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Introduction

When you can measure what you are speaking about, and 
express it in numbers, you know something about it. When 
you cannot express it in numbers, your knowledge is of a 
meagre and unsatisfactory kind; it may be the beginning 
of knowledge but you have scarcely, in your thoughts, 
advanced to the stage of science. William Thomson, 1st 
Baron Kelvin

The discipline of measurement lies at the heart of modern 
science. Arguably, the most important development in modern 
medicine is not the development of ‘precision medicine’ or the 
emergence of ‘big’ data, but rather the increasing attention 
to measurement, across the spatial and temporal scales, 
which underlies both precision medicine and burgeoning data 
sets. It is instructive to see how central measurement is to 
scientifi c progress by contrasting the development of physics 
and medicine. Galen, Harvey and many others advanced 
measurement in medicine; indeed Harvey’s work contributed 
to developing understanding of the physics of fl uid fl ow, in a 
manner that refl ected the cross-disciplinary nature of science 
in his time.1,2 Measurement in medicine is diffi cult: the sheer 
complexity of biology means that even identifying appropriate 
measurements to make in medicine can be challenging and, 
if meaningful variables are identifi ed, it is often technically 
diffi cult to make accurate measurements.3 In physics, key 
concepts such as mass, charge, distance and force are well-
defi ned and, generally, measurable. They also turn out to be 
very useful; by combining these measurements with some 
simple but profound symmetries – the laws of physics – it has 
proved possible to develop a deep understanding of the fabric 
of the cosmos. This understanding is framed in the language 
of physics: mathematics. Measurement and mathematics go 
hand-in-hand in physics, with mathematics providing what 

seems at times to be an uncanny ability to provide predictions 
that may then be tested experimentally. Thus, physics 
is characterised by two key steps: measurement and the 
development of mathematical models. The construction of a 
mathematical model of the system in question represents the 
theory within which the measurements are understood. This 
is both informative and useful; for example, the mathematical 
model enables the system’s behaviour to be predicted in 
conditions beyond those measured. This two-step process 
–measurement and modelling – is at the heart of physics 
whereas, until relatively recently, the modelling step in 
particular has not been commonplace in biology or medicine, 
in part refl ecting the challenges of meaningful measurement 
noted above.

Given the increasing availability of large amounts of useful 
data based on careful measurement in biology and medicine, 
can we now draw useful lessons for the development of 
medicine from noting how physics has developed historically? 
Will mathematical models be included as a routine step in 
clinical research? Is there now a ‘Physics of Physik’ which 
refl ects converging scientifi c approaches? Can mathematical 
models accelerate the pace of medical advances?

This paper offers some refl ections on these questions. It 
draws on several historic and current examples to illustrate 
the potential impact of a more mathematical approach 
to medicine, as well as noting some developing areas 
and possible implications for the medical curriculum. It 
concludes with suggestions on how interested clinicians 
might engage with the topic; a short bibliography is provided. 
Some elements of this paper, including the title, appeared 
previously in an article on physics and medicine written for 
Medicine Matters.4
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Mathematical models in physics

Two recent and prominent examples from physics illustrate 
the central role that mathematical models – theory – play 
in physics; the fi rst is the discovery of the Higg’s boson. 
While this was confirmed experimentally at the Large 
Hadron Collider in 2013,5 it was predicted in 1964 by 
three independent groups – Peter Higgs,6 Robert Brout 
and Francois Englert,7 and Gerald Guralnik, Carl Hagen and 
Tom Kibble8 – from the mathematical theory of subatomic 
particles, as a feature of the theory required for the particles 
to have mass. The 2013 Nobel prize was awarded to Higgs 
and Englert ‘for the theoretical discovery of a mechanism 
that contributes to our understanding of the origin of mass 
of subatomic particles, and which recently was confi rmed 
through the discovery of the predicted fundamental particle, 
by the ATLAS and CMS experiments at CERN’s Large Hadron 
Collider.’9 [bold typeface added].

The second example – the experimental observation of 
gravitational waves in 2015 at the Laser Interferometer 
Gravitational-Wave Observatory by an international 
collaboration including physicists from the Universities of 
Glasgow and the West of Scotland,10,11 – is characterised 
by an even longer gap between mathematical prediction and 
observation; gravitational waves having been predicted, as 
ripples in spacetime, by Einstein’s general theory of relativity 
in 1916.12,13

It is worth noting that this paper draws a distinction between 
mathematical models and statistical models; the latter, 
of course, are already well-established to good effect in 
medicine and not the subject of this paper. In this context, 
by ‘statistical models’ we mean those that determine 
numerical relationships between data sets but without 
reference to any underlying biological mechanism. In contrast, 
by ‘mathematical models’, we mean those models that are 
constructed based on a putative understanding of biological 
mechanism. A historical example from physics illustrates this 
distinction;14 in 1543, Copernicus proposed the heliocentric 
model of the solar system. The Danish astronomer Tycho 
Brahe assembled a large volume of accurate data which 
included the relative distances of the planets and sun. 
Brahe hired a brilliant mathematician, Johannes Kepler, who 
reviewed the planetary data and noted a series of statistical 
relationships, including that between the period of the 
planetary orbit and the distance of the planet from the sun. 
With characteristic insight, Newton realised that the statistical 
relationship could be explained as a consequence of an 
inverse square law of gravitation describing the attractive 
force between two objects. Newton had thereby constructed 
a mathematical model based on the earlier statistical model.

These examples of the predictive power of a mathematical 
theory in physics are clearly impressive and beg the 
question ‘Could predictive mathematical models become 
commonplace in medicine?’ In an era of ‘big data’, it is not 
surprising that the answer to this question would appear to 
be ‘yes’ and it may well be that this aspect of physics will 

make an even greater impact on medicine than the well-
established role that physics has played in the development 
of medical technologies. 

Developing mathematical models in 
medicine

Some areas of medicine already have a long and 
distinguished track record of mathematical modelling; clinical 
epidemiology of infectious disease15 and radiotherapy16 being 
two examples. However, recent years have seen a signifi cant 
increase in the number of articles and journals devoted to 
building mathematical models in medicine and biology; 
see for example Sneppen,17 Physics of Life Reviews18 and 
Mathematical Biology & Medicine.19 

It is worth summarising a few key principles that guide the 
development of mathematical models.20 From the outset, it is 
important to recognise that ‘all models are wrong but some 
are useful’.21 Models are constructed based on a putative 
mechanism. In describing the mechanism in mathematical 
terms, it is important to adopt Occam’s razor: that the model 
is kept as simple as is consistent with the data.22,23 Models 
with many parameters that can be adjusted to ensure a 
good fi t to the experimental data – more specifi cally, where 
the number of adjustable parameters is comparable to the 
number of data points – are not good models and do not 
yield useful insights. 

There is a temptation to associate complex data sets with 
complex underlying models but this is not necessarily so; for 
example, May’s seminal paper24 confi rms that an apparently 
simple class of mathematical equations can give rise to 
extremely complex patterns in the data sets being modelled. 
This also illustrates why intuition can be misleading in trying 
to understand mechanisms that give rise to observed 
patterns in clinical data sets: complex patterns do not always 
lead to complex models. 

The mathematical model should also make predictions 
about how the system would behave under a range of 
different conditions. Models which simply describe observed 
behaviours are not informative. The best models become 
an element in a cyclical exchange between theory and 
experiment, where experimental data are described by a 
candidate model capable of predicting the data that should 
be observed under a different set of experimental conditions. 
Depending on the outcome of the set of experiments 
suggested by the model, adjustments are then made to the 
model and the process of testing repeated. 

These aspects of model building – simplicity, predictive power 
and iterative testing by experiment – are now illustrated by 
several examples of clinical relevance.

Mathematics in the clinic

Haemodialysis has long been described by mathematical 
models.25 Urea is used as a marker of toxicity and urea 
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clearance by haemodialysis is used as a measure of 
dialysis dose. The process of blood urea clearance during 
haemodialysis is amenable to compartmental modelling in 
which the urea is assumed to be distributed in one or more 
notional body compartments. Urea clearance can then be 
described in mathematical terms using the principles of 
mass transport, leading to several mathematical expressions 
for dose based on the measurement of the blood urea 
concentration pre- and post-dialysis; see, for example the 
HEMO pilot study.26 The precise equation for the dose 
is dependent in part on the complexity of the underlying 
compartmental model, but a mathematical approach has 
permitted the development of more accurate measurements 
of the dose of dialysis; for example, one approach which was 
tried used an extra blood sample taken during dialysis, rather 
than having to wait to measure the post-dialysis equilibrium 
blood urea level which can be up to 1 h after treatment 
fi nishes.27 Current dialysis treatment guidelines28 are based 
on a series of trials that assessed the relationship between 
dose and mortality, all of which were underpinned by a variety 
of mathematical models.

The international Physiome project29 is attempting to provide 
a comprehensive, multi-scale mathematical model of 
physiological dynamics and functional behaviour of the human 
body – a virtual human – and is a particularly ambitious 
example of potentially clinically-informative mathematical 
modelling. The Physiome project builds on previous work, 
including extensive work developing mathematical models 
of the electrophysiology of the heart. These models have 
become increasingly useful for clinicians; for example, a 
recent review article by Trayanova and Chang30 described 
how a mathematical model of the heart – implemented as a 
computer simulation, which is the case for most models – can 
optimise anti-arrhythmia therapy. The model enables a wide 
range of different conditions and treatments to be readily 
simulated and assessed. 

The Moffi tt Cancer Centre in the USA has an extensive and 
established research programme in mathematical oncology 
that entails the careful combination of experiment and 
mathematics.31 The Centre is now extending modelling to 
the selection of treatment strategies for chemotherapy 
and targeted therapies. The models notably include those 
based on the evolutionary dynamics of tumours and lead 
to some novel hypotheses; for example, in a recent paper 
by Ibrahim-Hashim et al.,32 it was suggested that identifying 
and modelling intra-tumoural subpopulations based on their 
adaptive strategies rather than their molecular properties 
allows their cellular and environmental interactions to be 
described mathematically. In turn, these models enable 
potential therapeutic interventions (for example, manipulation 
of pH local to the tumour) to be identifi ed which steer the 
tumour development into a less invasive phenotype. 

One of the most elegant recent examples of a mathematical 
model which describes complex biology is that developed by 
the Simons group at Cambridge.33,34 Simons and colleagues 
use an approach based on the mathematics of branching 

and annihilating random walks to explain the morphology 
of branching organs such as the mouse mammary gland, 
kidney and human prostate. The model demonstrates that 
complex branching epithelial structures arise due to three 
simple rules, without reference to a deterministic sequence 
of genetically-programmed events. 

The overall goal of mathematical medicine would be the 
creation of predictive, patient-specifi c mathematical models 
(PSMs), based on a detailed mechanistic description 
of disease (rather than simply a statistical model) and 
which draw on large and disparate patient data sets.35 
Such models could then be used to simulate the impact 
of different treatment regimes and to suggest optimal, 
tailored treatments. These models would be developed 
iteratively, drawing on data from detailed regular monitoring 
of the patient to refi ne the PSM. If this approach were to be 
realised more widely, a review visit to the diabetes clinic, 
for example, might include reference to a PSM based on 
the patient’s blood glucose measurements logged over the 
previous year and accompanied by cognate clinical data 
provided by wearable technology. The PSM could suggest 
adjustments to the treatment regime which would in turn lead 
to an adjustment of the PSM – the patient data would lead 
to a recalibration of model parameters – and which might 
include factors such as diurnal and seasonal variations. The 
work of, for example, Roman Hovorka36 suggests that such 
an approach is not fanciful.

In practice, such PSMs are likely to be hybrid models: a mix 
of statistical and mechanistic approaches. In cancer, this 
combined approach is reasonably advanced and draws on 
work in systems biology.37 

It is important to note that the development of mathematical 
models in medicine is not limited to biomedical applications. 
For example, there is a fast-developing community of health 
system modellers, comprising mathematicians and clinicians, 
who are applying mathematics to the study of patient care 
pathways.38 This demonstrates the reach of a mathematical 
approach to understanding healthcare in its broadest sense. 
In an age when health systems are under particular pressure, 
the role of mathematics in assessing the merits of different 
confi gurations of health systems is increasingly recognised.

New biology and medicine will need new mathematics or, rather, 
new applications of existing mathematics. A good example 
of this is the application of network (or graph) theory which 
was developed in its original form by pure mathematicians, 
who were not originally motivated by real-world applications.39 
Network theory40 describes how networks of interacting 
objects (for example, people, ideas, molecules) behave 
as a whole system (for example, the internet, transport 
networks, or gene regulatory networks). Unsurprisingly, given 
that biology and society are characterised by networks, this 
branch of mathematics is now contributing signifi cantly to our 
understanding of many areas including genomics, proteomics, 
cellular physiology, public health and health systems; see for 
example Buchanan et al.41 and Zheng et al.42
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Barriers to model-building 

The fi rst barrier to constructing mathematical models in 
medicine is that biology is complex. Thus, whereas physics 
has made immense progress by ‘mathematising’ the basic 
symmetries which seem to underlie the cosmos, biology is 
replete with emergent and contingent phenomena, which 
cannot be readily reduced to a series of basic laws framed by 
mathematics. In biology, evolution is the dominant paradigm 
and this has long been established as a mathematical-
grounded theory,43 which has in turn spawned the applications 
of evolutionary models to, for example, the emergence of 
resistance in cancer.44 

‘Emergence’ is a rather slippery concept but basically 
refl ects the fact that large numbers of simple interacting 
objects display collective properties which cannot be easily 
deduced from the behaviour of an individual entity.45 The 
mathematics of emergence was fi rst developed in the physics 
of condensed matter. A pioneer in the physics of emergence 
is the Nobel Prize-winning physicist, Philip Anderson, and his 
paper More is Different,46 is now recognised as being highly 
relevant to biology.

A second barrier is linked to the quality of clinical and 
biological data. As mentioned above, Byers notes that the 
data available to those in the biological and clinical sciences 
are often rather messy,3 which often contrasts with data 
available to theoretical physicists. As Byers notes, messy data 
sets are more suited to analysis by statistical techniques, 
including machine-learning, and require an approach to 
determining underlying models, in which a range of different 
mathematical models are assessed for agreement with the 
data using a Bayesian approach. This approach is alien to 
most physicists. Indeed the physicist Ernest Rutherford is said 
to have observed that ‘If you need statistics then you should 
have done a better experiment’.47 This view persists in some 
quarters of the physics community and must be countered.

The third barrier is cultural; the recent Nurse Review of 
the Research Councils48 reflects on the need to foster 
interdisciplinary science and this is a particular challenge 
for a mathematically-based science such as physics. 
Mathematics is a powerful language but, until recently, not 
one which was taught or deployed routinely by the biological 
or clinical communities. It is appropriate to briefl y outline a 
number of routes by which this defi cit may be addressed.

Routes to engagement

Major funders of research in the UK, including the Research 
Councils, Cancer Research UK, the Wellcome Trust and the 
National Institute for Health Research (NIHR) have now 
created schemes to draw in mathematicians and physicists 
to biological and population sciences, and to help clinicians 
engage with other sciences. Examples include:

• The Physics of Life Network – http://www.physicsofl ife.org.
uk – funded by the Biotechnology and Biological Sciences 

Research Council and the Engineering and Physical 
Sciences Research Council (EPSRC). The network is keen 
to encourage clinician membership and is open to all

• Five Centres for Mathematical Sciences in Healthcare 
funded by the EPSRC: https://www.epsrc.ac.uk/
newsevents/news/newmathscentres. These Centres have 
established routes to clinical engagement and are keen 
to increase clinical participation

• Cancer Research UK’s Multidisciplinary Award scheme: 
ht tp://www.cancer researchuk.org/funding - for -
researchers/our-funding-schemes/multidisciplinary-
project-award. The scheme is co-funded by the EPSRC 
and requires at least one investigator from the engineering 
or physical sciences

• MASHnet – the UK network for modelling and simulation 
in healthcare: http://mashnet.info

• The Research Councils fund various discipline-hopping 
awards, see for example: http://www.rcuk.ac.uk/
research/xrcprogrammes/otherprogs and https://www.
epsrc.ac.uk/funding/calls/htdisciplinehopping

• The Medical Research Council Skills Development 
Fellowships emphasises the development of quantitative 
skills: https://www.mrc.ac.uk/skills-careers/fellowships 

• NIHR funds fellowships that are open to those wishing 
to develop quantitative skills applied to health research. 
See https://www.nihr.ac.uk/funding-and-support/funding-
for-training-and-career-development/training-programmes

• Many university mathematics departments have vigorous 
programmes of research in mathematical modelling in 
medicine. A reasonably comprehensive list is found at 
https://www.maths.ox.ac.uk/groups/mathematical-
biology/links/groups

University curricula are also responding to the need for 
improved training in mathematics to extend beyond the 
physical sciences, although there is more work to be done, 
not least in strengthening the teaching of mathematics 
in schools. There are numerous opportunities for 
mathematicians and physicists to undertake postgraduate 
training in mathematical modelling in medicine; see, for 
example the universities of Nottingham49 and Dundee.50 
The reverse trend – mathematical training for doctors – is 
not quite so commonplace. The impact of mathematics on 
medical curricula needs to be thoughtfully reviewed. It makes 
little sense to expect most medical students to undertake 
extensive training in mathematics, which is a deeply technical 
discipline, although there are some who train in medicine 
following a fi rst degree in physics or mathematics and by 
whom the potential value of mathematical modelling in 
medicine is likely to be appreciated. Training in the principles 
of quantitative analysis is perhaps a better emphasis, as 
it leads to an appreciation of the power of mathematics 
to encapsulate clinical understanding and the value to 
medicine of mathematics, physics and cognate disciplines. 
Special study modules, intercalated degrees and Masters 
level courses are emerging, sometimes linked to courses in 
informatics or statistics: see for example the Farr Institute.51 
Open access resources, including public lecture series 
(see for example the Institute for Mathematics and its 
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Applications52) are particularly valuable. Such opportunities 
should be taken by many more clinicians.

Conclusion

The increasing convergence of ‘Physics and Physik’, based 
on complementing clinical skills with mathematical insight, 
offers rich rewards. Indeed, the mathematical model is a key 
component of what is increasingly recognised as ‘Systems 
Medicine.’ As West notes,53 ‘A more integrated, systemic 
approach is needed to fully understand the processes of 
health, disease and dysfunction…Integral to this approach 
is the search for a quantitative, predictive, multilevel, 
theoretical conceptual framework that both complements 
the present approaches and stimulates a more integrated 
research agenda…’.

Predicting the future is fraught with diffi culty but drawing 
an analogy with weather forecasting may refl ect the future 
for medicine; until recently, much forecasting was based on 
precedent and pattern recognition but the availability of a vast 
amount of accurate observational data led to the development 
of large complex mathematical models of the weather system 

which in turn has led to signifi cant improvements in the 
accuracy of weather forecasts.54 Medicine is considerably 
more complex than weather forecasting but the progress 
made to date in developing predictive mathematical models 
that can inform clinical practice suggests that the analogy 
has some merit.

In conclusion, lest anyone think that mathematical medicine 
will lead to an unduly narrow view of clinical practice, it is 
only appropriate to end by tempering Kelvin’s apparently 
rather one-dimensional dictum with a quote attributed to 
Einstein but which is probably more accurately attributed 
to the American social scientist William Bruce Cameron:55

Not everything that counts can be counted, and not 
everything that can be counted counts 
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