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ABSTRACT

The least squares-based eigenfilter method has been applied to the design of both finite impulse
response (FIR) filters and wideband beamformers successfully. It involves calculating the resultant
filter coefficients as the eigenvector of an appropriate Hermitianmatrix, and offers lower complexity
and less computation timewith better numerical stability as compared to the standard least squares
method. In this paper, we revisit the method and critically analyse the eigenfilter method by reveal-
ing a serious performance issue in the passband of the designed FIR filter and the mainlobe of the
wideband beamformer, which occurs due to a formulation problem. A solution is then proposed
to mitigate this issue by imposing an additional constraint to control the response at the pass-
band/mainlobe, and design examples for both FIR filters and wideband beamformers are provided
to demonstrate the effectiveness of the proposed method.
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1. Introduction

Finite impulse response (FIR) filters and wideband beam-

formers have numerous applications ranging from Sonar,

Radar, audioprocessing, ultrasound imaging, radio astron-

omy, earthquake prediction, medical diagnosis, to com-

munications, etc (Liu & Weiss, 2010; Van Trees, 2002).

Many optimization methods have been employed in the

past to design FIR filters andwidebandbeamformerswith

required specifications (Harrou &Nounou, 2014; Ho, Ling,

Dam, & Teo, 2012). General convex optimization is one of

the techniques that has been extensively explored from

this perspective (Duan, Ng, See, & Fang, 2008; El-Keyi,

Kirubarajan, & Gershman, 2005; Liao & Raza, 2011; Zhao,

Liu, & Langley, 2011a) with the inherent drawback of long

computation time required to reach a feasible solution.

Although it can be considered as a special case of

the convex optimization approach, least squares-based

design has been adopted as a simple but effective solu-

tion to both design problems, which minimizes the

mean squared error between the desired and designed

responses (Doclo & Moonen, 2003; Liu & Weiss, 2010;

Zhao, Liu, & Langley, 2011b). The solution of the standard

least squares cost function involves matrix inversion to

obtain the required weight vector. Since matrix inversion

poses numerical instability with long filters (Tkacenko,

Vaidyanathan, & Nguyen, 2003), another method was

CONTACT Wei Liu w.liu@sheffield.ac.uk
*This is an expanded work of our conference publication (Raza & Liu, 2016)

proposed based on the least squares approach by per-

forming eigenvector decomposition of a cost function

to extract the required weight vector in the form of

an eigenvector. This method is called eigenfilter design

and has been explored for designing both filters and

beamformers (Doclo & Moonen, 2002; Nguyen, 1993;

Pei & Tseng, 2001; Vaidyanathan & Nguyen, 1987; Zhang

& Chen, 2002; Zhao, Liu, & Langley, 2011c). Moreover, the

design of linear-phase FIR Hilbert transformers and arbi-

trary order digital differentiators were considered by Pei

and Shyu (1988, 1989), who also investigated the design

of nonlinear-phase filters with arbitrary complex-valued

coefficients (Pei & Shyu, 1992, 1993a). Two-dimensional

(2-D) extension to the eigenfilter method was pro-

posed by Nashashibi and Charalambous (Nashashibi

& Charalambous, 1988), and later considered by Pei (Pei

& Shyu, 1990, 1993b). Eigenfilters have also been used to

design infinite impulse response (IIR) and all-pass filters

(Laakso, Nguyen, & Koilpillai, 1993; Shyu & Pei, 1992).

In this work, we revisit the eigenfilter method for

designing FIR filters and wideband beamformers and

reveal a serious performance issue in the passband

of the designed FIR filters and the mainlobe of the

designedwideband beamformers in the light of an inher-

ent design formulation flaw. An overall critical analy-

sis of the performance of this approach is presented

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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with the suggested modification for tackling this issue.

In particular, an additional constraint is imposed at the

passband/mainlode of the system to control the resultant

responses.

This paper is organized as follows. The eigenfilter-

based design formulation for FIR filters and wideband

beamformers along with the critical analysis is presented

in Section 2. The proposed solution to the highlighted

problem is given in Section 3. Design examples for dif-

ferent types of FIR filters and wideband beamformers

affected by the problem are provided in Section 4 fol-

lowed by results using the proposed solution. Conclu-

sions are drawn in Section 5.

2. Least squares-based design and critical
analysis

2.1. FIR ilter design

Consider anN-tap FIR filter. Its frequency responseW(ejω)

is given by

W(ejω) =

N−1
∑

n=0

wne
−jnω , (1)

where wn is the n-th tap/coefficient of the filter. In vector

form, it can be expressed as

W(ejω) = wHc(ω), (2)

where w is the N × 1 weight vector holding the coeffi-

cientswn, n = 0, 1, . . . ,N − 1, and

c(ω) = [1, e−jω , . . . , e−j(N−1)ω]T . (3)

Now consider designing a lowpass filter as an example.

The desired response D(ω) is given by

D(ω) =

{

e−jω N−1
2 , 0 ≤ ω ≤ ωp,

0, ωs ≤ ω ≤ π ,
(4)

where e−jω N−1
2 represents the desired linear phase at the

passband with a delay of N−1
2 samples along with the

desired stopband response equal to zero.

The design process involves formulating the cost

function in the standard eigenfilter form, based on the

Rayleigh–Ritz principle which states that for any Hermi-

tian matrix R, its Rayleigh–Ritz ratio is given by

wHRw

wHw
. (5)

This ratio reaches its maximum/minimum when w is the

eigenvector corresponding to the maximum/minimum

eigenvalue of R. The maximum and minimum values of

this ratio are, respectively, the maximum and minimum

eigenvalues. For FIR filter design, a reference frequency

point was introduced by Nguyen in the passband region

of the cost function to help represent it into the quadratic

form as desired by (5) (Nguyen, 1993). The cost function

with the reference frequency point incorporated is given

as

E =
1

π

∫

ω

v(ω)

∣

∣

∣

∣

D(ω)

D(ωr)
W(ejωr ) − W(ejω)

∣

∣

∣

∣

2

dω, (6)

where v(ω) is the weighting function and D(ωr) and

W(ejωr ) represent the desired and designed responses

at reference frequency, respectively. This expression can

also be written as

E =
1

π

∫

ω

v(ω)

(

D(ω)

D(ωr)
W(ejωr ) − W(ejω)

)

(

D(ω)

D(ωr)
W(ejωr ) − W(ejω)

)H

dω. (7)

For stopband, the desired response D(ω) = 0. Substitut-

ing this value into the expression above, we have

Es =
1

π

∫ π

ωs

v(ω)W(ejω)W(ejω)Hdω. (8)

Substituting the expression in (2) into (8), the expression

further simplifies to

Es =
1

π

∫ π

ωs

v(ω)wHc(ω)c(ω)Hwdω. (9)

Then we can express (9) as

Es = wHPsw, (10)

where Ps is a symmetric, positive definite matrix of order

N x N given by

Ps =
1

π

∫ π

ωs

v(ω)c(ω)c(ω)Hdω. (11)

The passband cost function is derived by incorporating

the desired passband response D(ω) = e−jω N−1
2 into (7)

Ep =
1

π

∫ ωp

0

v(ω)

(

e−jω N−1
2

e−jωr
N−1
2

W(ejωr ) − W(ejω)

)

(

e−jω N−1
2

e−jωr
N−1
2

W(ejωr ) − W(ejω)

)H

dω. (12)

After simplification, we have

Ep =
1

π

∫ ωp

0

v(ω)wH
(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)

(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)H
wdω. (13)
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This expression can also be written as

Ep = wHPpw, (14)

where Pp is a symmetric, positive definite matrix of order

N x N given by

Pp =
1

π

∫ ωp

0

v(ω)

(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)

(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)H
dω. (15)

The total cost function is a combination of the passband

and stopband cost functions with a trade-off factor α

E = αEp + (1 − α)Es, 0 ≤ α ≤ 1, (16)

which can be transformed into

E = wHPw, (17)

where

P = αPp + (1 − α)Ps, 0 ≤ α ≤ 1. (18)

Combining (11) and (15) in (18) and taking the real part,

we have

P = α

∫ ωp

0

Re[
(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)

(

e−j N−1
2 (ω−ωr)c(ωr) − c(ω)

)H
]dω

+ (1 − α)

∫ π

ωs

Re[c(ω)c(ω)H]dω. (19)

The solution rests in finding the eigenvector w corre-

sponding to the minimum eigenvalue of P which mini-

mizes E. The norm constraint wHw = 1 is also incorpo-

rated to avoid trivial solution. The final expression of solu-

tion for the eigenfilter-based FIR filter design problem is

given by

Min
w

wHPw

wHw
. (20)

After investigating the designed filter’s performance, it is

found that although the design performs well for most

of the cases with varying specifications for short filters,

it produces ever increasingly inconsistent results as the

number of filter taps increases for the same set of spec-

ifications. With those longer filters, the passband perfor-

mance starts varying and switches from one case with

flatness around near unity gain to another case with flat-

ness achieved at almost zero magnitude.

This unstableperformance canbeattributed to the for-

mulation in (19) where the first part of the cost function

measures the difference between the filter’s response at

the reference frequency ωr and those at the other fre-

quencies ω in the passband. The term e−j N−1
2 (ω−ωr) com-

pensates for different phase shifts of the response at dif-

ferent frequencies. This expressionminimizes the relative

variation of the filter’s response at different passband fre-

quencies and ensures a flat passband response. However,

there is no control over the absolute value of the filter’s

response in passband, allowing any type of flat passband

response with arbitrary absolute magnitude leading to

inconsistent design performance.

2.2. Wideband beamformer design

Consider a wideband beamformer with tapped delay

lines (TDLs) or FIR filters shown in Figure 1, where J is the

number of delay elements associated with each of theM

sensors. The wideband beamformer samples the propa-

gating wave field in both space and time. Its response as

a function of signal angular frequency ω and direction of

arrival θ is given by (Liu & Weiss, 2010)

P(ω, θ) =

M−1
∑

m=0

J−1
∑

k=0

wm,ke
−jω(τm+kTs), (21)

where Ts is the delay between adjacent taps of the TDL

and τm is the spatial propagation delay between themth

sensor and the reference sensor. We can also express (21)

as

P(ω, θ) = wTd(ω, θ), (22)

wherew is the coefficient vector

w = [w0,0, . . .wM−1,0, . . .w0,J−1, . . . ,wM−1,J−1]
T (23)

and d(ω, θ) is theM x J steering vector

d(ω, θ) = dTs(ω) ⊗ dτm(ω, θ), (24)

where ⊗ denotes the Kronecker product. The terms

dTs(ω) and dτm(ω, θ) are defined as

dTs(ω) = [1, e−jωTs , . . . , e−j(J−1)ωTs ]T (25)

dτm(ω, θ) = [e−jωτ0 , e−jωτ1 , . . . , e−jωτM−1 ]T . (26)

For a uniform linear array with an inter-element spac-

ing d, and angle θ measured from the broadside,

the spatial propagation delay τm is given by τm =

mτ1 = md sin θ
c . With normalized angular frequency, � =
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Figure 1. A general structure for wideband beamforming.

ωTs, and µ = d
cTs

, the steering vector is given by

d(�, θ) = dTs(�) ⊗ dτm(�, θ), (27)

dTs(�) = [1, e−j�, . . . , e−j(J−1)�]T (28)

dτm(�, θ) = [1, e−jµ�sinθ , . . . , e−j(M−1)µ�sinθ ]T (29)

Now we have (22) as a function of � and θ , given by

P(�, θ) = wTd(�, θ). (30)

The desired response for the wideband beamformer is

represented by Pd(�, θ). Then, the eigenfilter-based cost

function can be expressed as

Jef (w) =

∫

�pb

∫

�

v(�, θ)

∣

∣

∣

∣

P(�, θ) − P(�r , θr)
Pd(�, θ)

Pd(�r , θr)

∣

∣

∣

∣

2

d�dθ (31)

where (�r , θr) is the reference point. We can change this

expression into

Jef (w) = wHGefw, (32)

where

Gef =

∫

�pb

∫

�

v(�, θ)

(

d(�, θ) − d(�r , θr)
Pd(�, θ)

Pd(�r , θr)

)

(

d(�, θ) − d(�r , θr)
Pd(�, θ)

Pd(�r , θr)

)H

d�dθ . (33)

Consider a typical design case with desired sidelobe

response equal to zero and response at look direction θ0

given by e−j J2� equal to a pure delay; �r and �pb rep-

resent the reference frequency and passband frequency

range, respectively, and α is the weighting factor for the

mainlobe. The expression in (33) is modified accordingly

for real-valued beamformer coefficients and given by

Gef = α

∫

�pb

Re[
(

d(�, θ0) − e−j J2 (�−�r)d(�r , θr)
)

(

d(�, θ0) − e−j J2 (�−�r)d(�r , θr)
)H

]d�

+ (1 − α)

∫

�pb

∫

�sl

Re[d(�, θ)d(�, θ)H]d�dθ .

(34)
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Then, the solution to the wideband beamformer design

problem is given by

Min
w

wHGef (�, θ)w

wHw
. (35)

Similar to the FIR filter design case, testingof thedesigned

wideband beamformer through the eigenfilter method

showed an inconsistent design performance. The design

performed well for some look directions, while attained a

very poor response for other look directions.

This variable nature of look direction response for the

same set of specifications can again be traced back to

the design formulation in (34), where the first part of the

expression calculates the difference between the beam-

former response at reference point (�r , θr) and those

at other frequencies in the look direction θ0. The term

e−j J2 (�−�r) compensates for the different phase shifts

experienced by the wideband signal at different frequen-

cies. The formulation ensures minimzation of the relative

error at the look direction for different frequencies, thus

providing flat response at θ0. However, just like the FIR fil-

ter case, there is a lack of control for exact response in the

look direction which can lead to design failure.

3. Proposed solution with an additional
constraint

As shown in our analysis of the eigenfilter design for both

FIR filters and wideband beamformers in Section 2, the

key issue is its lack of control of the achieved response

at the passband/look direction compared to the desired

one in the formulation. To solve this problem, we add

an additional constraint to the formulation to specify

the required response explicitly at the reference point.

Since the original formulation will minimize the varia-

tion of the achieved response in the passband/look direc-

tion, the explicit control of the response of the designed

filter/beamformer at one reference point of the pass-

band/look direction will guarantee the design reaches

the desired response for the whole considered pass-

band/look direction region with aminimum overall error.

Now, constraining the reference frequency response

to unity by adding a linear constraint to (20) gives us the

following modified design formulation

Min
w

wHPw Subject to CHw = f, (36)

where the constraint matrix C and the response vector

f provide the required constraint on the weight vector

w so that the resultant design can have the required

exact response at the reference frequency. The constraint

matrixC in itsmost basic formcorresponds to the real and

imaginary parts of the reference frequency vector where

we want to constrain the response for this reference fre-

quency vector in the passband of a filter or the look

direction of a wideband beamformer to a fixed desired

response with its real and imaginary parts contained in

the response vector f.

For example, consider the design of a lowpass filter.

In order to provide correction for the original formula-

tion flaw, we incorporate a constraint for the filter pass-

band response at the reference frequency to be equal to

the desired response with unity gain magnitude and lin-

ear phase. For a reference frequency ωr = 0, c(ω) in (3)

changes to

c(ωr) = [1, 1, . . . , 1]T . (37)

Then, the constraint matrix C just becomes a constraint

vector with C = c(ωr)with the response vector f contain-

ing the desired unity gain as the response of the filter at

ωr = 0 represented by

c(ωr)
Hw = f, (38)

which is simply

[1, 1, . . . , 1]w = 1 . (39)

This constraint will make sure that the designed response

of the filter at the reference frequency in the passband

is equal to the desired response. As the original formula-

tion will minimize the variation in the response achieved

at other frequencies in the passband with respect to the

reference frequency, the overall designed response in

the passband will be equal to the desired response, thus

solving the original formulation problem.

Note that we can also add other constraints to the for-

mulation of C and f so that more flexible constraints can

be imposed on the design. For example, we can add a

constraint to make sure the resultant design has an exact

zero response at some stopband frequencies.

The solution to (36) can be obtained by the Lagrange

multipliers method and it is given by

wopt = P−1C(CHP−1C)−1f. (40)

For the wideband beamformer design, the modified

problem is given by

Min
w

wHGefw Subject toCHw = f , (41)

where C and f again correspond to the constraint matrix

and response vector, respectively. For the wideband

beamformer case, just like the filter design scenario, this

constraint matrix will correspond to the reference fre-

quency steering vector, where C = d(�r , θr).
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By constraining the response of the wideband beam-

former at this reference frequency steering vector equal

to the desired response e−j J2�r as

d(�r , θr)
Hw = e−j J2�r , (42)

the overall response of the wideband beamformer at the

lookdirection for different frequencieswill be equal to the

desired response, thus mitigating the initial formulation

problem. The solution to (41) is then given by

wopt = G−1
ef

C(CHG−1
ef

C)−1f. (43)

Note that there are matrix inversion operations in (40)

and (43), which can be computationally intensive for

larger filters and beamformers. However, there are other

approaches available in literature, e.g. null space-based

methods to solve (36) and (41) avoiding the need to com-

pute matrix inversion (Liu & Weiss, 2010).

Now we present the null space method to solve the

proposed constrained eigenfilter problem. Here we con-

sider thewidebandbeamformerperspective to solve (41).

The same concept can be applied to solve the FIR filter

design case for the proposedmethod in (36). The solution

of constrained eigenfilter problem in (41) canbeobtained

by first transforming the constraintCHw = f into the form

ĈHw = 0 (44)

with:

Ĉ = C −
d(�r , θr)

P(�r , θr)
fH. (45)

To meet this constraint equation, w must lie in the null

space of Ĉ. Suppose C̃ is a unitary matrix with its columns

being the bases of the null space. Then we have w =

C̃w̃ and then the problem is reduced to finding the new

unknown vector w̃ in the following minimizing problem:

Min
w̃

w̃HC̃HGef C̃w̃. (46)

This is again a standard eigenfilter problem and the opti-

mum w̃ is the eigenvector corresponding to the smallest

eigenvalue of the matrix C̃HGef C̃. By obtaining w̃, the

required weight vector is given byw = C̃w̃.

4. Design examples

In this section, design examples are provided to show

the inconsistent performance produced by the original

unconstrained eigenfilter design method. The examples

are then re-designed through the proposed constrained

eigenfilter method to show the improvement.

4.1. Unconstrained eigenilter design

First,we consider the lowpass filter design scenariowhere

the whole frequency range from [0,π ] was discretized

into 400 points. The design specifications include the

passband from [0, 0.5π ] and stopband from [0.8π , π ]. A

70-tap filter with trade-off parameter α = 0.97 and ref-

erence frequency at 0.35π is then designed using the

original formulation. The result is shown in Figure 2 in

blue colour (solid curve) with a clearly satisfactory design

performance showing a passband to stopband ratio of

140 dB.

In the second case, we just change the number of

taps to 76, while keeping all the other specifications the

same as the first case. The result is shown in Figure 2,

highlighted in dashed curve with red colour. We can

see that the passband response is out of control, with a

flat response of around −118 dB, and the resulting ratio

between passband and stopband is just around 19 dB

(if ignoring the unacceptable response at the transition

band), clearly highlighting the problem with the original

formulation.

For highpass filters, again two cases are presented.

For the first case, we consider an 81-tap filter, where the

design specifications include a stopband from [0, 0.4π ]

and passband from [0.7π , π ]. The tradeoff factor α =

0.71 and the reference frequency is set to 0.74π . The

result is depicted in Figure 3 with solid curve and blue

colour, where a very satisfactory design performance can

be observedwith a passband to stopband ratio of 150 dB.

For the second case, we just change the reference fre-

quency to 0.94π and the result is shown in Figure 3 with

dashed red colour, which is without any doubt unaccept-

able, with a passband response at around −130 dB leav-

ing a passband to stopbad ratio of only 15 dB. The results

for lowpass and highpass filter design examples clearly

demonstrate the magnitude of the problem at hand for

different arbitrary design scenarios.

Figure 2. The designed lowpass FIR filters using the original for-
mulation.
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Figure 3. The designed highpass FIR filters using the original
formulation.

Nowweextend this observation to the design of band-

pass filters to see if the same problem can be observed in

those filters as well.

Figure 4. The designed bandpass FIR filters using the original
formulation.

For the bandpass filter design scenario, we again con-

sider two cases for comparison. For the first case, we have

91 taps, where the design specifications include the 1st

stopband from [0, 0.15π ], passband from [0.35π , 0.65π ]

and the 2nd stopband from [0.85π , π ]. The tradeoff fac-

tor α = 0.96 and the reference frequency is set to 0.55π .

The satisfactory design result is shown in Figure 4 with

solid curve and blue colour, where a suitable passband to

stopband ratio of 145 dB can be observed.

For the second case, we change the reference fre-

quency to 0.49π , while keeping the remaining specifi-

cations similar to the first case and the result is shown

with dashed red colour where it can be seen that the flat

passband again has dropped to a very low unacceptable

magnitude of −80 dB with a passband to stopband ratio

of 36 dB, providing further evidence for the kind of incon-

sistent results caused by the flawed design formulation.

For the wideband beamformer design, we consider an

array with 10 sensors and a TDL length of 10 taps. The

look direction is chosen as an off-broadside direction of

θ0 = 10◦ with the desired response equal to e−j5�. The

considered wideband signal has a frequency range of

�pb = [0.4π ,π ] with the reference frequency �r = 0.7π

and θr = 10◦ chosen as the reference point. The weight-

ing function is set to 0.6 at the lookdirection and0.4 at the

sidelobe region, which runs from −90◦ to −10◦ and 30◦

to 90◦. The frequency range is discretized into 20 points,

while the angle range is divided into 360 points.

The result is shown in Figure 5(a), where a satisfactory

design performance is achievedwith the look direction to

sidelobe ratio around 20 dB. The same scenario is again

tested by changing the look direction to the broadside

of θ0 = 0◦ with the sidelobe region ranging from −90◦

(a) (b)

Figure 5. The designed wideband beamformer using the original formulation with 10 sensors and 10 taps. (a) θ0 = 10◦. (b) θ0 = 0◦
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(a) (b)

Figure 6. The designed wideband beamformer using the original formulation with 11 sensors and 10 taps.(a). θ0 = 0◦. (b) θ0 = 10◦.

(a) (b)

(c)

Figure 7. Designed (a) lowpass (b) highpass and (c) bandpass filters using the constrained design.
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to −20◦ and 20◦ to 90◦ with the remaining specifications

unchanged. The result is shown in Figure 5(b), where it

can be observed that the look direction response plunges

to −40 dB with a flat response attained, which is even

lower than the sidelobes.

We provide another example for a scenario where we

consider an array with 11 sensors and a TDL structure of

10 taps. For the first case, the look direction is chosen

as the broadside direction with θ0 = 0◦ and the desired

response equal to e−j5�. For the design specifications we

consider a wideband signal having a frequency range of

�pb = [0.4π ,π ] with the reference frequency �r = 0.7π

and θr = 10◦ chosen as the reference point. The weight-

ing function is the same as the previous example and the

sidelobe region is from−90◦ to−30◦ and 30◦ to 90◦. The

result is shown in Figure 6(a), where an excellent design

response is achieved with a look direction to sidelobe

response ratio of 40 dB. For the second case, we change

the look direction to an off-broadside direction of θ0 =

10◦ with the sidelobe ranging from −90◦ to −20◦ and

40◦ to 90◦ with the remaining specifications unchanged.

The result is shown in Figure 6(b), where the look direc-

tion response again has no absolute control and achieves

flatness around −30 dB with the resulting look direction

response even lower than the sidelobes, again demon-

strating the presence of this problem in a wide range of

design scenarios.

4.2. Constrained eigenilter design

We now apply the constrained eigenfilter formulation

in (36) to design the lowpass, highpass and bandpass fil-

ters presented using unconstrained design formulation.

The new results are presented in Figure 7( a–c). Although

there is still a noticeable bump in the transition band

for the design results in Figure 7(a ,b) for lowpass and

Figure 8. The designed wideband beamformer with θ0 = 0◦.

Figure 9. The designed wideband beamformer with θ0 = 10◦.

highpass, respectively, the overall response has improved

significantly compared to the results in Figures 2 and 3.

The bandpass filter designed with the new formulation

in Figure 7(c) achieves a very satisfactory response com-

pared to the result in Figure 4.

For the beamformer design presented in Figures 5(b)

and 6(b), we re-design them using the constrained for-

mulation in (41) and the result is provided in Figures 8

and 9, where the look direction response has improved

significantly with a decent look direction to sidelobe ratio

achieved as per the desired specifications.

We have tried various designs for different types of

filters and wideband beamformers with varying design

specifications and the proposed method has been found

to perform consistently well in different scenarios.

5. Conclusion

The classic eigenfilter approach has been revisited and

critically analysed, where a formulation problem is high-

lighted in the passband/look direction part of the cost

function which leads to an inconsistent design perfor-

mance. A solution was then proposed by adding a lin-

ear constraint, explicitly setting the designed passband

response at the reference frequency point to the desired

one. Results have been provided for different design sce-

narios based on FIR filter and wideband beamformer

design to demonstrate the crucial issue of the original

formulation and the satisfactory performance by the pro-

posed one.
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