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Abstract—Vehicle logo recognition is an important part of

vehicle identification in intelligent transportation systems. State-

of-the-art vehicle logo recognition approaches use automatically

learned features from Convolutional Neural Networks (CNNs).

However, CNNs do not perform well when images are rotated

and very noisy. This paper proposes an image recognition

framework with a capsule network. A capsule is a group of

neurons, whose length can represent the existence probability

of an entity or part of an entity. The orientation of a capsule

contains information about the instantiation parameters such as

positions and orientations. Capsules are learned by a routing

process, which is more effective than the pooling process in

CNNs. This paper, for the first time, develops a capsule learning

framework in the field of intelligent transportation systems. By

testing with the largest publicly available vehicle logo dataset,

the proposed framework gives a quick solution and achieves the

highest accuracy (100%) on this dataset. The learning capsules

have been tested with different image changes such as rotation

and occlusion. Image degradations including blurring and noise

effects are also considered, and the proposed framework has

proven to be superior to CNNs.

Index Terms—Intelligent Transportation Systems, Vehicle Logo

Recognition, Convolutional Neural Network, Capsule Network

I. INTRODUCTION

Recently Vehicle Logo Recognition (VLR) has become a

popular research topic in intelligent transportation systems as

vehicle logos are one of the most distinguishable marks on

vehicles. Recognizing vehicle logos helps with vehicle identi-

fication, traffic monitoring and vehicle management [1, 2]. For

instance, fraudulent plates can be detected if the logo does not

match its license plate. This could prevent crimes as replacing

the plate is often associated with actions before a crime [3].

In addition, VLR could also provide guidance for autonomous

driving systems and intelligent parking systems [4, 5].

Rather than using the raw pixel values and templates, hand-

crafted features are often used to represent the content in an

image [6]. Hand-crafted features can be separated as global

features and local features. Global features consider all pixel

values and generate a vector to represent an image, such as the

Histogram of Oriented Gradients (HOG) method [7]. However,

all pixel information embedded into the feature vector makes

the feature not robust to shift, distortion and rotation. Local

features such as Scale Invariant Feature Transform (SIFT) [8],

in contrast, only consider a few distinguishable areas of an

image. In general, local features are more robust to challenging

images [2]. Both local features and global features are widely

used for VLR [1, 9–11]. Automatic extracted features by

CNNs [12] are more advanced than hand-crafted features. The

features learned by CNNs are becoming the mainstream in

the field as its success on ImageNet [13] and they have been

widely applied especially for solving the VLR task [5, 14].

However, research shows that CNNs fail in some conditions

such as pixel value variations [15, 16].

A recent idea of capsule network has been proposed by

Sabour et al [17] in order to deal with the limitations of CNNs.

A capsule is a group of neurons, whose length represents

the probability of the entity’s existence, and the orientation

represents the instantiation parameters [17]. Compared with a

convolutional process which transfers scalar inputs to scalar

outputs, a capsule transfers data from a group of neurons to

a group of neurons between adjacent capsule layers. Instead

of using the max-pooling process which only finds the local

respond from an individual layer, a routing process is applied

in capsule networks in order to detect active capsules cross

layers. Using a routing process, each capsule predicts the

output of higher level capsules. A lower level capsule becomes

active if its prediction agrees with the true output of higher

level capsules using a inner product measurement. In the last

fully connected capsule layer, weights are optimized by a

margin loss function.

In this paper, a novel VLR classification framework is devel-

oped based on the capsule network. The proposed framework

performs better than the state-of-the-art CNNs with and with-

out image changes such as rotation and occlusion, and image

degradations including blurring and the noise effects. This is

achieved thanks to the efficient routing algorithm embedded in

the capsule network. The novelties of this work are as follows:

1, for the first time, a capsule learning framework is proposed

and developed in the field of intelligent transportation systems,

and the proposed capsule learning framework achieves the

highest accuracy on the largest VLR dataset. 2, the proposed

framework achieves higher accuracy and better robustness



Fig. 1: An example of CNNs architecture.

against image changes and degradations than the state-of-the-

art CNNs.

The rest of this paper is organized as follows. In Section

II, methods based on CNNs capsule networks are introduced.

Section III explains the proposed VLR classification

framework based on the capsule network. Simulation results

and discussions are presented in Section IV and Section V

summaries the work.

II. CONSIDERED DEEP LEARNING APPROACHES

A. Convolutional Neural Network

Lecun et al. proposed the first CNN framework LeNet [18].

Different CNN frameworks have been developed quickly after

the AlexNet [12] achieved the best performance on ImageNet

in 2012. Unlike neural networks, where neurons in each

layer are fully connected to neurons in the next layer, each

layer in a CNN shares the weights by using convolutional

kernels. This process tremendously decreases the number of

weights when compared with neural networks; therefore, it

can prevent the over-fitting problem, which is one of the

main problems in neural networks [19]. Another advantage

is that the spatial information of the content is preserved

by the convolutional process, while neural networks simply

reshape an image into a vector, without persevering the spatial

information. CNN frameworks are mainly composed of the

convolution operations and the pooling operations. Figure 1

illustrates a typical CNN framework.

In a convolution stage, feature maps are convoluted with

different convolutional kernels, which are equivalent to filters

in the field of image processing. Kernels can be regarded as

the shared weights connecting two layers. Suppose kernels of

size [a× b× n] ([height × width × depth]) are used, the ith

(i = 1, 2, · · · , n) convolutional feature map can be denoted

as:

Ci = f





∑

j

Vi ∗ Ij



 , (1)

where Vi is the ith kernel and Ij (j = 1, 2, · · · , J) is

the jth feature map (Ij can be a channel of the original

image, a pooling map and a convolutional map). Here f(·)

denotes a non-linear activation function and ∗ represents the

convolutional operation. The Rectified Linear Unit (ReLU),

where g(x) = max(0, x), is often applied as the non-linear

function [12].

A convolutional process is often followed by a pooling

process. In the pooling operation, a pooling process decreases

the size of the input feature maps, which can be regarded as

a down-sampling operation. Each pooling map Pi is usually

obtained by a pooling operation over the corresponding con-

volutional map Ci:

Pi = pool(Ci), (2)

where pool(·) represents a pooling method [14]. A window

shifts on the previous map Ci and the mean value (or the

maximum value) in each window is extracted in order to form

a pooling map Pi.

The convolution and pooling operations are the two main

techniques in CNNs. As shown in Figure 1, these two pro-

cesses are repeated. Note that every convolutional process is

followed by a pooling operation in Figure 1. However, this is

not a requirement; different CNN structures are valid. Different

CNN architectures have been developed rapidly subsequent to

the AlexNet in 2012. For example, the ZF-Net [20] applied

smaller kernel size in order to save more original pixel level

information and achieved better results on ImageNet [13].

The VGG-NET [21] also enhanced the depth of the CNNs

up to 19 layers and suggested only using an unique kernel



size of [3 × 3]. The Google-Net [22] even increased the

number of layers to 22 and applied the inception module,

in which different convolutional feature maps (generated by

convolutional kernels of different sizes) and the pooling feature

maps were combined together. The Res-Net [23] built a 152

layer architecture and introduced the idea of the residual

learning, which built short-cut connections between layers and

achieved the best result on ImageNet in 2015.

B. Capsule Network

In CNNs, connections between layers and layers are scalar-

scalar. However, in a capsule network, a group of neurons are

combined in order to present an entity or part of an entity.

Therefore, a neuron is replaced with a group of neurons and

the connections between capsule layers become to vector-

vector. For each capsule (represented as a vector), a non-linear

squash function f(·) is defined:

f(x) =
||x||22

1 + ||x||22

x

||x||2
, (3)

with x is the input vector of the squash function and || · || is

the l2-norm. This function makes the length of short vectors

shrink close to 0 and long vectors shrink close to 1. Hence,

the output length can be used to represent the probability that

an entity exists. The output of the capsule j (vj) is given by:

vj = f(hj), (4)

where hj is the input of the capsule j. Parameters in each

capsule represent various properties such as position, scale

and orientation of a particular entity [17].

Excepting the capsules in the first capsule layer, the total

input of the capsule hj is a weighted sum of all “predictions”

oj|i (the predicted output of capsule j in the current layer by

the input capsule i from the previous layer) is given by:

hj =
∑

i

cijoj|i, (5)

where cij are coefficients determined by a routing process. Let

qij denote the log prior probabilities that the capsule i (in the

previous layer) is coupled with the capsule j (in the current

layer); the coefficients cij can then be denoted as:

cij =
exp(qij)

∑

d exp(qid)
, (6)

where d is an index goes though all capsules in the current

layer. qij are initialised with zeros and updated by a routing

algorithm. In the routing algorithm, qij is updated by the

following process:

q
(r+1)
ij = q

(r)
ij +

〈

vj ,oj|i

〉

, (7)

where r is an iteration index. Note, the term
〈

vj ,oj|i

〉

is

the inner product between the predicted output and its actual

output (of the capsule j in the current layer). The assumption

is intuitive; for the capsule j in the current layer, all capsules

from the previous layer will predict its value. If the prediction

made by the capsule i from the previous layer is similar

to the actual output vj , the capsule i should have a high

probability of the contribution. Hence, the coupling coefficient

cij increases.

In equations (5) and (7), the predictions oj|i can be calcu-

lated by the output capsules ui from the previous layer:

oj|i = Wijui, (8)

where Wij are transformation matrices connecting capsules

between two adjacent layers.

Suppose there are C classes, then the final capsule layer

has C capsules, with the length of each capsule representing

the existence probability of the corresponding object. To allow

multiple classes exist in the same image, a margin loss is used,

with the loss Li for the class i (i = 1, 2, · · · , C) is given by:

Li = yi max(0,m+ − ||vi||2)
2

+ λ(1− yi) max(0, ||vi||2 −m−)2, (9)

where yi = 1 if and only if the object of the class i exists and

||vi||2 is the length of the vector vi in the final capsule layer.

This encourages the length of the capsule vi to be above m+

if an object of the class i is present, and encourages the length

of the capsule vi to be below m− when an object of the class

i is absent. Here λ is a controlling parameter and the total

classification loss is calculated by
∑

i Li, which simply sums

the losses from all the final layer capsules.

In capsule networks, the back-prorogation is applied to

update the convolutional kernels and the transformation

matrices. A routing process is applied to update the weights

for the coupling coefficients c and the log prior probabilities

q. In capsule networks, the vector-vector transformation could

potentially extract more robust features than scalar-scalar

transformation in CNNs.

III. PROPOSED VLR FRAMEWORK

This paper develops a VLR recognition framework based

on a capsule network. The general architecture as shown

in Figure 2 contains two convolutional layers and a fully

connected layer. The size of the first convolutional kernels is

[21×21×128] ([height × width × depth]), and a convolution

operation is applied with a stride of two, followed by a ReLU

non-linear activation function. Hence, the output size of the

convolutional 1 is [25× 25× 128].

The second convolutional process generates the primary

capsule layer. Figure 3 illustrate the capsule generation process

from a convolutional layer. There are ten groups of convolu-

tional kernels, each is of the size [12×12×10] and is applied



Fig. 2: The proposed capsule network for VLR (similar to [17]).

with a stride of two. This process generates ten convolutional

units, each of them is of the size [7 × 7 × 10]. These units

are re-grouped into ten channels, each channel containing one

layer from all convolutional units. Each channel is made up

from 7 × 7 = 49 capsules with each capsule being a vector

with ten entries. The primary capsule layer connects with the

final capsule layer by transformation matrices. This process

is the same with a fully connected layer in neural networks,

except the scalar-scalar transform is changed to a vector-vector

transform.

The reconstruction loss is considered for the weights

updating.The reconstruction process is a decoder using neural

networks; the last capsule layer is connected 2 hidden layers

and each hidden layer has 2048 neurons. The training process

of the learning capsules is summarised in Algorithm 1. The

routing process is applied only between the primary capsule

layer and the final capsule layer. There are 7× 7× 10 = 490

capsules in the primary capsule layer and ten (C=10) capsules

in the final capsule layer. This requires 4900 transformation

matrices with the size of [10 × 30]. The length of each

capsule in the final capsule layer represents the existence

probability of the corresponding object.

IV. PERFORMANCE EVALUATION

In this section a CNN framework is designed. Figure 4

shows its designed structure. is applied for comparisons. The

architecture contains three convolutional layers, three pooling

layers and two fully connected layers. The reason of not using

big CNN frameworks such as AlexNet [12] and VGG [21] is

that there are too many parameters in big CNN frameworks,

which cause over-fitting problems. Meanwhile, the developed

CNN framework has proven to be a good model as it has

achieved more than 99% accuracy on the testing dataset while

containing much less parameters than in AlexNet and VGG.

Algorithm 1 The training process of the proposed learning

capsule

Input:

Input images.

Number of iterations r for the routing algorithm.

Procedure:

1: A convolutional operation with ReLU is applied to the

input images.

2: A convolutional operation is applied to the convolutional

layer 1 using convolution kernel groups.

3: Reshape the primary capsule layer to capsules ui, each ui

is squashed by the function in (3).

4: Define a final capsule layer.

5: Define a corresponding restoration network.

6: For all capsule i in the primary capsule layer and capsule

j in the final capsule layer: initialise qij to zeros.

7: for r iterations do

8: for all capsule i in the primal capsule layer, apply

equations (6) and (8) in order to get cij and oj|i.

9: for all capsule j in the final capsule layer, apply

equation (5) in order to get hj .

10: for all capsule j in the final capsule layer, apply

equation (4) in order to get vj .

11: update all qij , apply equation (7).

return vj

12: end for

13: Calculate the loss and update the weights.

In the proposed capsule network, there are three iterations in

the routing process.

The largest open VLR dataset provided by Huang et al [14]

is used to evaluate the proposed classification approach. The

training and testing dataset are split before hand. It has ten

categories and each category contains 1000 training images



Fig. 3: The capsule generation process in the proposed primary capsule layer.

Fig. 4: The designed CNN architecture.

Fig. 5: The vehicle logo dataset.

and 150 testing images. All images are of the size [70×70].

Figure 5 shows an example of the ten vehicle categories by

randomly choosing one testing image from each category.

The performance evaluation of both the CNN and the

proposed capsule network are conducted in Python on a laptop

with the following specification: Intel I5 (3210M CPU 2.5GHz

× 4), 8G RAM and an Nvidia GTX 1070 (extended GPU). The

performance of each method is measured in terms of accuracy

(percentage of correctly classified testing images). The model

is trained on the training dataset with 100 epochs. In each

training epoch, the corresponding testing accuracy is recorded

in order to give more detailed results.

A. Performance of the proposed capsule network on the orig-

inal testing dataset

The model is trained on the original training dataset with

100 epochs. In each training epoch, the corresponding testing

accuracy is recorded in order to give more detailed results.

Figure 6 illustrates the testing accuracies in each training

epoch, up to 100 epochs. Both the CNN (accuracy of 99.35%
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Fig. 6: The performance of the CNN and proposed capsule

network on the original testing data.

at the 100th epoch) and the capsule network (accuracies keep

at 100% after the 4th epoch) can achieve good results after

a limited number of epochs. Note that the developed capsule

network achieved the highest accuracy on this dataset (100%).

However, the advantage could not be significant as there is a

limit space for the improvement. Hence, image degradations

are applied to evaluate the trained CNNs and the capsule

networks.

B. Performance on challenging data

In practice, we would not expect to always have clear logos

in the images. As a result, here different image changes includ-

ing rotation and occlusion, and different image degradations

such as burring and noise effects are added to the testing

images in order to examine the robustness of both the CNN

and the proposed capsule network. Figure 7 shows the effects

by adding these changes and degradations individually and

together. The first image is an original testing image, the

second image shows its rotated version with an angle of 50

degrees. The third image contains an rectangular box (with

the size of 20% of the image’s width and height), whose pixel

value is set to a random number between 0 to 255 in order

to make an occlusion effect. An Gaussian smoothing kernel

(with a standard deviation of two) is applied to the original

testing image and its blurring effect is shown in the fourth

image. Noise effect is illustrated in the fifth image by adding

Gaussian noises with a standard deviation of 0.1. The last

image is the combined effect by adding all the aforementioned

image changes and degradations.

In the real applications, these challenges are not always as

serious as in Figure 7. Hence, three challenge testing datasets

are created involving different levels of image changes and

degradations. The challenge testing dataset 1 only considers

the image noise. A zero-mean Gaussian noise with the variance

Fig. 7: From left to right are: a testing image, the rotation

effect, the occlusion effect, the blurring effect, the noise effect

and the combined effect, respectively.

of 0.1 is applied to the original testing dataset. The challenge

testing dataset 2 only considers the image rotation by adding a

random rotation angle on the original testing dataset within the

range [−25◦, 25◦]. The challenge testing dataset 3 considers

the combined effects by adding the following contaminations

on the original dataset: an random rotation within the angle

[−25◦, 25◦], the occlusion (a maximum of 20%), blurring

(with a maximum standard deviation of two) and the Gaussian

white noises (variance is a random value in the range of

[0, 0,1]). The value between the minimum and maximum is

randomly generated following a uniform distribution. Figure

8 illustrates 100 random examples of the challenge testing

dataset 2.

Fig. 8: A hundred random examples in the challenge testing

dataset 2.

Figure 9 shows the accuracy of the CNN and the proposed

capsule network on the challenge dataset 1 and challenge

dataset 2. Compared with Figure 6, both the noise and rotation

decrease the recognition accuracies. For the noise images
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Fig. 9: The performance of the CNN and the proposed capsule

network on the challenge testing dataset 1 and challenge

testing dataset 2.

(challenge dataset 1), an accuracy of 85.75% is achieved at

the 100th epoch. In contrast, the capsule network achieves

a high accuracy of 98.49% in the same scenario. For image

rotations (challenge dataset 2), the capsule network and the

CNN achieve accuracies of 94.82% and 89.00%, respectively.

As shown in Figure 9, the real line is always above the dash

line, which indicates the proposed capsule network is more

robust to noise and rotation than the CNN.
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Fig. 10: The performance of the CNN and the proposed

capsule network on the challenge testing dataset 3.

Figure 10 shows the accuracy of the CNN and the

proposed capsule network on the challenge dataset 3 (images

are contaminated by noise, rotation, blurring and occlusion).

Both accuracies drop because of the testing images are

becoming more challenging. The CNN achieves an accuracy

of 56.47% and the capsule network achieves an accuracy of

66.07% when the model is trained 100 epochs. The real line

is always above the dash line, which indicates the proposed

capsule network is more robust to the combined changes and

degradations than the CNN.

V. SUMMERY

Massive data bring to challenges to autonomous VLR

systems. Hence, in respond to this demand, this paper

develops a deep learning approach based on the new concept

of learning capsules. The main advantages of learning

capsule networks are their achievements with image rotation,

occlusion and image degradations including blurring and

noise effects. The fact that CNNs face challenges in such

cases are confirmed also by the results in this paper. The key

to the success of learning capsules is due to a more effective

routing process rather than the pooling process in CNNs. A

comparison between capsule networks and CNNs show the

proposed learning capsules give a quick solution and more

accurate results. An accuracy of 100% is achieved on the

original testing dataset. Note that this is the highest accuracy

achieved on this dataset. A different level of image changes

and image degradations have been tested, and the proposed

capsule network has proven to be more robust than the CNN.
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