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Abstract—Sign language is a visually oriented, natural, non-

verbal communication medium. Having shared similar linguistic

properties with its respective spoken language, it consists of a

set of gestures, postures and facial expressions. Though, sign

language is a mode of communication between deaf people,

most other people do not know sign language interpretations.

Therefore, it would be constructive if we can translate the

sign postures artificially. In this paper, a capsule-based deep

neural network sign posture translator for an American Sign

Language (ASL) fingerspelling (posture), has been presented. The

performance validation shows that the approach can successfully

identify sign language, with accuracy like 99%. Unlike previous

neural network approaches, which mainly used fine-tuning and

transfer learning from pre-trained models, the developed capsule

network architecture does not require a pre-trained model. The

framework uses a capsule network with adaptive pooling which

is the key to its high accuracy. The framework is not limited

to sign language understanding, but it has scope for non-verbal

communication in Human-Robot Interaction (HRI) also.

Index Terms—American Sign Language (ASL) Understanding,

Neural Network, Capsule Network, Adaptive Pooling

I. INTRODUCTION

Sign language is a visually oriented, natural, non-verbal

communication medium, which is used by millions of hearing

impaired people around the globe as their first language.

According to the British Deaf Association, there are 151,000

people use sign language [1]. The main two components of

sign language are finger-spelling (postures) and dynamic hand

movement (gestures) [2]. Hearing-impaired people often find

it quite challenging to communicate with other people because

most do not know sign language. Therefore, an artificial

sign language translator would be useful in reducing the

communication barrier.

Although, there has been extensive research on ASL de-

tection, it still remains a relevant research field due to the

unavailability of an accurate method. There are two main

approaches [3, 4]: using gloves with sensors to detect joint

movements and using vision [5].

Sensor-based methods with Bayesian networks and neural

network classifiers were popular in the early 2000s [3, 4, 6–8].

Wearable sensor gloves are used for getting the relative motion

of the fingers and hands to get the kinematic parameters

to predict the sign language. Cheap wearable technologies

are proposed in [6–8]. Using colored gloves and constrained

grammars reported low error rates on the training data (0.6%)

and an independent test data (3%) [9, 10].

Linear classifiers are also widely used for detecting postures

and gestures because they are relatively simple models com-

pared to Bayesian models and they get high accuracies (96%)

also [11–13]. Hidden Markov models and Bayesian models

also achieved higher accuracies [14, 15]. The problems with

those approaches arise from hand-coded feature extraction

with heavy pre-processing and the constrained experimental

environments [16].

Neural networks have an advantage over these networks

because they learn essential features to classify the data [17].

Feed-forward neural networks also need image processing and

hand-coded feature extraction. Convolutional Neural Networks

(CNNs) have been very useful for understanding gestures

and events [18]. The most relevant works to date are by

Garcia et al. [16] and Pigou et al. [5]. They used CNNs

for classification. Convolutional layers work as filters and do

not require hand-coded feature inputs. CNNs also have some

fundamental defects. They work as filters but do not preserve

all the spatial-temporal features of an image.

Sign language understanding can also be seen as a gesture

classification task. Bheda et al. [19] used Deep Convolutional

Neural Network (DCNN) to address using a gesture classifi-

cation approach. The depth and color of an image are also

used in some research. Ameen et al. use a CNN to classify

American sign language (ASL) using the depth and colour of

images and they report 82% precision and 80% recall in their

experiments [20].

The model contains three convolutional layers, two spatial

adaptive pooling layers, one 6D convolutional capsule layer



and one fully connected capsule layer.

This paper aims to present an efficient framework for

sign language posture understanding. Using adaptive layer

pooling allows the network to be trained with variable sized

images as the produce fixed length matrices. Networks trained

with multiple sized images could enhance scale-invariance.

Those feature matrices are fed into the capsule layer. Capsule

layers provide transitional invariance and robustness to the

framework. The images in the dataset are rotated slightly,

making it quite challenging.

The rest of the paper is organized as follows. In Section

II, the deep learning approaches, which are used in the

proposed framework, are discussed. Section III explains the

proposed deep framework. Simulation results and discussions

are presented in Section IV and Section V summarizes the

work.

II. DEEP LEARNING APPROACHES

A. Convolutional Neural Network

Convolution is a mathematical operation operated on two

functions to produce a new function that expresses the amount

of overlap of one function shifted over another function. If

f(x) and g(x) are two functions over a continuous variable

x, the convolution over an infinite interval would be

f(x) ∗ g(x) =

∫ +∞

−∞

f(Γ)× g(x− Γ)dΓ, (1)

where Γ is continuous time step, ∗ is the convolution operator

and × is ordinary multiplication. If f and g are functions

over discrete variables, with k being a discrete time, then

convolution of g over f will be defined as

y[x] = f [x] ∗ g[x] =

+∞
∑

k=−∞

f [k]× g[x− k], (2)

where y[x] is the resulting output, f [x] is the input and g[x]

is the filter. In signal processing, g[x] is the impulse function

over f [x]. For functions over two discrete variables x and y

the convolution would be

y[x,y] = f [x,y] ∗ g[x,y] =
(

+∞
∑

n1=−∞

+∞
∑

n2=−∞

f [n1,n2]× g[x− n1,y − n2]

)

,
(3)

where n1 and n2 are discrete timestamps. In a linear time

invariant system the output y[x] could be seen as the combi-

nation of convolution operations of kernel g[x] on input f [x].

In image processing, the interval is finite. So, the equation (3)

will be converted to

y[xc,yc] = f [xa,ya] ∗ g[xb,yb] =
(

xa−1
∑

n1=0

ya−1
∑

n2=0

f [n1,n2].g[x− n1,y − n2]

)

,
(4)

where 0 < c < a+b−1. The g[xb, yb] could be perceived as the

local receptive field, sharing the same set of weights, working

on different parts of the input image f [xa, ya], in which the

neurons extract visual features (edges, corners or more abstract

features) and combine the set of outputs to form feature maps.

Kernels of size [x × y × N ] ([height × width × depth], and

n = 1, 2, · · · , N ) are used, the nth convolutional feature map

can be denoted as:

yn = f





∑

j

gn ∗ xj



 , (5)

where gn is the nth kernel and xj (j = 1, 2, · · · , J) is the

jth input feature map of size [A×B] and f(·) is a nonlinear

activation function because the output of convolution is linear.

To make it adaptable to a more complex problem space, a non-

linear activation function is applied. In this paper, the Rectified

Linear Unit (ReLU) is applied with convolution layers [21,

22]. ReLU is formally defined as:

f(x) =

{

x, if x >= 0.

0, if x < 0.
(6)

Generally, CNNs contain several of these convolution layers

along with spatial or temporal sub-sampling [23].

B. Adaptive Pooling

Pooling or subsampling plays a significant role in CNNs.

Although, the feature map loses some of its spatial features for

pooling operation, it has been proven to be useful for CNNs

[24, 25]. The pooled vector is given by y = f(y1, y2, ..yn),

where yi ∈ R
d(i = 1, 2, ..., N), d is the dimensionality and

n is the number of feature descriptors. The f(.) function is

the pooling operation. In this paper, a spatial adaptive max-

pooling method is used [26].

Spatial pooling preserves the spatial features by pooling

in local spatial pooling bins. The size of spatial bins is

proportional to the input image size. The output of each

filter from the previous convolution layer is stored in each

of the spatial bins using a max pooling method. If there are

n filters in the last convolution layer and number of spatial

bins are m, the output of the pooling layer will be n,m

dimensional vectors. Adaptive spatial pooling is efficient in

image classification, object detection problems with higher

accuracies and keeping more spatial properties of an image

[27, 28]. Also, it provides the network with the ability to be

trained with multiple size images.



C. The Capsule Neural Network

Unlike the connections between adjacent convolutional lay-

ers (which are through neurons in a CNN) adjacent capsules

layers are connected by capsules in a capsule network. For

each capsule (represented as a vector), the output of the

capsule j can be denoted as:

vj = g(sj), (7)

where vj is the output vector of capsule j, sj is the input to

the capsule j and g(·) is a squashing function given by:

g(x) =
||x||2

1 + ||x||2
x

||x||
, (8)

with x is the input vector of the function.

The squashing function makes the length of a short vector

shrink close to 0, and a long vectors shrink close to 1.

The length of a capsule is used to represent the existence

probability of the corresponding entity or part of an entity.

Parameters in each capsule represent various properties such

as position, scale and orientation of a particular entity [29].

Apart from the capsules in the primary capsule layer, the

total input of the capsule sj can be calculated by:

sj =
∑

i

cijoj|i, (9)

where oj|i is the predicted output of the capsule j (in the

current capsule layer) made by the capsule i from the previous

capsule layer. The coefficients cij are coupling coefficients

determined by a routing algorithm

cij =
exp(bij)

∑

k exp(bik)
, (10)

where bij denote that the log prior probabilities of the capsule

i are coupled with the capsule j from the previous capsule

layer to the current capsule layer. The term k is an index

though all capsules in the current layer. The coefficients bij

are initialized to zero and their values are updated by a routing

algorithm.

In the routing algorithm, bij is updated by:

b
(r+1)
ij = b

(r)
ij + vj · oj|i, (11)

where r is the iteration index. The scalar product of vj and

oj|i is the cosine similarity measurement. The term j|i means

from ith capsule to jth capsule. If the two vectors are similar,

the bij will be updated with a large step. On the contrary, if

the two vectors are different, bij will be updated with a small

step. Intuitively, a lower level capsule i predicts the output of

capsule j. The probability that the capsule i and the capsule

j are coupled is determined by the product of the prediction

and the actual output.

In equations (9) and (11), the predictions oj|i are given by:

oj|i = Wijui, (12)

where ui is output of the capsule i in the previous capsule

layer and Wij are transformation matrices connecting cap-

sules between the previous capsule and the current capsule

layer. The final capsule layer connects the classification labels

directly. There are D (D is the number of classes) capsules,

with the length of each capsule represents the prior probability

of the classification object [30]. A margin loss is applied in

capsule network in order to allow multiple classes to exist in

the same image. The loss Ld for the class d = 1, 2, · · · , D is

given by

Ld = Td max(0,m+ − ||vd||)
2 (13)

+ λ(1− Td) max(0, ||vd|| −m−)2,

where Td = 1 if and only if a digit of class d exists and ||vd||

represents the length of vector vd. For the correct class d, loss

starts to accumulate when the length of the vd is under m+.

Meanwhile, for the unrelated class d, loss begins to accumulate

when the length of the vd is beyond m−. The λ is a controlling

parameter and the total loss Ltotal =
∑

d Ld, which simply

sums the losses from all the final layer capsules.

In the capsule network, the back-prorogation is applied

to update the weights in the convolutional kernels and the

transformation matrices. The routing phase is applied to update

the weights for the coupling process coefficients c and the log

prior probabilities b [30]. The vector to vector transformation

could potentially extract more robust features than scale to

scale transformation in a CNN [29].

III. THE PROPOSED FRAMEWORK

The general architecture of the proposed framework is given

in Figure 1. The first convolution layer has 64, [11 × 11]

sized ([height × width] convolution kernels. The convolution

process is applied with a stride of 1, padding 2 and ReLU

activation function. A spatial adaptive max pooling layer

follows this layer. Neural networks with fixed filter size extract

differently sized features for different sized images. Fully

connected layers need fixed length input. If the feature scale is

different due to different sized images, it would be a problem.

Hence, the advantage of using this adaptive pooling layer is, it

can take an input of variable size, arbitrary aspect ratio, scales

and produce fixed sized output. Therefore, this method allows

flexibility in the network. The first adaptive pooling layer

produces 64 [25 × 25] neurons. After this, two convolution

layers are stacked together having 192, [5×5] and 256, [3×3]

([height × width]) kernels respectively with padding 1 and

ReLU activation function. An adaptive pooling layer follows

producing 256 channels of fixed output neurons [20× 20].

On the top of the second pooling layer, the primary capsule

layer has thirty-two channels of six convolutional units with

the kernel size of [9×9] and stride 2. Thirty-two channels with
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Fig. 1: The proposed framework consisting of a convolutional layer and spatial adaptive pooling with capsule network routing.

the block size of [6× 6× 6] are generated. Each channel con-

tains 6×6=36 capsules, with each capsule containing vector

of length six. The detailed process of capsule generation can

be found in our work [30]. Each capsule in the convolutional

capsule layer shares their weights with each others.

Transformation matrices connect adjacent capsule layers.

The convolutional capsule layer has [32×6×6] sized capsule

outputs. A routing process is applied in the capsule layer

according to the work of Sabour et al. [29]. The final capsule

layer gives 24 output classes with 30 length vectors per class.

Those are passed through a softmax function, and the class

probabilities are computed. We have used PyTorch to imple-

ment the model and specifically used ‘AdaptiveMaxPooling’

library function for the pooling.

Those class probabilities are used to compute the loss at

each training case. They are also used as a mask to nullify the

unwanted output vector classes. The remaining output vector

is used to reconstruct the image through decoder network. The

reconstruction loss is also used as a regularizing expression to

add more robustness in the network [29].

IV. PERFORMANCE EVALUATION

The capsule network from Sabour et al. [29] is used as the

benchmark for this paper. A deeper version of that capsule

network has also been designed with four capsule layers to

compare with the proposed framework. The deep capsule

net contains one simple convolution layer for feature map

extraction and one convolutional capsule layer and three fully

connected capsule layers. When capsule layers are stacked

together, they are one of the most computationally costly

frameworks. After using different routing iterations, it has been

observed that three rotations are efficient enough to get quick

convergence with reasonable computational complexity. All of

these results presented in the paper are based on three routing

iterations.

A CNN model has also been used to measure the per-

formance of the proposed framework. Alexnet [25] is an

efficient CNN model. We have changed a few parameters to

accommodate it with out dataset (image size 28×28 pixels).

We call it ConvNet in Figure (5) and in the discussion of the

results.

The performance evaluation of the networks are conducted

in Python using PyTorch library. The machine on which the

experiments have been performed has an Intel core i5-3210M

CPU @ 2.50GHz × 4 , 8 GB Primary memory and one Nvidia

GeForce GTX 1070 (extended GPU).

A. Dataset

The ‘Kaggle’ American Sign Language Letter” database

of hand gestures has been used to evaluate the framework.

The American Sign Language database has 24 classes of

letters. The database contains all the letters except ‘J’ and



‘Z’ because they do not have static postures. The training

consists of 27455 items and test set has 7172 items. The

dataset contains gray scale 28 × 28 pixel images. According

to the dataset description, the images have been modified with

at least 50+ variations. For example, 5% random pixelation,

+/- 15% brightness/contrast, three degrees rotation etc. These

modifications also altered its image resolution and made this

dataset a challenging one.

B. Performance of the proposed capsule network with recon-

struction loss

According to ([29]) the reconstruction loss is considered

while calculating the total loss in each training batch. Figure

2 illustrates the performance of the proposed method in terms

of testing accuracies. The testing accuracies are evaluated in

each training epoch with new test data.

Fig. 2: The accuracy (%) of the proposed framework, baseline

capsulenet and deep capsulenet on the testing data while

considering reconstruction loss.

The performance of the baseline capsulenet and the deep

capsulenet are also shown in figure 2. Some observations

can be made from the figure. The rate of convergence is

higher in the proposed framework than the baseline two

layer capsulenet. The 4-layer deep capsulenet is closer to the

proposed network in terms of convergence rate, but it is less

efficient in terms of robustness. The maximum accuracy in the

baseline is 97.65%. The maximum accuracy of the proposed

framework is 99.74%.

Fig. 3: Ground truth images

Fig. 4: Reconstructed images

C. Performance of the proposed capsule network without

reconstruction loss

In this section, the loss function is calculated without the

image reconstruction loss. Figure 5 represents the performance

of different frameworks in each training epoch, up to 100

epochs. The baseline method has higher maximum accuracy

but stability and consistency wise the proposed method works

slightly better. The 4-layer deep Capsulenet is more stable and

robust. The test accuracies dropped a significant amount for

the baseline method and for the convnet. One of the reasons

could be the absence of the regularizing term while calculating

the loss (for example, reconstruction loss). There are fewer

capsules in the proposed method, which also could be the



Fig. 5: The accuracy (%) of the proposed framework, deep

capsulenet, the baseline method and the convnet on testing

data without considering reconstruction loss.

Method
Maximum Test Accuracy (%) Minimum Test error (%)

With

Reconstruction

Without

Reconstruction

With

Reconstruction

Without

Reconstruction

BaseLine 97.65 99.70 0.652 0.633

Deep Capsulenet 98.87 98.54 0.639 0.634

ConvNet 99.26

Proposed

Framework
99.74 99.60 0.641 0.632

Table I: Summery of experiment results

reason.

Table I gives a summary of all the experiments. Clearly, it

can be seen that, for this dataset, the proposed method is an

improvement of the 4-layer capsule net and baseline 2-layer

capsulenet. Even without the reconstruction loss calculation,

it has higher accuracy than the other two frameworks.

V. CONCLUSION

In this paper, a posture learning framework has been

proposed for sign language recognition. Although, the im-

age quality of the dataset is not very high, the framework

shows good results. This framework is robust for rotation

and images quality. The concept of capsules and pooling

are used simultaneously in the network. Originally, Capsules

Network’s routing by agreement came as an alternative to

pooling methods [29]. This research confirms that using both

pooling and capsules routing on the same network can improve

the networks accuracy and convergence speed. The adaptive

pooling used in this framework allows the network to train

with multiple size images, which adds scale-invariance and

prevents the network from over-fitting. Future extension of

this work would be upgrading this framework to non-static

gestures also. One of the many possible ways to do this would

be to use recurrent neural network layers with the capsules.
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