion exposed in a targeted and no-representative ratio of 2:1 (Pesch et al. 2015). The method how radon expo-

sures was measured is given elsewhere (Kreuzer et al. 2010b) (see Scaling residential and occupational radon 

exposure, Online Resource 1). 

Table 1 Source studies 

Study population 

The analysed sample consisted of 28 599 study participants with European ancestry and valid information on age 

at diagnosis/interview, sex and smoking status (15 077 cases : 13 522 controls); 463 thereof are former uranium 

miners of the Wismut mining company (61 cases : 402 controls), 949 are from the German Lung Cancer Study 

(471 cases : 478 controls), the remaining are from 25 studies of TRICL/ILCCO (14 545 cases : 12 642 controls) 

(see Table 1 and Supplementary Table I, Online Resource 1). 49 of 15 077 (0.3%) LC cases and 259 of 13 522 

cancer-free controls (1.9%) had been occupationally exposed by a high cumulative dose exposure to radon and 

its progeny (WLM>50). It is unlikely that a cumulative lifetime exposure solely due to an exposure by indoor or 

other environmental radon sums up to more than 50 WLM. Thus, we categorised occupational radon exposure 

into ≤50 (“unexposed”) and >50 WLM (“exposed”), a threshold for significant elevated relative LC-risk 

(Kreuzer et al. 2010a). All TRICL/ILCCO participants were assigned to the exposure categories ≤50 WLM. 

Misclassification would be conservative. A detailed justification is given in the supplement (see Online Resource 

1). 

Genotyping and QC 

The Infinium OncoArray-500K was used for high-throughput genotyping. Quality control (QC) was performed 

following the approach previously described for the OncoArray (Amos et al. 2017). To validate the European 

ancestry of the participants the probability of being Caucasian based on a set of 159 ancestry- and PCA-

informative markers was estimated (Huckins et al. 2014; Kosoy et al. 2009; Setsirichok et al. 2012) applying the 

program ADMIXTURE (Alexander et al. 2009). 407 117 markers entered the analysis, after excluding markers 

of low quality genotyping or a minor allele frequencies (MAF) <1%. These remaining markers could be clus-

tered into 103 983 blocks (67 161 LD blocks and 36 822 hot spots; for definition see Online Resource 1). 
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Merging samples 

The crude odds ratio (OR) for the occupational radon exposure within participants of the BfS sample collection 

was OR=2.25. Because naïvely adding the TRICL/ILCCO participants would biased this association to 

OR=0.17, we down-weighted the cases of TRICL/ILCCO by the factor 1 : 13.6. In this way we avoided this 

unjustified inversion of the crude association, and still use all available information for analysis. However, we 

have fixed the marginal risk of a radon exposure at the point estimate from the BfS sample collection (for a more 

detailed explanation see Online Resource 1). 

Statistical analysis 

We fitted two models to individual data and also carried out a gene-set analysis (GSA) to search for accumulated 

significance in pre-defined groups of genes for pathways and gene families of interest. All calculations, data 

handling and image acquire were performed using PLINK 1.9 (Purcell et al. 2007) and SAS 9.4 of the SAS Insti-

tute Inc., Cary. NC. USA. 

Single-marker interaction analysis 

We first performed single-marker interaction analysis fitting the log-additive model:  

ln岫Odd帖岻 噺 ln 岾 椎呑怠貸椎呑峇 噺 紅墜 髪 試怠沈鶏系沈 髪 紅牒聴鶏鯨 髪 紅弔罫 髪 紅帳継 髪 紅弔抜帳岫罫 糾 継岻 [1] 

where D is the disease status (D=1: LC patient; D=0: control); G is minor allele count at marker m; E is the ex-

posure category (0: ≤50 WLM, 1: WLM>50); PS is a propensity score comprising the probability being a case 

explained by age, sex and smoking. To adjust for genomic population stratification we calculated the principal 

components (PC) of genotypes. Only the first four PCs were included in the statistical modelling, because the 

fifth PC was significantly correlated with the disease status. The remaining inflation factor (median of the ぬ²-

distribution for unadjusted association) was そ~1.1, which is acceptable close to 1.0 (Yang et al. 2011). 

The data at hand are not a representative data set of a well-defined source population. Thus the effect estimate of 

interaction, expressed as odds ratio 頚迎葺 噺 結庭奈抜曇, is potentially proportionally biased. Therefore, the tilde is add-

ed to indicate that a weighted sample was used for estimation (see Merging samples). However, estimating 頚迎 is 

not our main interest, rather than testing the null hypothesis 茎待┺ 紅弔抜帳 噺 ど, which is still valid (Mukherjee et al. 

2008; Stenzel et al. 2015). 
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With 糠 噺 のガ as global level of significance, we use 糠嫗 噺 ど┻どの などぬ ひぱぬｂど┻の 抜 など貸胎エ   as Bonferroni-corrected, 

genome-wide level of significance. A suggestive level of significance was set to 1抜 など貸泰. Significance was 

determined according the Hybrid 2-step (H2) method of Murcray et al. (2011). All markers were first grouped 

into four classes: (a) disease-gene (DxG) effect only, (b) environmental-gene (ExG) effect only, (c) both or (d) 

none. Correction for multiple testing was performed within these groups, however under accounting for a tuning 

parameter 貢 that can take values  between 0.5 to 1-10-20  (for a more detailed explanation see Online Resource 1).  

Multi-marker interaction analysis 

We also searched for the best fitting model of each LD block, allowing all markers of a block to enter the model 

(denoted as complete model). We then applied a backward selection with the best model chosen according to 

Akaike’s information criteria (AIC), requiring at least one interaction with a marker (denoted as AIC-best mod-

el) (for a more detailed explanation see Online Resource 1). 

Gene-set analysis 

We applied a Gene-Set Enrichment Analysis (GSEA), based on the p-values obtained from the multi-marker 

interaction analysis (Subramanian et al. 2005). For GSA we assigned markers to genes according to ENSEMBL 

(Cunningham et al. 2015), and genes to gene sets according to Gene Ontology (GO) and the Human Genome 

Nomenclature Committee (HGNC) (Ashburner et al. 2000; Gray et al. 2015). In addition, the gene set of homeo-

box (HOX) genes in regulatory networks with respect to LC was defined based on literature (Bhatlekar et al. 

2014). In total 119 gene sets were considered for analysis. Due to the subjective and in parts data driven selec-

tion of gene sets, the GSA was performed as explorative data analysis. The global level of significance of g=0.05 

was used. For a list of all investigated gene sets, along with literature references and further detailed explanations 

see Online Resource 1. 

Results 

Of 20 study participants each, 9 are from North America (43%), 9 from Europe (46%) and 2 from Israel or Rus-

sia (11%). 63% of the total sample were man, 37% were women. The median age was 63 years. 20% of the par-

ticipants never smoked during their lifetime; 33% were former smokers and 42% were current smokers at the 

time the entered the particular study (see Supplementary Table I, Online Resource 1). The proportion of never 

smokers as well as of current smokers where higher in uranium miners (unexposed: 36%, respectively 51%; 

exposed: 26%, respectively 55%). However, investigating all available former Wismut employees Kreuzer et al. 
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(2010a) concluded, that “... there was [only] a low correlation between smoking and cumulative radon exposure. 

Thus, it is unlikely that smoking is a major confounder [for the estimation of radon-related risk of lung cancer]”. 

Radon exposure among the 308 exposed spread from 51 to 1479 WLM (mean 966 WLM). The second smallest 

observed value within exposed LC cases was 335 WLM, corresponding to about 2850 Bq/m³, which is a very 

unlikely level of elevated indoor radon exposure. 

Single-marker interaction analysis 

For three markers we achieved suggestive significant gene-radon (GxE; gene-environment) interaction when 

applying a Bonferroni correction for multiple testing. Two of them, rs6891344 and rs11747272, are near each 

other at chromosome 5q23.2 but belong to different LD blocks. We estimated an interaction effect of 頚迎葺 =3.9 

(95% CI: 2.2-7.0) and 頚迎葺 =3.4 (95% CI: 2.0-5.7). Both can be assigned to the gene CSNK1G3 (casein kinase 1 

gamma 3), which encodes a member of a family of serine/threonine protein kinases that phosphorylate caseins 

and other acidic proteins. The third marker, rs10911725, is located in an inter-genetic region of chromosome 

1q25.3 (see Table 2 and Supplementary Figure 1, Online Resource 1)  

Applying the Hybrid 2-step (H2) method and choosing the parameter と=1-1x10-16 (the screening weight is al-

most completely set to the genetic-disease (GxD) marginal effects), we could detect a genome-wide significant 

interaction for marker rs12440014. The H2-corrected p-value of pmt=0.03856 would correspond to a fictive un-

corrected p-value of 喧茅 噺  ど┻どぬぱのは などぬ ひぱぬ LD blocks 噺 ぬ┻ば 抜 など貸胎エ  with an estimated odds ratio 頚迎葺 =0.26 

(95% CI: 0.11-0.60). This marker, and five closely related markers with suggestive significance (rs6495309, 

rs28534575, rs1316971, rs17487514 and rs6495314), are located on chromosome 15q25.1, nearby or within the 

gene CHRNB4 encoding the cholinergic receptor nicotinic beta 4 subunit. This is a well-known LC region; 

however the strongest association was observed 69 kb upstream nearby the gene CHRNA5 (ORG=1.29; 

p=3.6x10-101) (McKay et al. 2017). The marker rs12440014 was found associated with LC by McKay, et al. 

(p=1.6x10-51; OR=0.81), but no genetic (G) main effect was seen in our analysis (頚迎葺 弔=0.99, 95% CI: 0.88-1.12). 

Changing the tuning parameter と diminishes the significance of all these markers (see Supplementary Figure 2, 

Online Resource 1) (McKay et al. 2017). 

Table 2 Markers with genome-wide significance or suggestive significance for gene-radon (GxE) interaction 
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Multi marker interaction analysis 

The “inflation factor” of the ぬ²-test statistics for unadjusted association was そ~1.0 for the complete as well as the 

AIC-best models, indicating no distracting influence of residual population stratification or model selection.  

For one block (no. 91734) on chromosome 18q21.32 we observed a suggestive significant gene-radon (GxE) 

interaction (p=2.6x10-6), when all five markers of the block (rs1346830, rs11659206, rs7237496, rs9946324) 

were included in the model. However, fitting the model results in a strong increase in the estimated association 

strength of the radon (E)  main effect (頚迎葺 =197 instead of 頚迎葺 ~2.25). At the same time the GxE interaction of the 

marker rs1346830 was estimated with 頚迎葺 =0.09 (95% CI: 0.03-0.22; p=2.0x10-7). Potentially, strong collinearity 

between the marker and the exposure results in such extreme point estimates. Hence, the estimated ORs are 

untrustworthy and no marker can be highlighted. This block is also merely surrounded by two uncharacterized 

gens (LOC107985187, LOC105372156) and two pseudogenes (CTBP2P3 / ENSG00000267153, RP11-

325K19.2 / ENSG00000267382). 

Allowing for marker selection (AIC-best model) revealed a suggestive gene-radon (GxE) interaction within the 

block no. 33137 on chromosome 5q23.2. This interaction is related to the single marker rs11747272 discussed 

above (see Table 3). 

Table 3 Regions with genome-wide or suggestive significant gene-radon (GxE) interaction 

When the Hybrid 2-step (H2)-method was applied, genome-wide significance for the block no. 91734 on chro-

mosome 18q21 was achieved, consistent across a wide range of the tuning parameter と. Additional, we observed 

suggestive gene-radon (GxE) interaction of the blocks no. 2271 on chromosome 1p21.3 and the blocks 

no. 33135 and no. 33137 on chromosome 5q23.2 (see Figure 1 and Supplementary Figure 3, Online Resource 

1). 

Figure 1: Manhattan plot of p-values of AIC-best models corrected with the Hybrid 2-step (H2) method with 

と=0.5 

The block no. 2271 on chromosome 1p21.3 contains in total 10 markers, 7 of these remained in the AIC-best 

model; three of these with a local significant GxE interaction, while no marker carried a genetic (G) main effect. 

The strongest LC risk increasing effect was observed for marker rs2029868, with an estimated OR=22.6 for each 
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minor allele (95% CI: 1.7-109; p=0.0001). The block covers the gene UBE2U (ubiquitin conjugating enzyme E2 

U), a member of the gene family UBE2.  

Setting と=0.5 of the Hybrid 2-step (H2)-method, the block no. 58899 on chromosome 10p13 (pmt=0.1878) and 

the block no. 69267 on chromosome 12p12.1 (pmt=0.9875) advanced to suggestive significance (see Figure 1; 

more details are given in the Online Resource 1). 

Gene-set analysis 

In total 148 sets of genes were considered for the analysis; 29 too small or duplicate sets were excluded (see 

Supplementary Table IV, Online Resource 1); hence 119 gene sets entered the GSA. Among them are 95 sets 

build according to GO terms, 23 HGNC gene families and one set was built on basis of the literature. These sets 

contained 6 to 3946 genes (median: 46) and cover 5 to 7237 LD blocks (median: 67). 

For two gene sets we observed local significance (see Table 4), further two were borderline significant.  

Table 4 Significant results of the gene-set enrichment analysis 

The most significant gene set was „DNA dealkylation involved in DNA repair“ (GO:0006307; 喧弔聴 噺ど┻どなぬひ). It consists of 10 genes and comprises genotyped markers in 90 LD blocks. For 15 of these 90 LD 

blocks (16%) at least local significant interactions were observed in the multi-marker analysis, in contrast to 

6404 out of all remaining 90 768 LD-blocks (7%). This set hosts 7 „driving“-genes assigned to 21 „driving“-LD 

blocks. The most significant LD-block (no. 84619, p=0.0005 for gene-radon interaction) is located within the 

gene FTO (fat mass and obesity-associated protein) on chromosome 16q12.2, also known as ALKBH9 (alpha-

ketoglutarate dependent dioxygenase).  

Within the GO hierarchy of terms, GO:0006307 is a direct subtopic of DNA repair (GO:0006281) which yielded 

a pGS=1.0, as well as of DNA dealkylation (GO:0035510), which was not tested. The second best subtopic of 

DNA repair (GO:0006281) was the double-strand break repair via single-strand annealing (GO:0045002) with a 

pGS =0.1574, which was rank 8 within all tested gene sets. For comparison, e.g. double-strand break repair 

(GO:0006302) attained rank 75 with pGS =0.834. 

The other significant set was the gene family HGNC:476 „microRNAs“ (pGS=0.0159), which consists by defini-

tion of 1776 very short, non-coding genes, but markers were genotyped for only 147 of these genes. This set 

hosts in total 38 „driving“ genes assigned to 44 „driving“ LD-blocks, spread over all chromosomes.  
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The gene sets „acyl-CoA metabolic process“ (GO:0006637, pGS=0.0538) and “Membrane” (GO:0016020, 

pGS=0.0558) were borderline significant. 

Discussion 

Lung cancer has a complex disease mechanism, in particular with respect to the interaction of environmental and 

genetic factors. Environmental exposure to the radioactive noble gas radon is considered as the second strongest 

risk factor for LC in the general population; but the occupational exposure of former uranium miners, e.g. of the 

Wismut mining company, can be tens of times higher. We conducted a genome-wide gene-radon interaction 

analysis on LC using data of 28599 samples from 27 studies in men and women of European descent. Although 

heterogeneity in genetic susceptibility across histological subtypes of LC was demonstrated, the informative 

sample (n=463 miners, comprising 49 exposed LC cases) is too small to stratify the analysis by histological 

subtypes or by smoking behaviour (McKay et al. 2017). We performed three types of analyses: single-marker 

and multi-marker interaction analyses and gene-set enrichment analysis on top of the latter. We determined sig-

nificance according to the Hybrid 2-step (H2) method of Murcray et al. (2011). In brief, markers or regions with 

marginal effect in a disease-gene (DxG) or an environmental-gene (ExG) model are given a higher a-priori 

weight for the final test on gene-environmental (GxE) interaction on then disease (D). 

We detected a genome-wide significant gene-radon interaction for marker rs12440014 (pmt=0.03856) located 

within the gene CHRNB4 on chromosome 15q25.1, a well-known LC susceptibility region (Bosse and Amos 

2018; Sakoda et al. 2011). Previously this intronic marker was described as associated with LC (p=2.8x10-52; 

OR=0.80; 95% CI: 0.78-0.83) in Caucasians (McKay et al. 2017). In our analysis we observed no significant 

genetic main effect (頚迎葺 =0.99, 95% CI: 0.88-1.12), but a lower LC risk for carriers of the minor allele among the 

occupationally radon exposed miners (≥50 WLM), compared to non-carriers or not occupationally exposed indi-

viduals, respectively (頚迎葺 =0.26 per minor allele, 95% CI: 0.11-0.60). The region 15q25.1 hosts three genes 

(CHRNA5, CHRNA3 and CHRNB4) that encode nicotinic acetylcholine receptor (nAChR) subunits. Due to 

strong linkage disequilibrium in this region, the observed interaction may possibly only mark interactions of 

functional variants in neighbouring genes. It is also believed that the association of this region with lung cancer 

cannot be reduced to a single variant, but is modified by age and smoking (Sakoda et al. 2011). In vitro studies 

examining the functional role of the genes at 15q24-25.1 in human lung tissue notified an involvement of 

CHRNA3 and CHRNA5 in lung carcinogenesis. An up-regulation of CHRNA5 and a down-regulation of 
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CHRNA3 in lung adenocarcinoma as compared with the normal lung was observed (Falvella et al. 2009). How-

ever CHRNA3 is not required to maintain cancer cell proliferation (Liu et al. 2009). 

The marker rs16969968 assigned to CHRNA3 was most detailed discussed as associated with smoking quantity 

and nicotine dependence, suggesting that this variant confers risk of LC through its effect on tobacco addiction. 

Interestingly, no modification of risk was found across smoking categories or histological subtypes of LC (Bosse 

and Amos 2018; Sakoda et al. 2011). Also, evidence exists that nAChRs can be directly associated with lung 

carcinogenesis owing to the complexity of nAChR function in the brain (Papke 2014). This is of interest, since a 

sub-multiplicative interaction between radon and smoking in causing LC was speculated independently in sever-

al uranium miner cohorts and case-control studies (Leuraud et al. 2011; National Research Council 1999; 

Schubauer-Berigan et al. 2009). The estimated excess relative risk (ERR) per WLM was higher for never than 

for current smokers (e.g. ERR/WLM=0.012 for never and long-term ex-smokers vs. ERR/WLM=0.007 for short-

term ex- and current smokers (Leuraud et al. 2011)). This resulted in a small decrease of the point estimate of the 

relative risk for current smokers compared to never smokers from RR=6.70 (unadjusted on radon exposure) to 

RR=6.41 (adjusted on radon exposure). However, the difference was statistically not significant. Accordingly, a 

protective effect of smoking against radon induced LC was hypothesized and justified by thicker mucus layer 

and increased mucus velocities. Contrary, Baias et al. (2010) calculated the local radiation dose due to inhaled 

radon progeny in bronchial target cells to be twice as high in heavy smokers compares to never smokers. How-

ever, the apparent “LC protection by smoking” perhaps results from interaction in opposite direction of genes at 

chromosome 15q25.1 with smoking- respectively radon-induced LC. 

Furthermore, the risk of LC for homozygous carriers of the minor allele of two markers within 15q25.1 

(rs8034191, rs1051730) was estimated as at least five-fold higher in subjects who had a familial history of LC 

(Liu et al. 2008). We have discovered LC-risk stratification within this genomic region with respect to radon. 

Thus the observed familial risk of the region 15q25.1 may in part be caused by a common environmental radon 

exposure, albeit at a lower level than the occupational exposure of former uranium miners. 

The most significant gene-radon interaction outside suspected LC susceptibility regions (Bosse and Amos 2018) 

was observed for UBE2U (1p21.3), a gene of the family of ubiquitin-conjugating enzymes UBE2, also known as 

E2 enzymes. The coded enzyme performs a central step in the ubiquitination reaction that targets a protein for 

degradation, a major factor for life and death of proteins (van Wijk and Timmers 2010). Protein ubiquitination is 

a pivotal regulatory reaction promoting the cellular responses to DNA damage (Guo et al. 2017; Kazma et al. 
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2012). UBE2U was recently identified as a positive regulator of TP53BP1, which promotes the formation of 

ionizing radiation-induced foci and thereby chromatin responses at DSBs in human cell lines (Guo et al. 2017). 

E2 ligases are in general involved in multiple biological processes, for example UBE2T (1q32.1) promotes effi-

cient DNA repair; UBE2B (5q31.1) is involved in UV mutagenesis, and UBE2N (12q22) is implicated in post-

replication DNA repair following UV and ionizing radiations. UBE2N was associated with LC by a candidate 

gene approach (p=7x10-6) (Kazma et al. 2012). The strong involvement of the human E2 ubiquitin- and ubiqui-

tin-like conjugating enzymes in DNA damage signalling and DNA-repair processes confirms mechanistically the 

plausibility for the observed gene-radon interaction of UBE2U resulting in an increased radiations sensitivity for 

individuals bearing this genetic make-up. 

In a review of DNA repair and cancer risk Romero-Laorden and Castro (2017) recently stated that defects in 

DNA repair genes are the genetic events most commonly involved in hereditary cancers. Once the DNA is dam-

aged 16 or more repair mechanisms can be engaged, and a substantial cross-talk between these pathways exist 

(Ciccia and Elledge 2010). Exposure of a cell to a dose of 1 Gy of X-rays can cause more than 1000 base lesions, 

about 1000 single-strand breaks (SSBs) and 30-40 double-strand DNA breaks (DSBs) (Ward 1988). DSBs, the 

most harmful lesions, are repaired by an intricate network of multiple DNA repair pathways; inter alia single-

strand annealing (SSA), non-homologous end-joining (NHEJ) or homologous recombination (HR) (Ciccia and 

Elledge 2010). Seven of the 93 genes suspected to affect susceptibility to LC are DNA repair genes: BRCA2, 

CHEK2, GTF2H4, MSH5, PMS1, RAD52, XRCC4. Only the first (HR and SSA), the second last (HR and SSA) 

and the last (NHEJ) belong to DSB repair pathways. 

Because gene-radon interaction with a long-term occupational exposure to radon was investigated, we expected 

findings to be related to DNA repair, in particular DSB (Robertson et al. 2013). To our surprise we did not 

achieve cumulative significance overall on DNA-repair genes (GO:0006281, p=1.0), nor for DSB repair 

(GO:0006302, p=0.8340) or SSB repair (GO:0000012, p=0.9204). This missing significance may be attributed to 

the nature of the applied test in the GSA. The power for broadly defined gene sets of interest is low, because 

these contain too many not associated genes. For the more specifically defined pathway SSA of DSB repair we 

achieved a stronger, albeit not significant signal for association (GO:0045002, p=0.1574). Local significance was 

achieved for genes involved in DNA dealkylation involved in DNA repair (G0:0006307, p=0.0139), a reaction to 

DNA damage caused by free radicals and other reactive species generated by metabolism which results in 

alkylated bases. Ionizing radiation induces this type of DNA damage by indirect radiation reactions through the 
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induction of ROS. Bases can become oxidized, alkylated, or hydrolysed through interactions with these agents 

(Dexheimer 2013). These lesions are repaired through base excision repair. 

To our knowledge, this is the first genome-wide investigation for radon exposure x gene interaction with respect 

to LC. We have combined samples of disparate sizes from several sources, resulting in an extreme relation of 1 

exposed to about 90 unexposed individuals. The most informative subsample consists of only 463 former urani-

um miners but with carefully determined occupational exposure to radon. To have enough power for the ge-

nome-wide analysis, we had to include such a large amount of controls. This should be seen as a necessity rather 

than a disadvantage, given the small available sample of occupational radon-exposed lung cancer cases. We were 

further forced to make some assumptions, e.g. no participant of a TRICL/ILCCO study was substantial long-

term exposed to radon (激詣警 隼 のど) However, even long-term but low-dose exposure to radon, occupational 

(Kreuzer et al. 2015) as well as residential (Darby et al. 2005), was previously associated with a small increase in 

lung cancer risk. Thus, the small risk of misclassifying few of the many participants of a TRICL/ILCCO study is 

more likely for cases than for controls. Hence the allocation made is conservative in terms of statistical testing.  

We also needed to fix the marginal odds ratio for radon exposure to the value observed within the miners. Sub-

group analysis by histological cancer type could not be performed owing to the small number of exposed cases, 

in particular those with reliable records.  

The risk of confounding effect due to smoking on radon-associated risk for lung cancer was previously investi-

gated in a case-control study nested in the cohort of German uranium miners. The estimation of radon-related 

lung cancer risks was robust against model fitting with and without smoking. Consequently, smoking does not 

act as a major confounder (Schnelzer et al. 2010). Potential confounding due to other mining related exposures 

was also examined within the German uranium miners cohort (Kreuzer et al. 2010a; Preston et al. 2003). The 

correlation between measured radon exposure with external gamma radiation, long-lived radionuclides or arsenic 

was low; the correlation with fine dust or silica dust was moderate. The influence of adjustment for these poten-

tial confounders on the exposure–response relationship was only modest. Hence major confounding by these 

other occupational risk factors can be excluded (Walsh et al. 2010). 

The reported study was restricted to Caucasian populations to minimize population stratification. Although the 

miners came from a small area in the middle of Germany, no differing genetic background compared to the 

TRICL/ILCCO samples from Russia to Hawaii was found. The results may not be generalized to other ethnici-
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ties because of different genetic background. It should also be noted that within the small sample of miners, 

controls are long-term survivors with a disproportionally high sampling of high radon exposed subjects. To dis-

cover further susceptibility genes for radon-related lung cancer or to assess the usefulness of determining the 

susceptibility of a subject, e.g. genetic testing requires further study. 

Conclusion 

We could demonstrate that the well-established association of the genomic region 15q25 might be influenced in 

parts by exposure to radon among uranium miners. Further, the susceptibility to lung cancer is related to the 

functional capability of DNA damage signalling via ubiquitination processes and repair of radiation-induced 

double strand breaks by the single-strand annealing mechanism. 

Supplementary materials and methods, supplementary figures I to III, supplementary tables I to IV and further 

discussion of the gene-radon interaction at 10p13 and 12p12.1can be found at Online Resource 1. 
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Table and figures Legends 

Figure 1: Manhattan plot of p-values of AIC-best models corrected with the Hybrid 2-step (H2) method with ʌсϬ͘5 

 
Each point represents the significance of a gene-radon (GxE) interaction within a LD block. 

p-value are modified according to Hybrid 2-step (H2) method of Murcray et al. (2011)  
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Table 1 Source studies 

Acronym Study name Institution 
PI  

(principal investigator) 
Country Design 

Participants in 

this analysis 

Time span of 

recruitment 

CARET  The Carotene and Retinol Efficacy Trial  
Fred Hutchinson Cancer Research 

Center (FHCRC) 

G. Goodman, 

J. Doherty, C. Chen 

USA  Cohort  1 065 Recruitment 

1985-1996 

BioVU  The Vanderbilt Lung Cancer Study Vanderbilt University M. Aldrich USA  Hosp. CC  1 160 2007- ongoing 

HLCS Harvard Lung Cancer Study  
Harvard School of Public Health, Mass 

General Hospital  
D. Christiani 

USA  Hosp. CC  1 605 1992-2004  

ATBC  
The Alpha-Tocopherol, Beta-Carotene 

Cancer Prevention  
National Cancer Institute (NCI)  D. Albanes 

Finland  Cohort  1 683 1985-1993  

PLCO  
The Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial  

National Cancer  

Institute (NCI) 
N. Caporaso 

USA  Cohort  2 231 1992-2001  

MSH-PMH  
Princess Margaret Hospital Early Detec-

tion Study 

Mount Sinai Hospital (MSH), Princess 

Margaret Hospital (PMH) 
R.J. Hung, G. Liu 

Canada  Hosp. CC  2 295 2008-2012  

LCRI-DOD  
Population based case-control study of 

lung cancer in Appalachian Kentucky 
Markey Cancer Center  S. Arnold 

USA  Pop. CC 220 2012- ongoing  

TAMPA Tampa Lung Cancer Study H. Lee Moffitt Cancer Center P. Lazarus USA  Hosp. CC  242 1999-2003  

NELCS  New England Lung Cancer Study  Dartmouth College of Medicine  A. Andrew USA  Pop. CC  329 2005-2007  

TLC  
Total Lung Cancer: Molecular Epidemi-

ology of Lung Cancer Survival  
Moffitt Cancer Center, Tampa  M.B. Schabath 

USA  case only  419 2012-- ongoing 

MEC  Multi Ethnic Cohort Study  University of Hawaii (USC)  
L. Le Marchand, 

Ch. Haiman 

USA  Cohort  430 Recruitment 

1993-1996 

Canada  Pan-Candadian screening study  
University Health Network (UHN), 

British Columbia Cancer Agency (BCCA) 
S. Lam, G. Liu 

Canada  screening 

cohort  

656 2004-2011, 

2008-2013  

EAGLE  
Environment and Genetics in Lung 

Cancer Study Etiology  
National Cancer Institute (NCI) M.T. Landi 

Italy  Pop.CC  3 494 2002-2005  

Copenhagen  Copenhagen Lung Cancer Study  University of Copenhagen  S. E. Bojesen Denmark   1 823  

CAPUA  Cancer de Pulmon en Asturias  University of Oviedo A. Tardon Spain  Hosp.CC  1 399 2002-2012  

GLC German Lung Cancer Study  

University of Göttingen, Deutsches 

Krebsforschungszentrum Heidelberg 

(DKFZ) 

DKFZ-part  

H. Bickeböller, A. Risch 

Germany  Mixed CC  1 014 1998-2013 

GLC-500K German Lung Cancer Study 

University of Göttingen, Helmholtz 

Zentrum München (HMGU), HMGU-

part 

H. Bickeböller, A. Risch, 

H.-E. Wichmann 

Germany  Mixed CC  949 1998-2013 

Nijmegen  The Nijmegen Lung Cancer Study  Radboud University Medical Centre  B. Kiemeney 
The 

Netherlands  

Pop. CC  816 2002-2008  
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Acronym Study name Institution 
PI  

(principal investigator) 
Country Design 

Participants in 

this analysis 

Time span of 

recruitment 

ReSoLucent  
Resource for the Study of Lung Cancer 

Epidemiology in North Trent 
University of Sheffield,  M.D. Teare 

UK  Mixed CC  750 2005-2014  

Norway  
Norway National Institute of Occupa-

tional Health Study 

National Institute of Occupational 

Health  (NIOH)  
A. Haugen 

Norway  Pop. CC  725 1986-2005  

LLP-2008,  

LLP-2013 

Roy Castle Lung Study 

(Liverpool Lung Cancer Project) 
University of Liverpool  J.K. Field 

UK  Cohort  200 

675 

1999-2007, 

1999-2011  

NSHDC  
Northern Sweden Health and Disease 

Cohort  
Umeå University  M. Johansson 

Sweden  Cohort  473 1985- ongoing 

MDCS  The Malmö Diet and Cancer Study  Lund University  H. Brunnsstöm Sweden  Cohort  325 1991-1996  

NICCC-LCA  Israel Lung Cancer Study Carmel Medical Center & Technion  G. Rennert Israel  Pop.CC  1 149 2008-ongoing  

L2  The IARC L2 Study  
International Agency for Research on 

Cancer (IARC) 
P. Brennan 

Central 

Europe  

Pop./Hosp. CC  2 009 2005-2013  

Wismut 
Case-control study on lung cancer in 

former Wismut uranium miners (cases) 
Helmholtz Zentrum München (HMGU) 

H.-E. Wichmann, 

L. Kreienbrock, 

Germany case sample 58 1990-1995 

GUMB 
Biobank of healthy former Wismut 

uranium miners (controls) 
Bundesamt für Strahlenschutz (BfS) M. Gomolka 

Germany sample 

collection  

405 2009-ongoing 
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Table 2 Markers with genome-wide significance or suggestive significance for gene-radon (GxE) interaction 

Marker Chr. Position 
Block 

No. 

鮫三葺  (95%-CI)* p-value1 
pmt-value² 

 
G E GxE GxE 

rs10911725 1 185395182 5078 
1.02 

(0.89-1.16) 

6.70 

(4.30-10.4) 

0.21 

(0.11-0.42) 
5.3x10-6 0.5515 

rs6891344 5 123136656 33135 
0.96 

(0.84-1.10) 

1.57 

(0.96-2.55) 

3.91 

(2.18-6.99) 
2.7x10-6 0.2832 

rs11747272 5 123179990 33137 
0.97 

(0.86-1.10) 

1.23 

(0.69-2.19) 

3.35 

(1.98-5.68) 
4.3 x10-6 0.4504 

rs6495309 15 78915245 82002 
0.99 

(0.87-1.13) 

4.05 

(2.75-5.98) 

0.35 

(0.16-0.76) 
0.0072 0.2387 

rs28534575 15 78923845 82002 
1.00 

(0.89-1.12) 

4.15 

(2.80-6.14) 

0.36 

(0.17-0.75) 
0.0060 0.1964 

rs12440014 15 78926726 82003 
0.99 

(0.88-1.12) 

4.43 

(3.00-6.55) 

0.26 

(0.11-0.60) 
0.0012 0.0386 

rs1316971 15 78930510 82005 
0.97 

(0.84-1.13) 

4.09 

(2.78-6.02) 

0.32 

(0.14-0.72) 
0.0052 0.1722 

rs17487514 15 78953785 82008 
1.02 

(0.89-1.17) 

1.81 

(1.06-3.07) 

2.01 

(1.19-3.39) 
0.0071 0.2325 

rs6495314 15 78960529 82008 
1.02 

(0.91-1.13) 

1.62 

(0.86-3.05) 

1.87 

(1.12-3.12) 
0.0145 0.4779 

1 uncorrected p-value (genome-wide significant if < 0.5x10-7, suggestive significant if < 1x10-5); ² p-value corrected for multiple testing (genome-
wide significant if < 0.05, suggestive significant if < 1) ; using the Hybrid 2-step (H2) method of Murcray et al. (2011) with 1-と=1x10-16; chr: 
chromosome; position: position on the chromosome [bp]; G: genotypic, log-additive main effect; E: main effect of radon exposure; GxE: gene-
radon interaction; OR: This is not an unbiased estimate owing to sampling and merging of samples, hence useful only to compare the strength of 
effects  

Table 3 Regions with genome-wide or suggestive significant gene-radon (GxE) interaction 

LD-block Chr. 

 p-value1  Hybrid 2-step (H2) method  

Gene GxE  
Min.  

pmt-value2 

ʌ of min. 

pmt-value 

Modified min. 

p-value 

Range of ʌ  

with pmt<13 

2271 1p21.3 UBE2U 3.2x10-6  0.0563 0.9999 5.4 x10-7 0.5 to 1-10-17 

33135 5q23.2 CSNK1G3 2.5x10-6  0.2585 0.5 2.5 x10-6 0.5 to 1-10-17 

58899 10p13 CUBN 1.3 x10-5  0.1878 0.5 1.8 x10-6 0.5 to 0.6 

69267 12p12.1 SOX5 7.1 x10-5  0.9875 0.5 9.5 x10-6 0.5 

91734 18q21.32 -- 1.2x10-6  0.0214 0.9999 2.1 x10-7 0.5 to 1-10-17 
1 uncorrected p-value for gene-radon (GxE) interaction of the AIC-best model (genome-wide significant if < 0.5x10-7, suggestive significant if < 
1x10-5); ² p-value corrected for multiple testing (genome-wide significant if < 0.05, suggestive significant if < 1) with tuning parameter と; Chr: 
chromosome; GxE: gene-radon interaction;3 corresponding to suggestive significance 

Table 4 Significant results of the gene-set enrichment analysis 

Gene set  

ID 
Description 

Number 

of genes  

Number  

of markers  

Number of  

ͣĚƌŝǀŝŶŐ͞- 

genes  

Number of  

ͣĚƌŝǀŝŶŐ͞- 

LD blocks 

pGS-value 

GO:0006307 DNA dealkylation involved in DNA repair 10 90 7 21 0.0139 

HGNC:476 microRNAs 1,776 147 38 44 0.0159 

GO:0006637 acyl-CoA metabolic process 23 36 11 20 0.0538 

GO:0016020 membrane (cellular-component) 1,896 5,903 90 178 0.0558 

 


