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ABSTRACT

Introduction: The aim of this article is to

discuss methods used to analyze health-related

quality of life (HRQoL) data from randomized

controlled trials (RCTs) for decision analytic

models. The analysis presented in this paper was

used to provide HRQoL data for the ivabradine

health technology assessment (HTA)

submission in chronic heart failure.

Methods: We have used a large, longitudinal

EuroQol five-dimension questionnaire (EQ-5D)

dataset from the Systolic Heart Failure

Treatment with the If Inhibitor Ivabradine

Trial (SHIFT) (clinicaltrials.gov: NCT02441218)

to illustrate issues and methods. HRQoL weights

(utility values) were estimated from a mixed

regression model developed using SHIFT EQ-5D

data (n = 5313 patients). The regression model

was used to predict HRQoL outcomes according

to treatment, patient characteristics, and key

clinical outcomes for patients with a heart rate

C75 bpm.

Results: Ivabradine was associated with an

HRQoL weight gain of 0.01. HRQoL weights

differed according to New York Heart

Association (NYHA) class (NYHA I–IV, no

hospitalization: standard care 0.82–0.46;

ivabradine 0.84–0.47). A reduction in HRQoL

weight was associated with hospitalizations

within 30 days of an HRQoL assessment visit,

with this reduction varying by NYHA class

[-0.07 (NYHA I) to -0.21 (NYHA IV)].

Conclusion: The mixed model explained

variation in EQ-5D data according to key

clinical outcomes and patient characteristics,

providing essential information for long-term

predictions of patient HRQoL in the

cost-effectiveness model. This model was also

used to estimate the loss in HRQoL associated

with hospitalizations. In SHIFT many

hospitalizations did not occur close to EQ-5D

visits; hence, any temporary changes in HRQoL

associated with such events would not be

captured fully in observed RCT evidence, but

could be predicted in our cost-effectiveness

analysis using the mixed model. Given the
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large reduction in hospitalizations associated

with ivabradine this was an important feature of

the analysis.

Funding: The Servier Research Group.

Keywords: Application areas; Cardiovascular;

Cost-effectiveness; Economics; Heart failure;
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INTRODUCTION

The reimbursement of new pharmaceutical

products is increasingly dependent on the

results of cost-effectiveness analyses.

Economic evaluations developed for health

technology assessment (HTA) bodies such as

the National Institute for Health and Care

Excellence (NICE) typically adopt

quality-adjusted survival as the relevant

outcome measure [1]. Quality-adjusted

survival uses health-related quality of life

(HRQoL) weights (utility values) to adjust

survival time to reflect the outcome of the

population under assessment. HRQoL weights

typically represent patients’ quality of life on a

scale where 0 represents death and 1 represents

full health, although negative values are also

feasible [2, 3]. In the event that randomized

controlled trial (RCT) data is used to inform a

decision analytic model, the appropriate

analysis of HRQoL data from the RCT is

crucial for reliable policy decisions.

Longitudinal HRQoL data from RCTs

presents challenges to analysts. The

distribution of EuroQol five-dimension

questionnaire (EQ-5D) HRQoL data is typically

left skewed and kurtotic. In addition, there are

further issues which are specific to the analysis

of such data for cost-effectiveness analyses.

Firstly, in chronic conditions such as heart

failure (HF), cost-effectiveness analyses consider

the impact of each intervention over the

modelled populations’ lifetime, but RCTs

usually provide only short-term data.

Long-term HRQoL outcomes consequently

need to be estimated either from an external

data source or predicted (extrapolated) from

observed RCT evidence. Appropriate

extrapolation requires that the variation in

HRQoL observed between patients is

adequately explained.

Secondly, in order to predict clinical

outcomes over the long term, a

cost-effectiveness analysis typically captures

key clinical outcomes including disease

progression and resource use data such as

hospitalizations. The HRQoL impact of these

outcomes must also, therefore, be established in

order to suitably populate a decision analytic

model.

Thirdly, clinical outcomes such as

hospitalization or disease progression may

result in fluctuations in patient HRQoL over

time. Temporary changes in HRQoL that do not

occur within sufficient proximity to data

collection points will not be reflected in

observed RCT data. This issue is exacerbated in

studies which have long periods between

HRQoL assessments and can result in diluted

or imprecise measures of the difference between

treatments.

Fourthly, longitudinal HRQoL data are

collected from the same individual at repeated

intervals over the study period. Measurements

from the same individual are much more likely

to be correlated than measurements from

different individuals and this correlation must

be taken into account to avoid misrepresenting

estimates [1].

Fifthly, HRQoL data are often collected in a

substudy and, whilst patients may be

randomized to treatment, participants may

not be randomized to the substudy itself (e.g.,

they may be selected from certain study centers

or countries). If there are imbalances in patient

characteristics associated with HRQoL

outcomes in substudy patients this may bias

(i.e., confound) estimates of the treatment

effect [4].

Finally, HRQoL data are often incomplete.

Patients are less likely to complete HRQoL

questionnaires as their condition deteriorates

and time progresses (informative censoring). In

general this could result in imprecise HRQoL

estimates in later trial time periods for both

treatment groups, but it could equally result in

differential bias between therapies [5].

The key objective of this article is to discuss

methods to analyze HRQoL data from RCTs to
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parameterize decision analytic models using an

example based on an analysis of EQ-5D data

from the Systolic HF Treatment with the If
Inhibitor Ivabradine Trial (SHIFT) RCT

(clinicaltrials.gov: NCT02441218). The HRQoL

regression equation presented in this paper was

used to provide HRQoL weights (utility values)

for the cost-effectiveness analysis developed for

the ivabradine NICE HTA submission in chronic

heart failure; the full results of the

cost-effectiveness analysis and associated

clinical data are reported elsewhere [4, 5].

METHODS

SHIFT Trial

Heart failure is a chronic condition which can

result in substantial morbidity, reduced HRQoL,

and premature death [6, 7]. SHIFT was a

multicenter RCT conducted in 6505 HF

patients with New York Heart Association

(NYHA) class II, III, or IV HF, in sinus rhythm,

and with left ventricular ejection fraction

(LVEF) B35% and baseline resting heart rate

C70 bpm. SHIFT demonstrated that ivabradine,

a heart rate lowering therapy, in combination

with standard therapy, including beta-blockade,

was associated with a significant reduction in

cardiovascular (CV) death or hospitalization for

worsening HF (hazard ratio 0.82; 95%

confidence interval 0.75, 0.90, p\0.0001) and

improved patient HRQoL [8]. SHIFT was a

robust, well-conducted study and provides one

of the largest samples of EQ-5D HRQoL data

from an RCT in HF patients.

HRQoL Data Collection in SHIFT

SHIFT EQ-5D HRQoL data were collected in a

substudy at baseline, 4 months, and annually

until study close providing up to five HRQoL

assessments for each patient over the observed

trial period (median follow-up 22 months) [9].

The EQ-5D is a generic instrument designed to

capture patient-reported outcomes across five

health domains (self-care, mobility, usual

activities, pain/discomfort, anxiety/depression)

[2]. HRQoL weights (utility values) may be

derived from the EQ-5D using country-specific

values for different health profiles. All patients

randomized in SHIFT were included in the

EQ-5D substudy (n = 5313/6505 patients)

providing a validated EQ-5D instrument was

available for the country of interest (i.e., an

approved country-specific EQ-5D

questionnaire). The SHIFT cost-effectiveness

analysis was undertaken from a UK National

Health Service and Personal and Social Services

(PSS) perspective [1]; hence in our analysis,

HRQoL weights values were based on EQ-5D

index scores using UK population

preference-weights [10].

Analysis of HRQoL Data

A de novo analysis of SHIFT HRQoL data was

required to provide suitable parameter estimates

for the SHIFT cost-effectiveness analysis. There

are a number of approaches that can be used to

analyze longitudinal HRQoL data for a

cost-effectiveness analysis from RCTs such as

SHIFT. Simple summary measures may be used

to estimate the effect of treatment on HRQoL

outcomes directly, e.g., based on the mean

difference in HRQoL between treatments at

one or more intervals over the trial period.

Summary estimates from observed data,

however, may not capture the full impact of

clinical events that result in temporary

fluctuations in HRQoL, such as

hospitalizations, as some such events occur

outside of data collection. Summary estimates

equally do not take into account correlation

between repeated observations from the same

individual. Measurements from the same

individual are much more likely to be

correlated than measurements from different

individuals and it is important to take into

account such correlation when analyzing data

with repeated measures to avoid

misrepresenting uncertainty in estimates and

drawing incorrect inferences. Furthermore,

from an economic modelling perspective,

simple summary measures do not provide

estimates over a sufficient time horizon nor

provide adequate explanation of the variation

Adv Ther (2017) 34:753–764 755



in HRQoL to populate a cost-effectiveness

analysis [11].

In addition to summary measures, a variety

of regression approaches can be applied to

analyze longitudinal HRQoL data. These

include general linear models (GLM) and

generalized estimating equations (GEE).

A GLM framework attempts to explain

variation in HRQoL according to known

factors including, e.g., treatment allocation,

patient baseline characteristics, and key

clinical outcomes. Whilst this approach can be

used to explain potential variation in HRQoL

outcomes, it is also not designed to explicitly

take into account the longitudinal structure of

the data (repeated observations for individuals

over time) [12].

A GEE framework (also known as marginal or

population averaged model) is an extension to

GLM which takes into account the correlation

associated with repeated sampling from the

same individual by adjusting standard errors

using an imposed (predefined) correlation

structure [13].

Multilevel modelling techniques, in

particular mixed models (also known as

variance components modelling, hierarchical

modelling, or panel data modelling) can also be

used to analyze longitudinal HRQoL. There are

two ways of measuring effects in multilevel

modelling: fixed effects and random effects. A

fixed effects model assumes that the intercept

for each patient is fixed. This substantially

increases the number of parameters in the

model and consequently a fixed effects model

can be inefficient in terms of degrees of

freedom; furthermore time-invariant variables

will be dropped because of the correlation

between regressors and unobserved individual

heterogeneity. A fixed effects model is likely to

be preferable if the purpose of the model is only

to provide predictions on the sample of data

itself [12–14].

A random effects model is designed to

estimate subject-specific effects and, hence,

provides distilled estimates of the specified

covariates (i.e., a fixed component of the

model), plus estimates of random variation

according to clusters (i.e., a random

component of the model). For longitudinal

HRQoL data the individual patient represents

the cluster in which multiple observations over

time are nested. A mixed model may include

fixed or random coefficients for time-varying

variables. A mixed model which includes fixed

coefficients is termed a random intercept

model, whilst a model which includes random

coefficients for any time varying variable is a

random coefficient model. Mixed models

provide a flexible framework compared to

GLM or GEE approaches; however, these

models are not as parsimonious and require a

large sample size to generate reliable results

[12–14].

Statistical Methods

We evaluated HRQoL outcomes based on SHIFT

EQ-5D data for the SHIFT cost-effectiveness

analysis. We considered estimates of the

intraclass correlation (ICC) to determine

whether a multilevel model would be

preferable to a GLM. The ICC estimates the

proportion of variance in a regression model

due to clustering and is calculated as the ratio of

between cluster variance and the total variance.

Intraclass correlation takes values from 0 to 1; if

there is little or no difference between cluster

means the ICC will be close to zero (i.e., simple

linear regression model may be appropriate),

whilst a value of 0.5 would be considered a large

ICC [15], suggesting a multilevel model would

be preferred.

Patient characteristics considered for

selection in the regression model were based

on the clinical study protocol, a previous

regression equation in HF [10], and clinical

advice and included baseline sociodemographic

and clinical characteristics [age, sex, NYHA

class, HF duration, LVEF, smoking status,

alcohol use, diabetes, race, body mass index

(BMI)], baseline use of HF medications

[beta-blockers, angiotensin-converting enzyme

inhibitors, aldosterone antagonists, loop

diuretics (dose/kg/day), angiotensin II receptor

antagonists, cardiac glycosides, allopurinol],

baseline use of other cardiac therapies (cardiac

resynchronization, implantable cardiac

device, conventional bradycardia-indicated
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pacemaker), medical history, i.e., prior CV

event (myocardial infarction, stroke, coronary

artery disease, atrial fibrillation, renal disease,

hypertension), and biological characteristics

(serum sodium, potassium, creatinine

clearance, cholesterol systolic blood pressure).

Two time-varying variables were used to capture

key clinical outcomes: hospitalization within a

2-month interval (hospitalizations were flagged

if they occurred ±30 days from EQ-5D visit date;

a 60-day window) and NYHA class. Each

hospitalization was assumed to be associated

with a change in HRQoL weights over a

2-month period. It is assumed that patients’

HRQoL would be affected up to 30 days before

an admission (i.e., due to onset of illness) and

up to 30 days after an admission (i.e., recovery).

We recognize that this may or may not

represent the exact duration of a

hospitalization’s impact on a patient’s HRQoL;

acute admissions may occur suddenly and

recovery may be shorter or longer than the

window considered. This time interval was

chosen on the basis of clinical advice and

according to practical constraints (number of

observations available for analysis and a time

period which would be consistent with the

model cycle length and viable for the

cost-effectiveness analysis).

Ivabradine exhibited greater efficacy in

patients with higher baseline heart rates in

SHIFT [15]; hence, the European license for

ivabradine was granted for a subgroup of the

trial population—patients with a baseline heart

rate C75 bpm (SHIFT n = 4154/6505 patients).

In our analysis the HRQoL regression model was

developed using data from the entire SHIFT

substudy cohort (n = 5313 patients). The

difference in outcomes for ivabradine

associated with baseline heart rate, identified

in previous clinical analyses [8, 15], is captured

in the HRQoL regression equation using a

treatment interaction term

(treatment 9 baseline heart rate). In order to

match the population reflected in the license

indication, the HRQoL estimates used in the

cost-effectiveness analysis and reported in this

manuscript reflect estimates for patients with a

baseline heart rate C75 bpm (predicted from our

regression equation) [5].

An initial set of variables were identified

using backwards stepwise elimination and cross

validated using forwards stepwise selection. The

regression model was fitted with and without

the variable of interest, the direction and

magnitude of effect of other variables was

reviewed, and a likelihood ratio test

undertaken to test the significance of the

nested model. The variables included in the

regression model were those variables that

demonstrated evidence of an important

association with HRQoL outcomes based on

magnitude and significance of effect (p\0.05).

The correlation matrix for the initial regression

model was reviewed and those variables which

appeared strongly correlated were further

analyzed for evidence of collinearity. All

variables included in the final HRQoL

regression model were reviewed by a clinical

expert to ascertain whether any spurious or

unexpected results had been obtained and

whether the direction and magnitude of effect

for included variables was consistent with

clinical expectations based on a knowledge of

the published literature and clinical practice.

Data were analyzed using the Stata xtmixed

command in Stata Statistical Software: Release

11 (College Station, Texas, United States,

StataCorp LP 2009 [16]).

Compliance with Ethics Guidelines

This article is based on previously conducted

studies and does not involve any new studies of

human or animal subjects performed by any of

the authors.

RESULTS

EQ-5D data were collected for 5313 individual

patients (2648 patients ivabradine, 2665

patients placebo) for up to five assessments

(median follow-up in SHIFT was 22 months).

EQ-5D data were available for 5313 patients at

baseline, 5164 patients at 4 months, 4809

patients at 12 months, 2555 patients at

24 months, and 33 patients at 36 months. The

reason for missing questionnaires included

death, withdrawal, non-attendance for a given

Adv Ther (2017) 34:753–764 757



EQ-5D visit, non-completion of the

questionnaire, and censoring [9].

The SHIFT EQ-5D HRQoL weights data were

found to be left-skewed (-1.25 versus 0 for a

symmetric distribution) and kurtotic (5.67

compared to 3.00 for a normal distribution)

with a mean slightly less than the median

(Fig. 1). One way to analyze data with these

characteristics would be to transform the data

to reduce skewness and non-normality of the

data; however, problems can arise when

predictions from the regression model must be

retransformed back to the original scale. In our

analyses we did not transform HRQoL data—

whilst a normal probability plot demonstrated

some evidence of skewness, most data points lay

over the range between 0.5 and 0.9 and the

non-normality of the data was not considered

extreme, see Fig. 1. Furthermore, upon

investigating the model residuals, whilst

HRQoL weights values were skewed, the

residuals appeared approximately normally

distributed.

Patient characteristics appeared well

balanced between treatment groups in the

EQ-5D substudy and were comparable to the

baseline characteristics represented in the full

SHIFT trial population, suggesting the substudy

was a representative sample and there was no

evidence to suggest confounding by known risk

factors (Table 1).

A multilevel model was employed in

preference to a GLM because there was

evidence of intraclass correlation across

clusters (ICC = 0.46). A log-likelihood ratio

test comparing a standard linear model with

linear mixed model was also statistically

significant (p\0.001), also suggesting a

multilevel regression model was preferable to a

GLM. A random effects model was selected in

preference to a fixed effects model since the

cost-effectiveness analysis was designed to

provide distilled population level estimates

and for a specific subgroup population

(patients with a baseline heart rate C75 bpm)

rather than the entire SHIFT sample;

furthermore, a random effects model is more

efficient in terms of parameter estimation

[12–14]. For the final regression equation, we

consequently chose to analyze SHIFT HRQoL

data using a random effects (mixed model). This

model was designed to predict EQ-5D HRQoL

weights values according to treatment

allocation, baseline patient characteristics, and

key clinical outcomes. It is acknowledged that

for continuous outcomes a random intercept

model is comparable to a GEE (marginal model)

with a uniform correlation covariance structure.

Whilst, in our example, a marginal model may

have been sufficient, a marginal model makes a

stronger assumption with regards to missing

data compared to a mixed model. A marginal

model assumes that missing data is missing

completely at random and there is no

relationship at all between the propensity for

missing data and any value in the dataset,

Fig. 1 SHIFT EQ-5D HRQoL data. EQ-5D EuroQol
five-dimension questionnaire. Normal probability plot
depicts expected EQ-5D values based on the standard

normal distribution versus observed EQ-5D values.
Histogram depicts observed frequency for each EQ-5D score
(all observations) with kernel density smoother overlaid
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Table 1 Baseline characteristics

Description Standard care
n5 2665 patients

Ivabradine
n5 2648 patients

Mean/freq SE/% Mean/freq SE/%

Demographics

Age (years) 60.30 0.22 60.63 0.22

BMI (m2/kg) 28.14 28.13

Female 599 22.5% 627 23.7%

Vital signs

Heart rate (bpm) 79.98 0.19 79.45

Systolic blood pressure (mmHg) 121.78 122.25

LVEF category

\26% 622 23.3% 633 23.9%

C26%,\30% 460 17.3% 419 15.8%

C30%,\33% 742 27.8% 705 26.6%

C33% 841 31.6% 891 33.7%

NYHA class

II 1254 47.1% 1264 47.7%

III 1361 51.1% 1346 50.8%

IV 50 1.9% 38 1.4%

Medical history

HF duration

\0.6 years 628 23.6% 625 23.6%

C0.6,\2 years 690 25.9% 676 25.5%

C2,\4.8 years 665 25.0% 696 26.3%

C4.8 years 682 25.6% 651 24.6%

Primary cause of heart failure

Non-ischemic 809 30.4% 795 30.0%

Ischemic 1856 69.6% 1853 70.0%

MI 1564 58.7% 1538 58.1%

Hypertension 1791 67.2% 1782 67.3%

Diabetes 820 30.8% 781 29.5%

Prior stroke 240 9.0% 199 7.5%
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whilst a mixed model assumes that data are

missing at random.

The results of the mixed model suggest that

patient’s HRQoL reduced substantially with

increasing NYHA class (indicative of more

severe HF) or hospitalization. Other risk factors

associated with important differences in HRQoL

included treatment, BMI, LVEF, HF duration,

prior stroke, ischemia, and the use of other

medications including loop diuretics and

allopurinol, possibly indicating that patients

using these medications may have been in

generally poorer health. Cross tabulation of

loop diuretic use and baseline NYHA class

indicated that 1925/2518 (76.4%) of patients

classed as NYHA I used loop diuretics compared

with 81/88 (92.0%) of patients classed as NYHA

IV; only 6.1% (331/5313) of all patients

included in the SHIFT HRQoL substudy

population used allopurinol; hence, usage

patterns for this drug were more difficult to

determine. Female and older patients also

appeared to have lower HRQoL, consistent

with previously published studies (see Tables 2,

3) [10]. Baseline heart rate was inversely

associated with HRQoL weights; each 10-bpm

increase in baseline heart rate was associated

with an HRQoL weights loss of approximately

0.02. The estimates have not been reported in

this paper; however, the HRQoL weights for

patients C70 bpm (n = 5313 patients) were

consequently only slightly higher than those

reported for patients in the subgroup with a

baseline heart rate C75 bpm (n = 3353

patients). Beta-blockade was not found to

predict differences in patients’ HRQoL once

these factors had been taken into account.

The mixed model predicted that HRQoL

weights scores for patients with a heart rate

C75 bpm ranged from 0.82 (NYHA I) to 0.46

(NYHA IV) for standard care patients and from

0.84 (NYHA I) to 0.47 (NYHA IV) for ivabradine

patients; ivabradine treatment itself was

associated with an HRQoL weight gain of 0.01.

The reduction in HRQoL weights score given a

hospitalization was found to be greater in those

patients in more severe NYHA classes [reduction

in HRQoL weights: 0.07–0.21 (NYHA I–IV)], see

Table 3. Whilst the treatment benefit of

ivabradine was not significantly modified by

baseline heart rate, there was some evidence of a

trend towards an effect (p = 0.13) (see Table 2).

In view of previous evidence of a treatment

interaction between ivabradine and baseline

Table 1 Baseline characteristics

Description Standard care
n5 2665 patients

Ivabradine
n5 2648 patients

Mean/freq SE/% Mean/freq SE/%

Treatment at randomization

Beta-blocker use

No beta-blockade 260 9.8% 260 9.8%

\half target dose 1060 39.8% 1062 40.1%

Chalf target dose,\target dose 715 26.8% 714 27.0%

Ctarget dose 630 23.6% 612 23.1%

ACE inhibitors 2110 79.2% 2121 80.1%

ARBs 355 13.3% 350 13.2%

Allopurinol 169 6.3% 162 6.1%

Loop diuretics 2096 78.7% 2109 79.7%

SE standard error, BMI body mass index, bpm beats per minute, LVEF left ventricular ejection fraction, HF heart failure,
MI myocardial infarction, ARBs angiotensin receptor blockers
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heart rate this interaction term was retained in

the final regression model used for the NICE

HTA submission (see Table 2) [4].

DISCUSSION

We have developed a mixed model using

longitudinal EQ-5D data from the SHIFT trial.

Whilst there are a number of approaches that

can be used to analyze HRQoL data, a mixed

model offered a number of advantages. In

particular, a mixed model enabled us to

explain variation in EQ-5D data by treatment

allocation, clinical outcomes (NYHA class and

hospitalization events), and patient baseline

characteristics, whilst taking into account the

longitudinal data structure. The mixed model

provided essential information for both short-

and long-term predictions of patient HRQoL

weights to populate a decision analytic

cost-effectiveness model. This method also

Table 2 Mixed model based on SHIFT patient-level data (with treatment interaction)

Description Coefficient SE p value 95% LCI 95% UCI

Treatment 0.0104 0.0047 0.0270 0.0012 0.0195

Age (years)a -0.0008 0.0002 0.0000 -0.0012 -0.0004

Female -0.0590 0.0057 0.0000 -0.0702 -0.0478

Hospitalization within 30 days -0.2116 0.0320 0.0000 -0.2744 -0.1489

NYHA II -0.0848 0.0089 0.0000 -0.1023 -0.0673

NYHA III -0.1798 0.0094 0.0000 -0.1982 -0.1614

NYHA IV -0.3656 0.0182 0.0000 -0.4012 -0.3300

Ischemia -0.0365 0.0054 0.0000 -0.0471 -0.0258

Stroke -0.0243 0.0086 0.0050 -0.0410 -0.0075

HF duration C0.6,\2 years -0.0191 0.0067 0.0040 -0.0322 -0.0061

HF duration C2,\4.8 years -0.0394 0.0068 0.0000 -0.0526 -0.0262

HF duration C4.8 years -0.0456 0.0068 0.0000 -0.0590 -0.0322

Allopurinol 0.0220 0.0098 0.0260 0.0027 0.0413

BMI kg/m2a
-0.0026 0.0005 0.0000 -0.0035 -0.0016

Heart rate (bpm)a -0.0021 0.0004 0.0000 -0.0028 -0.0014

Loop diuretics dose/kg/day -0.0158 0.0032 0.0000 -0.0220 -0.0096

Potassium[5 mmol/L -0.0142 0.0060 0.0190 -0.0261 -0.0023

Hosp30 9 NYHA I 0.1403 0.0832 0.0920 -0.0228 0.3035

Hosp30 9 NYHA II 0.1792 0.0352 0.0000 0.1102 0.2482

Hosp30 9 NYHA III 0.1281 0.0344 0.0000 0.0607 0.1955

Treatment 9 heart rate 0.0008 0.0005 0.1330 -0.0002 0.0017

Cons 0.9082 0.0108 0.0000 0.8870 0.9293

LCI lower confidence interval, UCI upper confidence interval, NYHA New York Heart Association, HF heart failure, BMI
body mass index, SE standard error
a Variables centered on the mean
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allowed us to estimate the temporary loss in

HRQoL associated with hospitalizations. In

SHIFT many hospitalizations did not occur

close to EQ-5D data collection. Whilst

temporary changes in HRQoL associated with

all hospitalization events may not be captured

in the RCT data, such changes in HRQoL could

be predicted in our cost-effectiveness analysis

using estimates from the mixed model, based

on those events from which HRQoL weights

could be estimated. Ivabradine was associated

with a large reduction in hospitalizations in

SHIFT; hence, the ability to predict the HRQoL

weights loss associated with hospitalizations

represented an important feature of the

cost-effectiveness model.

It is noted that mixed models based on

longitudinal data commonly include a set of

time dummy variables to capture effects on the

dependent variable that may vary over time. In

our analysis a trend of increasing HRQoL was

evident over the observed trial period. When we

included time variables in the HRQoL

regression equation, the longer-term estimates

of HRQoL predicted from the HRQoL regression

equation exceeded values that might be

considered credible from a clinical perspective,

given that heart failure is a chronic and

progressive disease. In the cost-effectiveness

analysis, therefore, time variables were

excluded from the final HRQoL regression

equation.

It is further noted that whilst the mixed

model addresses many issues associated with

analyzing HRQoL data, it does not account for

the potential bias associated with missing data

which is not missing at random. Censoring of

HRQoL data may be ‘‘informative’’ since sicker

patients are expected to be less likely to provide

HRQoL responses. It is plausible that even in a

well-conducted trial such as SHIFT this could

distort final HRQoL weights estimates from the

mixed model.

The results from our analysis appear to

compare well with external data. Our results

indicate that HRQoL weights for patients

treated with ivabradine would range from 0.84

to 0.47, compared to 0.83–0.46 for standard care

alone (NYHA class I–IV, respectively). These

estimates are very similar to estimates of HRQoL

from a previous large study in HF patients and

appear to have good cross-validity (NYHA

classes I–IV 0.85–0.53 [17]; n = 1395).

CONCLUSION

Summary measures of HRQoL data are typically

inadequate for the needs of economic

evaluations and may fail to consider

limitations associated with a longitudinal

dataset. These limitations, if unaddressed, may

bias cost-effectiveness results, particularly given

the requirements to extrapolate parameter

estimates over the long term. In SHIFT a de

novo mixed model was employed to address

these limitations. Our analysis enabled us to

explain variation in EQ-5D data according to

key clinical outcomes and patient

characteristics, providing essential information

for predictions of patient HRQoL in the SHIFT

cost-effectiveness analysis. This method also

allowed us to estimate temporary losses in

HRQoL associated with hospitalizations. In

SHIFT many hospitalizations did not occur

close to EQ-5D data collection; hence,

temporary changes in HRQoL associated with

Table 3 Derived HRQoL weights values SHIFT average
patient (heart rate C75 bpm)

Health state HRQoL weights

Standard care (no hospitalization)

NYHA I 0.823

NYHA II 0.738

NYHA III 0.643

NYHA IV 0.457

HRQoL weights loss hospitalization

NYHA I -0.07

NYHA II -0.03

NYHA III -0.08

NYHA IV -0.21

Treatment effect ivabradine 0.014

NYHA New York Heart Association, bpm beats per
minute
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such events would not be captured in observed

RCT evidence, but could be predicted in our

cost-effectiveness analysis using the mixed

model. Given the large reduction in

hospitalizations associated with ivabradine this

is an important benefit for treated patients

which may otherwise have been overlooked.
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