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Journeys through discrete-character morphospace: synthesising phylogeny, tempo, 1 
and disparity 2 
 3 
Graeme T. Lloyd1 4 
 5 
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Leeds, Leeds, LS2 9JT, UK 7 
 8 
Abstract: Palaeontologists have long employed discrete categorical data to capture 9 
morphological variation in fossil species, using the resulting character-taxon matrices to 10 
measure evolutionary tempo, infer phylogenies, and capture morphological disparity. 11 
However, to date these have been seen as separate approaches despite a common goal of 12 
understanding morphological evolution over deep time. Here I argue that there are clear 13 
advantages to considering these three lines of enquiry in a single space: the 14 
phylomorphospace. Conceptually these high-dimensional spaces capture how a 15 
phylogenetic tree explores morphospace and allow us to consider important process 16 
questions around evolutionary rates, constraints, convergence, and directional trends. 17 
Currently the literature contains fundamentally different approaches used to generate 18 
such spaces, with no direct comparison between them despite the differing evolutionary 19 
histories they imply. Here I directly compare five different phylomorphospace 20 
approaches, three with direct literature equivalents and two that are novel. I use a single 21 
empirical case study of coelurosaurian theropod dinosaurs (152 taxa, 853 characters) to 22 
show that under many analyses the literature-derived approaches tend to reflect 23 
introduced phylogenetic – rather than the intended morphological – signal. The two novel 24 
approaches, which produce limited ancestral state estimates prior to ordination, are able 25 
to minimise this phylogenetic signal and thus exhibit more realistic amounts of 26 
phylogenetic signal, rate heterogeneity, and convergent evolution. 27 
 28 
Key words [6 max]: ancestors; cladistics; disparity; morphology; phylogeny; tempo 29 
 30 
Introduction 31 
 32 
Morphological variation has been captured as discrete categorical data since at least the 33 
1940s. Such character-taxon matrices were first inspired as an extension of Simpson’s 34 
(1944) Tempo and Mode, with the intent to capture morphological change across the 35 
whole organism (Olson 1944; Westoll 1949). Subsequently they were employed in 36 
systematics to infer evolutionary relationships (Sokal and Sneath 1963; Sneath and Sokal 37 
1973), and most recently they were utilised to measure morphological diversity, or 38 
disparity (Foote 1991). However, despite sharing a common goal of understanding 39 
morphological evolution these three main strands – tempo, phylogeny, and disparity – 40 
have been treated as separate enterprises (e.g., as in Brusatte et al 2014). However, there 41 
is potential to gain additional insights by considering these three strands collectively. 42 
 An initial challenge to this endeavour is establishing a framework where tempo, 43 
phylogeny, and disparity can be considered simultaneously. However, a clear solution 44 
presents itself in the form of the “phylomorphospace” (first formally named by 45 
Sidlauskas 2008, but conceptually traceable back to Stone 2003). Such spaces are 46 



extensions of morphospaces, usually high-dimensional (multivariate) ordination spaces 47 
with axes that, often only abstractly (but see Wright 2017), represent overall 48 
morphological variation: points that are proximal in the space are morphologically similar 49 
and vice versa. The phylo- prefix reflects the projection of estimated ancestors and 50 
plotting of branches into the same space (Stone 2003). Such spaces can also be thought of 51 
as containing “stations” (nodes of a phylogenetic tree) connected by “journeys” (branches 52 
of the tree), with each root-to-tip pathway representing the shortest journey through 53 
morphospace that led to a specific tip morphology (Figure 1). 54 

A critical advantage of such spaces is they can enable the switch from simply 55 
establishing pattern (overall distribution of points in a space), to considering process (the 56 
direction morphological evolution has taken between those points). For example, 57 
previous authors have shown how such spaces can be used to help differentiate between 58 
evolutionary rates and constraints (Sidlauskas 2008), expose convergent evolution 59 
(Stayton 2015; Page and Cooper 2017), or reveal directional biases in trends in 60 
morphospace exploration between subclades (Hopkins 2016). 61 
 Discrete characters represent a unique challenge for phylomorphospace 62 
construction. Many of these were previously summarised by Lloyd (2016) and are 63 
pertinent to generating non-phylogenetic morphospaces from discrete data (e.g., 64 
projecting non-Euclidean distances into a Euclidean space, and adequately visualising the 65 
data when the variance is often spread over a high number of axes). However, here I will 66 
focus on a single unexplored issue, namely that there are two fundamentally different 67 
ways to project estimated ancestral morphologies into such spaces (Figure 2). These are 68 
here termed post-, and pre-ordination ancestral state estimation (post-OASE and pre-69 
OASE hereafter). Post-OASE is the typical form (e.g., Hopkins and Smith 2015, Wright 70 
2017) and occurs across all types of morphospaces, with continuous ancestral states being 71 
estimated directly from the ordination axes. Pre-OASE is less common and is possibly 72 
unique to discrete characters (e.g., Brusatte et al 2011; Butler et al 2012). Here ancestral 73 
states are estimated prior to ordination by generating sets of discrete states for each node 74 
in the tree (see methods and Figure 3). These two approaches necessarily lead to 75 
fundamentally different phylomorphospaces and hence have a major effect on any 76 
inferences about evolutionary processes made. 77 

Here I conduct the first, to my knowledge, direct comparison of post- and pre-78 
OASE phylomorphospaces using a single empirical case study that was initially 79 
conceived to examine tempo, phylogeny, and disparity separately (Brusatte et al 2014). 80 
Although a more comprehensive set of comparisons across multiple data sets would 81 
clearly be desirable, current implementations of the phylomorphospace algorithms are too 82 
slow to permit this. Nevertheless, the protocols outlined here allow future workers to 83 
examine the same effects in their own data. Here I particularly focus on the degree to 84 
which the resulting phylomorphospaces represent phylogenetic rather than morphological 85 
variation (i.e., any two tips must continuously diverge from their common ancestor, 86 
increasing their phylogenetic distance). This concern is motivated by a desire to avoid 87 
erroneous inferences about evolution. For example, phylogenetic variation will 88 
necessarily be continuously divergent, whereas morphological evolution is known to be 89 
at least partially convergent. Similarly, phylogenetic signal represents homogenous 90 
evolutionary rates, whereas morphological evolution is widely considered heterogeneous. 91 
Thus overreliance on phylogeny may lead us to misconstrue evolutionary processes. 92 



Alternative optimality criteria are of course worth considering, but will introduce their 93 
own complexities. For example, using the discrete character simulation approaches other 94 
workers have applied to phylogenetic inference (e.g., Wright and Hillis 2014; O’Reilly et 95 
al 2016) would necessarily introduce phylogenetic signal a priori. It is hoped solutions to 96 
these issues may be discovered in future, but minimally this study shows empirically that 97 
major differences can arise between phylomorphospace approaches even when applied to 98 
the same input data. 99 
 100 
Materials and Methods 101 
 102 
The discrete-character taxon matrix used here is derived directly from Brusatte et al 103 
(2014), and contains a mixture of binary, ordered, and unordered multistate characters as 104 
well as polymorphisms. As the implementations applied here are slow (taking several 105 
days to run all analyses on a standard laptop), the principal aim is not to understand 106 
phylogenetic uncertainty a single phylogenetic hypothesis was used. This represents the 107 
first most parsimonious tree recovered from the reanalysed version of the matrix 108 
available at graemetlloyd.com/matrdino.html. This was time-scaled using tip dates from 109 
the Paleobiology Database and the timePaleoPhy function of the paleotree Package 110 
(Bapst 2012). 111 
 Six separate phylomorphospaces were generated from the data. These include the 112 
four pre-OASE methods (Figure 3), a single post-OASE method, and a control 113 
“phylospace”, where phylogenetic (in millions of years) rather than morphological 114 
distances were ordinated. In all cases the phylomorphospace was generated by 115 
performing a principal coordinate (Gower 1966) ordination using the cmdscale function 116 
in base R (R Core Team 2017). The four pre-OASE methods are all based on a likelihood 117 
ancestral state method (Yang et al 1995) and represent the range of possible outcomes 118 
from two binary options (Figure 3; the AncStateEstMatrix function in Claddis, Lloyd 119 
2016). These represent choices to estimate missing or uncertain values using a 120 
phylogenetic hypothesis and thus are likely to represent varying degrees of phylogenetic 121 
signal. Specifically, in pre-OASE1 the only output is ancestral state estimates for internal 122 
nodes that have direct descendants with non-missing (or non-inapplicable) states. For pre-123 
OASE2 the only additional output is a collapsing of uncertain (polymorphic) tip values. 124 
Under pre-OASE3 no tip outputs are produced, but ancestral state estimates are made for 125 
all internal nodes, even if their direct descendants have missing (or inapplicable) states. 126 
Finally, pre-OASE4 returns output for every internal node and every tip. The post-OASE 127 
method simply applies the ace (ancestral character estimation) function in the ape 128 
package (Paradis et al 2004) using the principal coordinate axes themselves as input. 129 
 Five different analyses were performed to both qualitatively and quantitatively 130 
assess and compare the six phylomorphospaces. Specific analyses performed were: 1) 131 
scree plots (summarising the distribution of the variance over the ordination axes), 2) 132 
simple bivariate phylomorphospace plots of the first two ordination axes (allowing only a 133 
cursory inspection of the data due to the low variances of these axes), 3) rate 134 
heterogeneity plots (branch length against branch duration), 4) pairwise convergence 135 
histograms applying the C1 metric of Stayton (2015), and 5) correlations between 136 
phylogenetic and ordination space distances between taxa on the time-scaled tree. All 137 



analyses were performed in R (R Core Team 2017) with the full script available in Lloyd 138 
(2018). 139 
 140 
Results 141 
 142 
The main results are summarised in Figure 4 and Table 1. 143 

Scree plots (Figure 4A-F) exhibit the general issue with discrete-character 144 
ordination spaces of variance being dispersed over a large number of axes (Lloyd 2016), 145 
with low variance on the first two diminishing the value of the bivariate plots (Figure 4G-146 
L). However, Figure 4E is of note as it includes a second deflection point (at around 147 
principal coordinate axis 100). This is the result of a correction for negative eigenvalues 148 
(Caillez 1983), but is unique here to the post-OASE approach. Thus including the 149 
phylogeny directly in the ordination (pre-OASE; Figure 4A-D) has a clear advantage in 150 
generating ordinations that require less distortion when moving from raw (non-151 
Euclidean) morphological distances to ordinated (Euclidean) morphological distances. 152 
 Ideal phylomorphospaces should exhibit a good spread of points (as the pairwise 153 
distances should themselves be normally distributed). However, it is clear that one of the 154 
pre-OASE approaches (pre-OASE4; Figure 4J) has an unusually clustered, strongly V-155 
shaped distribution that is more comparable to the “phylospace” plot (Figure 4L) than the 156 
other phylomorphospaces (Figure 4G-I,K). These results should lead us to be extremely 157 
cautious about going too far in using phylogenies to “correct” for missing data, and to 158 
particularly avoid the pre-OASE4 option. 159 
 Rate heterogeneity is captured in Figure 4M-R by plotting branch lengths 160 
(Euclidean distance in the ordination space) against branch duration (in millions of 161 
years). The expectation here under 100% phylogenetic signal is that all branches exhibit 162 
the same mean rate (homogenous rates) and hence fall on the corresponding dashed line. 163 
Here we see that this is not the case even for the phylospace (Figure 4R). However, all 164 
pre-OASE plots (Figure 4M-P) show considerably larger rate heterogeneity, even having 165 
some branches falling outside the heat map area (over one hundred times the mean rate, 166 
or below one-hundredth the mean rate). By contrast post-OASE rates are considerably 167 
more homogenous, more closely reflecting the phylogenetic signal (Table 1). 168 
 Convergent evolution was measured for all pairwise tip comparisons using the C1 169 
metric of Stayton (2015), being one minus the Euclidean distance between the two tips 170 
over the largest distance achieved by their lineages since they diverged from their most 171 
recent common ancestor (Figure 4S-X). The expectation here is that under pure 172 
phylogenetic signal all values will be zero, indicating the largest divergence was achieved 173 
at the tips. Again, this is not quite the case (Figure 4X; Table 1) due to the distorting of 174 
non-Euclidean values into a Euclidean space, although most values are either zero, or 175 
very close to zero. By contrast under pre-OASE approaches a clear tail of higher C1 176 
values, indicating some degree of convergence, can be seen (Figure 4S-C), along with a 177 
reduction in the size of this tail as greater levels of missing values are phylogenetically 178 
predicted. However, most notable is the post-OASE approach that shows not just 179 
extremely low convergence but even lower convergence than pure phylogenetic signal. 180 
Here this is considered extremely implausible, especially as other character-based metrics 181 
(e.g., see Hoyal Cuthill et al 2010) would comfortably show some degree of convergence 182 
in the data. 183 



 Finally, the overall degree to which phylogeny controls the phylomorphospace 184 
generated was assessed using a simple Pearson’s correlation of the Euclidean distance 185 
between tips in the ordination space and the phylogenetic distances (in millions of years) 186 
between tips on the tree (Table 1). A high value indicates a strong phylogenetic signal, 187 
whereas a low value suggests a stronger potential morphological signal. Here I consider 188 
the latter ideal, but note that we would logically expect some phylogenetic signal in 189 
morphology. Additionally, because the expectation of 100% correlation in the phylospace 190 
is not met (again due to the non-Euclidean nature of phylogenetic distances) all values 191 
were rescaled against the phylospace value to return an estimate of percent phylogenetic 192 
signal (Table 1). Thus roughly half of the post-OASE signal can be explained by 193 
phylogeny, whereas the pre-OASE approaches vary dramatically, from roughly one-194 
quarter to almost three-quarters phylogenetic signal. That the lowest value can be reached 195 
by the pre-OASE1 approach further supports this as the optimal, i.e., least biased by 196 
introduced phylogenetic signal, phylomorphospace approach. 197 
  198 
Discussion 199 
 200 
At face value the post-OASE approach should be the ideal way to generate 201 
phylomorphospaces. It is certainly the most common approach in the literature as it is 202 
directly applicable regardless of the type of morphological data or the type of ordination 203 
employed (e.g., Page and Cooper 2017; Sherratt et al 2017). In its implementation it is 204 
usually faster, as it is applied after the dimensionality of the data has been reduced by 205 
ordination, and it has the theoretical advantage of allowing phylogenetic uncertainty to be 206 
expressed visually in the same space (as changing the tree does not “move” the tip values 207 
in the ordination), although I am not aware of this being done. However, there are some 208 
intuitive causes for concern too. For example, ancestral values will necessarily fall within 209 
the range of the sampled tip values (Stayton 2015), forcing the implicit assumptions that 210 
our sample already includes the morphological extremes and that ancestral values are 211 
always morphologically average. Furthermore, ancestral states estimated directly from 212 
the ordination axes are not mappable back to a tangible discrete morphology diminishing 213 
their utility. Here these concerns are added to by showing that some simple interrogations 214 
of a post-OASE phylomorphospace exhibit patterns better explained directly by the 215 
phylogeny used to generate it than the morphological signal we are interested in. These 216 
include an implausibly low amount of convergent evolution and generally low rate 217 
heterogeneity.  218 
 By contrast pre-OASE approaches have some clear limitations. They are more 219 
convoluted; requiring more complex ancestral state estimations, and usually more of 220 
them: the number of characters tends to be greater than the number of taxa and hence, by 221 
mathematical necessity, the number of ordination axes. Additionally, any changes to the 222 
phylogenetic hypothesis require new ancestral state estimates and hence the generation of 223 
a new phylomorphospace, adding further computation time. However, despite these 224 
limitations they have still been favoured before, primarily by palaeontologists as a means 225 
of increasing sample size (Brusatte et al 2011) or addressing severe missing data levels 226 
(Butler et al 2012). Other advantages include removing the assumption that estimated 227 
ancestors must fall within the range of the tips (compare Hopkins and Smith 2015, their 228 
Figure 3 with Brusatte et al 2011, their Figure 3). However, as shown here, there is 229 



considerable variation in implied evolutionary history amongst the four pre-OASE 230 
approaches. The results obtained here suggest those currently adopted in the literature 231 
(pre-OASE3-4) are likely suboptimal, introducing substantial phylogenetic signal that 232 
may be overwriting the true morphological pattern and generating peculiar 233 
phylomorphospaces (Figure 4J) as well as low amounts of convergent evolution and rate 234 
heterogeneity. However, this need not be the case, with already available options (pre-235 
OASE1-2) in Claddis (Lloyd 2016) that can: 1) minimise this introduced signal, by over 236 
45% in the example data set used here, 2) more faithfully retain the uncertainty of the 237 
empirical observations rather than “diluting” them with predicted values, and 3) avoid 238 
nonsensical issues like estimating either a single state for a truly polymorphic character or 239 
any value for an inapplicable character. 240 
 Minimally this study shows that different approaches lead to very different 241 
phylomorphospaces (and hence inferred evolutionary histories), but it does not directly 242 
address their utility in general. Previously I have argued for an apparently contradictory 243 
position: that there are good reasons to avoid ordination entirely (Lloyd 2016). Some of 244 
those reasons are evident here, particularly the distortions associated with projecting non-245 
Euclidean distances into Euclidean ordination spaces. We might ask, then, whether the 246 
advantages of a phylomorphospace can still be enjoyed without the problems associated 247 
with ordination? This can be done by examining some of the phylomorphospace 248 
approaches introduced by previous authors (Sidaluskas 2008; Stayton 2015; Hopkins 249 
2016). The methods of Sidlauskas (2008) require both branch-lengths and clade volumes, 250 
as specified by the ordination space. However, branch-lengths can be estimated outside of 251 
an ordination space and non-ordination disparity metrics can be employed as volume 252 
proxies (Lloyd 2016). Stayton’s (2015) convergence metrics similarly rely on distances 253 
from an ordination space, but these can certainly be estimated without ordination and 254 
indeed would arguably be superior as they would avoid distorting these distances. 255 
However, the directionality bias measures used by Hopkins (2016) do not provide a clear 256 
non-ordination alternative. Significantly, though, any ordination-free alternative to 257 
generating a phylomorphospace requires ancestral state estimation to be made prior to 258 
(i.e., without) ordination. Consequently, only the pre-OASE approaches even allow for 259 
these options, further supporting their use over the post-OASE approach. 260 
 This study joins several others in emphasising the immaturity of our 261 
understanding of discrete character evolution. For example, Lloyd (2016) showed that a 262 
novel distance metric was in many cases superior to those previously applied in disparity 263 
studies. (Directly relevant here as a step in the phylomorphospace pipeline, Figure 2.) 264 
Hoyal Cuthill (2015a,b) extended earlier homoplasy metrics (Hoyal Cuthill 2010) to a 265 
more comprehensive understanding of how evolution explores the “state space” of 266 
discrete characters. This is related to another important concept in discrete character 267 
evolution, specifically the rapid “exhaustion” of novel states that appears to be a common 268 
pattern across multiple clades (Wagner 2000). This is logically related to the limits of 269 
disparity (Oyston et al 2015), and hence is directly relevant to our understanding of 270 
phylomorphospaces. For example, these phenomena might serve to explain some 271 
distance-from-root patterns generated in an earlier version of this manuscript, where the 272 
root morphology is rapidly left behind with subsequent evolution apparently constrained 273 
at the “edges” of the hyperdimensional space (see Lloyd 2018). Collectively, these 274 
studies show that despite almost 75 years of assembling character-taxon matrices there is 275 



much to be revealed from studying morphology in the form of discrete categorical data 276 
and further foundational changes can be expected. 277 
  278 
Conclusion 279 
 280 
Phylomorphospaces can allow us to consider phylogeny, tempo, and mode 281 
simultaneously when inferring morphological evolution from discrete characters. 282 
However, different approaches exist to generate such spaces and these can (and do) lead 283 
to fundamentally different interpretations of evolutionary history. The results presented 284 
here suggest caution be applied when using all of the most common approaches from the 285 
literature – whether ancestral states are estimated pre- or post-ordination. More generally, 286 
the fact that so much of the result can reflect phylogenetic rather than morphological 287 
signal should urge us to be cautious whenever we use phylogeny to “correct” the fossil 288 
record. The results shown here also highlight issues related to distortions generated by 289 
ordinating non-Euclidean distances into Euclidean spaces and future research should 290 
concentrate on developing ordination-free versions of phylomorphospace analyses. 291 
Finally, that this particular comparison has not been explored previously further 292 
emphasises the immature nature of these methods and the potential for far-reaching 293 
foundational improvements to our understanding of morphological evolution as captured 294 
by discrete categorical data. 295 
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 397 
Figure 1 – A hypothetical phylomorphospace (redrawn from Sidlauskas 2008). Such 398 
spaces are typically high-dimensional and thus can never be fully visualised. Here, as is 399 
typical, only the first two axes (those containing the most variation) are displayed. Large 400 
black circles denote the tip values that are always used to infer the ordination (i.e., 401 
morpho-) space. Smaller grey circles represent estimated ancestral values that may be 402 
estimated either prior to (pre-OASE; Brusatte et al 2011), or after the ordination (post-403 
OASE; Stone 2003). Grey lines denote branches of the phylogenetic hypothesis used, 404 
thus the phylomorphospace explicitly contains the phylogeny. Disparity (morphological 405 
diversity) is reflected in the spread of points in the space, and rates can be inferred from 406 
the length of the branches in the space (i.e., these represent the rate numerator). Thus a 407 
phylomorphospace allows us to consider phylogeny, disparity, and tempo simultaneously. 408 
 409 
Figure 2 – Schematic of the two main routes (pipelines) to generating a discrete-410 
character phylomorphospace (modified from Lloyd 2016). The primary difference is 411 



whether the phylogenetic hypothesis is introduced prior to (pre-OASE), or after (post-412 
OASE), ordination (dashed vertical line). If introduced prior to ordination, then ancestral 413 
estimates are for the discrete characters themselves (and missing tip values can also be 414 
estimated – see Figure 4). If introduced after ordination, then ancestral estimates are for 415 
the ordination axes (continuous data). 416 
 417 
Figure 3 – Schematic showing four possible pre-Ordination Ancestral State Estimates 418 
(pre-OASE1-4) that result from two binary questions: whether to estimate tips as well as 419 
nodes (i.e., to fill missing values or collapse polymorphisms) and whether to estimate all 420 
states or just those for which tip data (i.e., direct descendants of that node) are available. 421 
An example input tree with six tips (labelled 1-6) and five internal nodes (A-E) is shown 422 
at upper left for a single binary character (white or black) with a polymorphism for tip 3 423 
and missing data for tips 2 and 4. (Note that missing data is replaced with polymorphisms 424 
if estimating all states.) Trees on grey backgrounds represent the underlying marginal 425 
likelihoods estimated when using the associated AncStateEstMatrix function in the 426 
Claddis package (Lloyd 2016; github.com/graemetlloyd/Claddis), but note that 427 
conceptually the same general kinds of estimates could be made using other 428 
implementations or optimality criteria (e.g., parsimony, Bayesian). Finally, the lower part 429 
of the plot shows the output of estimated tip and node states (Claddis collapses marginal 430 
likelihoods to the most likely state, or returns a polymorphism if state likelihoods are 431 
exactly equal). Note that the four approaches are numbered from least (pre-OASE1) to 432 
most (pre-OASE4) missing values estimated, which can also be thought of as least to 433 
most introduced phylogenetic signal. Pre-OASE approaches in the literature correspond 434 
to pre-OASE3 (Brusatte et al 2011) or pre-OASE4 (Butler et al 2012), whereas pre-435 
OASE1 and 2 are novel. Additionally, if no polymorphisms are present in the input data 436 
then pre-OASE1 and pre-OASE2 are identical. 437 
 438 
Figure 4 – Primary results comparing six different phylomorphospace approaches 439 
applied to the same discrete character-taxon matrix and phylogenetic hypothesis (Brusatte 440 
et al 2014). Each “row” of results, from top to bottom, corresponds to: pre-OASE1-4, 441 
post-OASE, and the “phylospace” control. Each “column” of results, from left to right, 442 
corresponds to: 1) scree plots (the distribution of variance across ordination axes; A-F), 443 
2) bivariate phylomorphospace plots (G-L; nodes shown as red circles and branches as 444 
grey lines), 3) bivariate plots of branch duration (x-axis, logged) and branch length (M-R; 445 
points represent individual branches of the tree with heat maps running from one-hundred 446 
(top, left), to one-hundredth (bottom, right), times the mean rate, indicated by the dashed 447 
red line), and 4) histograms of pairwise convergence values (C1 metric of Stayton 2015). 448 
See text for interpretation of results. 449 
 450 
Lay statement: Palaeontologists are interested in the diversity and tempo of evolutionary 451 
change along the branches of the tree of life, but these are typically treated as separate 452 
numerical analyses. Here I argue for a statistical technique that allows us to treat these 453 
aspects of evolution simultaneously, allowing a more complete understanding of how 454 
evolution has explored the possibilities of physical form. Specifically, I compare five 455 
different approaches, two novel to this study, showing that the three pre-existing 456 



approaches may contain biases that stem from a different signal (evolutionary 457 
relationships) than we intend to capture (the exploration of physical form). 458 
 459 
Table 1 – Comparative summary statistics of the six phylomorphospace approaches 460 
applied to the empirical case study (Brusatte et al 2014). Phylogenetic signal was 461 
measured by correlating (Pearson’s r; data were normally distributed) the phylogenetic 462 
distances between tips (in millions of years) with the distance between those tips in the 463 
complete ordination space (i.e., using all axes). Rate homogeneity was measured by 464 
correlating (Kendall’s tau; data had a clear skew and contained ties) branch lengths in the 465 
complete ordination space with branch durations (in millions of years). In both cases the 466 
raw data were rescaled by dividing through by the phylospace value and converting to 467 
percentages. Convergent evolution was measured using the C1 metric of Stayton (2015) 468 
across all pairwise tip-to-tip comparisons and using the complete ordination space (i.e., 469 
all axes). 470 
 471 

Phylomorphospace 
approach 

Phylogenetic signal Rate homogeneity Convergent 
evolution 

Raw Rescaled Raw Rescaled 
Mean 

pairwise C1 

Pre-OASE1 0.210 25.0% 0.217 26.3% 0.075 
Pre-OASE2 0.224 26.5% 0.221 26.8% 0.074 
Pre-OASE3 0.357 42.3% 0.392 47.6% 0.047 
Pre-OASE4 0.604 71.7% 0.357 43.3% 0.028 
Post-OASE 0.432 51.2% 0.513 62.3% 0.000 
Phylospace 0.843 100.0% 0.824 100.0% 0.012 

 472 


