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Abstract— This paper considers the problem of short-term
traffic flow prediction in the context of missing data and other
measurement errors. These can be caused by many factors due
to the complexity of the large scale city road network, such as
sensors not being operational and communication failures. The
proposed method called vicinity Gaussian Processes provides a
flexible framework for dealing with missing data and prediction
in vehicular traffic network. First, a weighted directed graph
of the network is built up. Next, a dissimilarity matrix is
derived that accounts for the selection of training subsets. A
suitable cost function to find the best subsets is also defined.
Experimental results show that with appropriately selected
subsets, the prediction root mean square error of the traffic flow
obtained by the vicinity Gaussian Processes method reaches
18.9% average improvement with lower costs, which is with
comparison to inappropriately chosen training subsets.

I. INTRODUCTION

“Smart City” is now quite a popular concept that aims at

making the city smarter from different perspectives with the

minimum changes to the existing infrastructures. Intelligent

transportation systems (ITS) play a key role in building

smart cities. One of the critical elements for the successful

deployment of ITS lies in traffic prediction [1], [2], especially

when it comes to large traffic networks with a limited number

of sensors as shown in Fig. 1.

Basically, traffic prediction methods can be divided into

model-based and data-driven methods [3], with the criterion

of whether models or data are exploited to accomplish

the prediction. In the model-based group, a physical traffic

model is explicitly defined to describe the dynamics of the

traffic road system. In the 1970s, Ahmed et al. [4] propose

the autoregressive integrated moving average (ARIMA) to

cope with short-term highway traffic prediction. Model-

based methods have been extensively researched thereafter.

Up to now, there are mainly three categories of models,

i.e., microscopic, macroscopic and mesoscopic. Microscopic

models provide high level details of each individual vehicle

[5], [6], which are intuitively both time and resource con-

suming. Worse still, details of an individual vehicle are not

always available. Macroscopic models, on the other hand,

represent the aggregated behaviour of the traffic, usually

in terms of average speed and density. They are the direct

compromise between computational efficiency and prediction

accuracy. Macroscopic models are suitable for real-time traf-

Fig. 1. Road network and sensors of Santander, Spain

fic prediction and management. Most model-based methods

fall into the macroscopic category, such as the model the

cell transmission model (CTM) [7] and the interval CTM

[8]. Mesoscopic models are hybrids of microscopic and

macroscopic models with the emphasis in varying levels of

details [9]. Under the assumption that models can describe

the traffic system dynamics, the results are highly reliable

and therefore competitive. Although a number of models

have been proposed, there is still no general model for all

traffic scenarios. This limits the application of model-based

methods.

Compared with model-based methods with the explicit

requirement to a physical model, the data-driven methods

only demand historical data. Statistical and machine learning

methods are developed for finding the inherent dependencies

in data and then based on them future events are predicted. Ni

et al. [10] propose a Bayesian network based method, having

the advantages of reducing the bias and accuracy in traffic

prediction. Recently, deep learning methods have been pro-

posed for traffic prediction. After the successful application

[1] of a deep stacked autoencoder (SAE) approach to traffic



prediction, a lot of researchers have focused on deep learning

methods for traffic prediction. Related publications are [11],

[12]. Nevertheless, deep learning methods still suffer from

computational complexity during the model training phase.

Also, these methods heavily rely on the data preparation

or pre-processing procedures, which influence the real-time

application.

The Gaussian process (GP) method [13] is another data

driven solution with a big potential in the traffic prediction,

a kernel-based learning algorithm just like SVMs [14]. GP

have been repeatedly demonstrated to be a powerful tool

in implicit relationship exploring and difficult non-linear

regression addressing, with applications in mobility demand

and short-term traffic volume prediction. Comparative studies

have shown that GP outperform ARIMA, SVM and neural

networks on short-term traffic prediction [15], [16]. However,

GP still suffer from cubic time complexity in the size of train-

ing data. Fortunately, both parallel/distributed computation

[15] and non-negative matrix factorization (NMF) techniques

[17] provide the possibilities to decrease the computational

complexity.

In this paper, GP models are trained from vicinity sensor

data and then we employ it to do traffic prediction for data

missing segments. To start, the road network is divided into

shorter segments (loop detectors are mounted in a certain

number of segments). With the direction information of

the roads in hand, a weighted directed graph (wDG) and

the corresponding dissimilarity matrix are consequentially

constructed. The dissimilarity matrix serves as the heuristic

information to choose the measurements from neighbouring

sensors to get the training data ready. GP models trained by

the selected data generally report the best prediction when

the local sensor malfunctions or the communication fails. As

we only use the vicinity sensor measurements, the GP model

hereafter is abbreviated as v-GP in case of confusion.

The remainder of the paper is organized as follows. In

section II, GP and its application in the traffic prediction

is formulated. The methodologies to build the wDG and

dissimilarity matrix are detailed in section III. Section IV

provides the implementation of v-GP. In Section V, ex-

perimental results are provided with analyses. Section VI

concludes the paper.

II. PROBLEM DESCRIPTION

A. The Gaussian Process Framework

A GP is generally regarded as an extension of a multivari-

ate Gaussian distribution in an infinite dimensional space,

with any finite number of which subjects to a joint Gaussian

distribution. Normally, the real process f(x) is not available.

Fortunately, one of the powerful aspects of GP lies in using

the Bayesian paradigm to learn an approximation of f(x)
from the training data.

The GP prior is fully defined by the mean m(x) and the

covariance matrix k(x,x
′

) as in (1),

p(f(x)|θ) ∝ N (m(x), k(x,x
′

)), (1)

in which, x is the input vector, m(x) = E(f(x)), k(x,x
′

) =
E[(f(x) − m(x))(f(x

′

) − m(x
′

))], θ is the prior’s hyper-

parameter vector, N (·) denotes a Gaussian distribution and

E(·) is the mathematical expectation operator. The mean

m(x) is usually assumed to be 0, and k(x,x
′

) is the kernel

function. One of the widely-used kernel function is the

squared exponential covariance function

σ
xx

′ , σ2
x
exp

(

−
1

2

∑p

i=1

(

[xx]i − [x
x
′ ]i

ℓi

)2
)

+ σ2
nδxx′ ,

(2)

where [xx]i and [x
x
′ ]i are the i-th components of the corre-

sponding inputs, [σ2
x
, σ2

n, ℓi, · · · , ℓp] , θ are hyperparameter

defined as noise and input variances, and length-scales that

can be learned by the maximum likelihood estimation, and

δ
xx

′ is a Kronecker delta that equals to 1 if x = x
′

and 0

otherwise.

Let D = {(xi, yi)}
N
i=1 be a training data set, with xi ∈ R

d

the d-dimensional input and yi the corresponding one dimen-

sional measurement at xi, which can be temporal, spatial or

hybrids of the both. With inputs X = [xT
1 ,x

T
2 , · · · ,x

T
N ], we

can get the corresponding outputs through f(x) as f(X) =
[f(x), f(x), · · · , f(xN )]

T
. Normally, yi 6= f(xi) stands

because of noise, which can be assumed to be drawn from

a Gaussian distribution determined by the likelihood p(y|f)
between the outputs and the measurements. The posterior can

then be obtained by updating the prior according to Bayesian

theorem

p(f |D, θ) =
p(y|f)p(f |X, θ)

p(D|θ)
, (3)

in which, y = [y1, y2, · · · , yN ]
T

is the measurement vector.

Now given any new input x∗ and the posterior (3), then

the corresponded output is constrained by the predictive

distribution

p (f∗|x∗,D, θ) =

∫

p (f∗, f |D, θ) df . (4)

For comprehension, denote the joint distribution of mea-

surements from the training data set and the function output

at x∗ under the prior as
[

y

f∗

]

∼ N

(

0,

[

K(X,X) + σ2
NI K(X,x∗)

K(x∗,X) K(x∗,x∗)

])

,

(5)

where Kij = k(xi,xj) can be directly computed from (2),

and σ2
NI are noise covariances. Then equation (4) can be

rewritten as

p (f∗|x∗,D, θ) ∼ N (f∗, cov(f∗)), (6)

in which,

f∗ , µx∗|X ,E(f∗|x∗,D, θ)

=K(x∗,X)[K(X,X) + σ2
NI]−1y

=Σx∗X
Σ−1

XX
y,

(7)

cov(f∗) ,Σx∗x∗|X = K(x∗,x∗)−

K(x∗,X)[K(X,X) +Σ2
NI]−1K(X,x∗)

=Σx∗X
Σ−1

XX
ΣXx∗

.

(8)



B. Traffic prediction with GP

In the traffic prediction scenario, sensors are installed in

certain road segments to record counts and speeds of the

vehicles passing by. Let Vs be the set of road segments with

sensor installed, with each segment related to input x. The

observation equation can be represented in the general form

y = f(x, ǫ). (9)

As stated before, the problem of missing data, caused by

sensor or communication failures, is one of the most fre-

quent phenomena in the traffic prediction. Hereafter, we

call the segments without data received as local segment,

and denote them as S ⊆ Vs. When data are missing, e.g.

due to nonoperational sensors, the most intuitive solution is

to use the historical data of S to do prediction. However

in such cases, one GP model has to be trained for each

malfunctioning sensor, which is normally time consuming

and computational resource expensive. Another solution is

integrating sensor data from vicinity segments Dv ⊆ Vs.

Thus, less models are needed and dependencies among vicin-

ity sensors are considered. Without loss of generality, we

use Dv to represent functioning segments in neighbourhood,

and the corresponding feature vector and output are denoted

as X = [xT
1 ,x

T
2 , · · · ,x

T
n ]

T and y = [y1, y2, · · · , yn]
T ,

respectively. According to (7) and (8), the problem can be

formulated as determining the Gaussian predictive distribu-

tion N (µµµS|Dv
,ΣSS|Dv

) with µµµS|Dv
and ΣSS|Dv

given in

(10) and (11),

µµµS|Dv
, ΣSDv

Σ−1
DvDv

y, (10)

ΣSS|Dv
, ΣSDv

Σ−1
DvDv

ΣDvS . (11)

The next section describes the design of the weighted di-

rected graph and dissimilarity matrix which are key elements

of the proposed approach.

III. WEIGHTED DIRECTED GRAPH AND DISSIMILARITY

MATRIX

A. Weighted Directed Graph

The road network of even a small city can be of high

complexity. For this reason, it is sensible to partition the

road network into multi-scale segments according to the

junctions, or even with the consideration of population or

commercial factors. Here, we define the wDG of a city’s road

network in the same way as in [14]. Given a road network,

the corresponding wDG is G , (V,E,w). V is the vertex

set representing all possible road segments. E = V × V
is the edge set, with the constraint that there is an edge

between segments vi and vj iff the end of vi is connected

to the start of vj . The edge is denoted as eij . Be aware

that eji can be totally different to eij because of the nature

of the road networks. The weight of eij is denoted as wij ,

which is defined as the weighted average of the “distance”

or dissimilarity between each attribute of vi and vj . The

segment attributes considered here include: length of the

segment, number of lanes, limitation of the highest speed,

direction of the segment and the classification of the segment.

Let’s suppose that the attribute vector is a = [a1, a2, · · · , a5],
then wij is computed by

wij =
∑5

k=1
αk|a

i
k − ajk|/rk, (12)

with rk the range of the k-th attribute, and αk the weight of

the k-th attribute. wij is the sum of each attribute dissimi-

larity. Bigger wij indicates significant difference between vi
and vj , i.e., inversion in direction, big changes in lanes etc.

With the wDG in hand, we can construct a dissimilarity

matrix

M ,







m11 m12 · · · m1N

...
...

. . .
...

mN1 mN2 · · · mNN






, (13)

where N is the total number of segments, and mij indicates

the distance between vi and vj , which is computed through

mij = min
{

∑

wE
′ |E

′

⊆ E
}

, (14)

in which, E
′

is a candidate edge set that starts from vi and

ends at vj .

We call it the dissimilarity matrix because bigger mij

indicates higher costs for a vehicle to transfer from vi to

vj . Therefore, it can be regarded as the basis to choose more

temporally and spatially related road segments.

B. Asymmetrical multidimensional scaling for spatial infor-

mation

From the way how the dissimilarity matrix M is con-

structed, it can be easily observed that it violates symmetrical

assumption imposed on covariance of the GP prior. One pos-

sible way is to perform the asymmetrical multidimensional

scaling (AMDS) to embed the higher dimensional matrix into

lower dimensional Euclidean space first, and then compute

the GP prior covariance from the lower dimensional matrix.

The core idea of AMDS is to find a lower dimensional

matrix C ∈ RN×p, such that (15) is satisfied,

d(Mi,:,Mj,:) =
∑N

k=1
(mik −mjk)

2

≈
∑p

k=1
(cik − cjk)

2

=d (Ci,:,Cj,:)

s.t.,min
∑

ij

(

d(Mi,:,Mj,:)− d(Ci,:,Cj,:)
)

(15)

in which, d(·, ·) indicates the Euclidean distance between

two vectors and Mi,:(Ci,:) indicates the i-th row of matrix

M(C).

Now the lower dimensional matrix C can be substituted

into (2) to compute the symmetrical prior covariance if

needed. Another benefit of AMDS is that each Ci,: can be

regarded as the spatial information of the i-th road segment.

Together with the time stamp when the data were collected,

we can construct the temporal-spatial inputs for GP.



IV. IMPLEMENTATION OF v-GP

Without loss of generality, we suppose s ∈ S is one

of the segment with malfunctioning sensor, and D =
[D1, D2, · · · , DQ] are functioning sensors spatially near to

s. Q can be large or small, which is varying in different cities

or even in different areas of the same city. To alleviate com-

putational complexity, we partition D into subsets with the

same length l. Thus q = Cl
Q subsets T = {T1, T2, · · · , Tq}

can be generated. Since both s and D are known, we can

easily get a sub-matrix M
′

from M to indicate the distance

from s to D. Consequently, distances from s to T can

be efficiently inquired from M
′

whose size is normally

decreased compared to M. Denote the distance from s to Ti

as Mi, then subset Ti with the minimum entry-wise distance

sum dimin = Σl
k=1mik is regarded as the best candidate for

building up the training set. For robustness, we choose n sets

ξ with d
ξ
min smaller than a threshold r.

The structure of the training data used in this paper is

as follows. Each input contains time stamp, spatial and

temporal information. Spatial information is the matrix by

embedding the dissimilarity matrix into a lower dimensional

space, and is denoted as c1, c2, · · · , cp. Temporal information

is constructed by L sensor observations immediately precede

the to be predicted observation oi+L+1, and is denoted as

oi+1, oi+2, · · · , oi+L. Time stamp t can be directly converted

from the exact time when oi+L+1 was collected. Observa-

tions are the vehicle numbers aggregated in 15 minutes.

Index i can be 0 or any number indicating the beginning

of the observations to be incorporated, L is the model input

length. Now, the training data set can be denoted as D =
{(xi, yi)}

Nt

i=1, with xi = [t, c1, · · · , cp, oi, · · · , oi+L]
T and

yi = oi+L+1. We only consider the observations from one

sensor, i.e. l0 ∈ T in the training dataset. This is a reasonable

assumption, because the aim of v-GP is to predict in the data

missing segments by integrating observations from vicinity

sensors. Be aware that the intersection of training data set and

testing data set is empty, which is controlled by i. Symbols

Nt and Ns denote the size of the training data set and testing

data set, respectively.

In summary of the description above, we present a v-GP

algorithm is now given by Alg. 1. For real-time applications

both l and r can be decreased to shrink the amount of sensors

to be considered. On the other hand, lines 4-8 in Alg. 1 can be

executed in parallel to accelerate the training speed. Once the

training phase is finished, we select the GP models with the

minimum root mean square error (RMSE) to do prediction

for data missing segments. The RMSE is given by

RMSE =

(

1

Ns

∑Ns

i=1
(ŷi − yi)

)
1

2

, (16)

in which, ŷi is the i-th prediction and yi is the measurement.

V. EXPERIMENTS AND ANALYSES

A. Experiment settings

In this paper, we consider the road network of Santander

city in Spain as shown in Fig. 1. The volume dataset is

Algorithm 1 v-GP algorithm

Input: M, s, D, C

Output: N (µs|[s,ξγ ]},Σss|[s,ξγ ])
1: Initialization

2: generate M
′

and T = {T1, T2, · · · , Tq}
3: Ξ , {ξ ∈ T, |Σl

k=1mik ≤ r, i = 1, · · · , q},

4: for ξi ∈ Ξ do

5: GP training

6: f i
∗ ∼ N (µs|[s,ξi]},Σss|[s,ξi])

7: GP testing

8: Γi = RMSE(f i
∗)

9: γ = minΓ
10: f∗ ∼ N (µs|[s,ξγ ]},Σss|[s,ξγ ])

Fig. 2. Adjacency Matrix

from the case studies of the EU SETA project [18]. The road

network was partitioned into 4106 segments and total number

of 296 sensors were installed in some of the segments. The

wDG of the road network is described by the adjacency

matrix shown in Fig. 2. I(x, y) = 1 iff exy exists, otherwise

it is 0. Theoretically, the dissimilarity matrix for the whole

directed graph can be computed. However in this paper, we

are only interested in the segments with sensors installed.

It is worth reminding that some segments are covered by

more than one sensor. Here we only consider one sensor on

each segment. The dissimilarity matrix is shown in Fig. 3.

Please note that the dissimilarity matrix is computed only for

segments with the sensors and it is asymmetrical. For better

visualization, entries in the matrix are multiplied by 10.

We used the clustering algorithm from [19] to cluster

the sensor location first. The results are shown in Fig. 1.

Then we randomly selected one of the clusters, denoted

as D = [D1, D2, · · · , DQ] with Q = 21 to build up the

vicinity area. To facilitate evaluation, we assume sensor

s is malfunctioning. D is partitioned into subsets T =
{T1, T2, · · · , Tq} with q = Cl

Q = C5
21, where l = 5

could be any value between 1 and Q = 21, the length of



Fig. 3. Dissimilarity Matrix

the subset Ti. The GP models were trained by using the

MATLAB Gaussian Process Toolbox, which determines the

hyperparameters automatically. We used the kernel function

shown in (2).

B. Experiments and Analyses

Two sets of experiments were conducted with s = #11
and s = #13 being as the data missing segments separately,

which were again randomly selected. Though we have q =
C5−2

21−2 = 969 subsets in total, we have randomly selected

only 20 subsets to finish the experiments. This put us at

the risk of not selecting the best candidate subsets. We are

going to show that given any subsets we are capable to pick

the best candidates. When the prediction for a whole city is

assembled, we can distribute the task to multiple processors

(either in a distributed or parallelized way) and further refine

the choice of the globally best subset in the future.

Fig. 4 shows the distances between the local segment #13
and its vicinity segments. The upper sub-figure shows the

distance from the local segment to the vicinity segments and

the lower sub-figure vice versa. Since we are only interested

in the prediction for the local segment, we only consider

the distance shown in the lower sub-figure. Fig. 5 shows

the RMSEs of the GP models trained from different vicinity

sensor data while doing prediction on the testing data set.

We can see that when the distance reaches the minimum

(the 18-th subset), the RMSE almost reaches the minimum.

Obviously, there is no linear or quadratic relation between

these two. This is why a threshold is needed in Alg. 1. The

threshold not only helps in reducing the risk of excluding

better candidate subsets but it also helps in determining the

cost of finding the best subsets. That is, if the subsets are not

properly selected, the cost to find the best candidate subsets is

much higher. In this paper, we define the rank percentage of

RMSE corresponding to the minimum distance η to measure

the cost. More specifically, we executed the Alg. 1 K times

with different subsets. The expectation κ̂ of the RMSE rank

corresponding to the minimum distance κi, i = 1, · · · ,K is

Fig. 4. Dissimilarities between #13 and vicinity segments

Fig. 5. Relation between dissimilarities and RMSEs

computed according to (17). Then η is determined by (18).

κ̂ =
1

K

∑K

i=1
κi, (17)

η = κ̂/K. (18)

We show the rank expectations for both sensor #11 and

#13 with K = 5 in Tab. I. We can conclude that κ̂ = 12.8
is the best choice for sensor #11, and κ̂ = 4 for sensor

#13. The rank percentages are η#11 = 64% and η#13 =
20%, respectively. This indicates that the current selected

subsets are proper for the prediction of sensor #13 as the

best prediction can be obtained within training 4 GP models

while almost 13 models need to be trained for sensor #11
(Be aware that 4 models are less than training a model for

each sensor, which is 5). The reason lies in the fact that

the distance between vicinity sensors to sensor #11 is much

bigger than sensor #13, which is shown in Fig. 6. Therefore,

we can set the threshold r ∈ [6, 8].
The counts prediction RMSEs of the K = 5 experiments

for sensors #11 and #13 are given in Tab. II. Obviously,

RMSEs of sensor #11 is bigger than that of sensor #13.

Also, from Tab. I we know that the cost to find the best



Fig. 6. Comparison of dissimilarities

candidate training subset for sensor #11 is higher than sensor

#13. This is because the distance between vicinity segments

to sensor #13 is much smaller than the distance to sensor

#11. If we compare the RMSEs of the two sensors, we will

see that almost 18.9% average improvement can be obtained.

Now we can conclude that by using Alg. 1, with properly

chosen threshold r, better prediction results can be obtained

with lower costs.

TABLE I

RANK EXPECTATION

Sensor κ1 κ2 κ3 κ4 κ5 κ̂

#11 11 8 14 17 14 12.8

#13 3 3 2 4 8 4

TABLE II

PREDICTION RMSES (VEHICLES/15MIN)

No. 1 2 3 4 5

#11 205.469 176.987 199.068 210.126 206.186

#13 156.765 159.677 154.160 167.319 169.066

VI. CONCLUSIONS

This paper proposes a Gaussian process algorithm using

vicinity sensor measurements which we call a v-GP algo-

rithm. The v-GP algorithm predicts the traffic flow even

when the sensor data are missing, e.g. due to sensor failures.

The algorithm consist two main parts. First, a dissimilarity

matrix of the wDG is derivation and calculated. Unless there

are no major changes to the traffic network both operations

are executed only once. Second, in order to train v-GP model

for the prediction, the local segment needs to be determined

and the best vicinity subsets are selected. Results with real

data show, that with the help of the dissimilarity matrix, one

can choose the best subsets with lower costs, while still better

prediction results can be achieved.

A future perspective is to design the policy that distributes

the training task of v-GP and integrate the prediction results

from different v-GP models to obtain the globally optimized

prediction for data missing segments.
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