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Highlights 

 Undifferentiated/differentiated SH-SY5Y cells provide distinct model 

systems 

 Parkin specifically sensitises to mitochondrial uncoupling 

 Kinases differentially regulate c-Jun activity depending on stress levels 

 Parkin exists in a feedback loop with c-Jun and its upstream kinases 
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Parkinson’s disease (PD) is defined by the progressive loss of dopaminergic 

neurons. Mitochondrial dysfunction and oxidative stress are associated with PD 

although it is not fully understood how neurons respond to these stresses. How 

adaptive and apoptotic neuronal stress response pathways are regulated and the 

thresholds at which they are activated remains ambiguous. Utilising SH-SY5Y 

neuroblastoma cells, we show that MAPK/AP-1 pathways are critical in regulating the 

response to mitochondrial uncoupling. Here we found the AP-1 transcription factor c-

Jun can act in either a pro- or anti-apoptotic manner, depending on the level of stress. 

JNK-mediated cell death in differentiated cells only occurred once a threshold of stress 

was surpassed. We also identified a novel feedback loop between Parkin activity and 

the c-Jun response, suggesting defective mitophagy may initiate MAPK/c-Jun-

mediated neuronal loss observed in PD. Our data supports the hypothesis that 

blocking cell death pathways upstream of c-Jun as a therapeutic target in PD may not 

be appropriate due to crossover of the pro- and anti-apoptotic responses. Boosting 

adaptive responses or targeting specific aspects of the neuronal death response may 

therefore represent more viable therapeutic strategies. 

 

Abbreviations: AP-1 (activating protein-1), ASK1 (apoptosis signal-regulating kinase 

1), BDNF (brain-derived neurotrophic factor), ERK (extracellular signal-regulated 

kinase), IEG (immediate early gene), JNK (c-Jun amino N-terminal kinase), MAPK 

(mitogen-associated protein kinase), MOM (mitochondrial outer membrane), PD 

(Parkinson’s disease), RA (retinoic acid), ROS (reactive oxygen species), SNpc 

(substantia nigra pars compacta), TRE (TPA responsive element), UPS (ubiquitin-

proteasome system). 

 

Keywords: Mitophagy, Oxidative Stress, MAPK, AP-1 transcription factors, 

Parkinson’s, SH-SY5Y. 
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Parkinson’s disease (PD) is a neurodegenerative disorder characterised by the 

loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Although 

oxidative stress and mitochondrial dysfunction are prominent characteristics of familial 

and sporadic PD, the precise pathways driving pathological changes are yet to be fully 

defined. 

 

A number of studies have implicated immediate early gene (IEG) signalling in 

PD (1-9). IEG proteins, such as Fos and Jun transcription factors, are regulators of the 

early stress response. Fos and Jun proteins dimerise to form activating protein-1 (AP-

1) transcription factor complexes, which regulate the expression of genes containing 

the TPA responsive element (TRE) consensus sequence (5’-TGA(G/C)TCA-3’) within 

their promoter (10, 11). Increased activity of the AP-1 transcription factor c-Jun, a 

downstream target of c-Jun amino N-terminal kinase (JNK), has been found in 

dopaminergic neurons of PD patients (1), although JNK inhibition in clinical trials has 

yet to yield positive results (12). AP-1 activity and stability can be rapidly modulated by 

phosphorylation in response to stimuli (13), with JNK, an AP-1 regulator, implicated in 

several neurodegenerative conditions (14).  

 

The MAPK, extracellular signal-regulated kinase (ERK) can regulate the 

activity of JNK and c-Jun (15, 16), has been implicated in the mitochondrial stress 

response (17, 18) and regulates the neuronal response to different forms of L-DOPA-

induced oxidative stress via c-Jun (9). With the complexity of crosstalk, coupled with 

signal-dependent thresholds, it seems probable that multiple pathways coordinate 

adaptive and apoptotic stress responses in neurons. Even specific stress response 

mechanisms can share common elements or be activated in parallel (19). Cells initiate 

protective or apoptotic responses depending on the level or duration of stress. The 

capacity of the initial response dictates the eventual outcome (20). In post-mitotic 

neurons, adaptive responses are critical since their failure will lead to progressive 

neurodegeneration.  
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Most intracellular reactive oxygen species (ROS) are produced by 

mitochondria (21). Excessive ROS associated with PD are produced by dysfunctional 

mitochondria, which undergo selective autophagy, a process called mitophagy (22). 

The PARK2 (PARKIN) and PARK6 genes (encoding Parkin and PTEN-induced 

putative kinase 1 (PINK1), respectively) are linked to familial PD (23), with PARKIN 

mutations the most common cause of autosomal-recessive PD (24, 25). Upon 

mitochondrial depolarisation, PINK1 accumulates on the mitochondrial outer 

membrane (MOM), recruiting and activating the E3 ubiquitin ligase Parkin (26-28) to 

promote mitophagy (29). Excessive ROS activates the apoptosis signalling kinase 1 

(ASK1)/JNK pathway (30-33). As Parkin activity can repress JNK/c-Jun activity (4, 34) 

and c-Jun represses PARKIN expression (7), a feedback loop may exist between 

multiple pathways to determine the response to these stresses. 

 

Here we define the role played by MAPK/AP-1 pathways in the response to 

mitochondrial uncoupling, utilising SH-SY5Y neuroblastoma cells (35, 36). Our data 

suggests a finely balanced system in which feedback loops between c-Jun, Parkin and 

MAPK activity exist, allowing neurons to rapidly respond to mitochondrial damage and 

commit to apoptosis if irreversibly damaged. Dysfunction within this multi-faceted 

process may drive some neurodegenerative pathologies. 

 

2. Materials and methods  

 

2.1. Cell culture 

Wild type (WT) and Parkin overexpressing SH-SY5Y neuroblastoma cell lines 

were obtained from Dr Phil Robinson (37), the latter created by stable transfection of 

a pcDNA3.1/Hygro(+) vector (Invitrogen, Paisley, UK) containing PARKIN cDNA into 

cells followed by hygromycin B selection (Invitrogen). Cells were used between 

passage 7-16 and grown in DMEM/F12 GlutaMAXTM media supplemented with 10% 

FCS, 100µg/ml penicillin, 100µg/ml streptomycin and minimum essential media non-

essential amino acids (Gibco, Paisley, UK) at 37°C and 5% CO2. For differentiation, 

cells were seeded in standard culture medium for 24 hours, then incubated in medium 

containing 10µM retinoic acid (RA) for 3 days. RA medium was removed, cells washed 
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with PBS then serum-free medium containing 50ng/ml brain derived neurotrophic 

factor (BDNF) added for 3 days. HEK293 cell lines (38) were cultured in DMEM with 

10% FCS, 100µg/ml penicillin and 100µg/ml streptomycin (Gibco). 

 

2.2. Antibodies 

Antibodies specific for c-Jun (5B1, ab119944), JunD (EPR6520, ab134067), 

JunB (EPR6518, ab128878), c-Fos (2G2, ab129361), FosB (83B1138, ab11959), Fra-

1 (EP4711, ab124722), Fra-2 (EPR4713(2), ab124830), anti-mitochondria [MTCO2] 

(ab3298) and Histone H3 (1791, ab1791) were obtained from Abcam (Cambridge, 

UK). Anti-Parkin (Prk8) (4211), -c-Fos (9F6, 2250) and -phosphorylated c-Jun (Ser63) 

II (9261) obtained from Cell Signalling Technology (Hertfordshire, UK). Anti-ȕ-actin 

(A5441) was obtained from Sigma. Horseradish-peroxidase anti-mouse (P0260) and 

anti-rabbit (P0448) secondary antibodies were supplied by Dako (Stockport, UK). 

Highly-cross adsorbed (H+L) Alexa Fluor 488 anti-mouse (A11029) and Alexa Fluor 

594 anti-rabbit (A11037) secondary antibodies from Molecular Probes, Invitrogen. 

 

2.3. Cell proliferation assay 

Cells were trypsinised, resuspended in medium then stained with trypan blue 

and counted using a Countess™ (Invitrogen). 2 x 105 cells/well were seeded and 

incubated at 37°C for 72 hours. Cells were split and resuspended, then counts 

performed using a Countess™. 

 

2.4. CCCP assays 

Cells were seeded 24 hours before CCCP (Sigma, UK) was added to medium 

with gentle mixing. Cells scraped into PBS at specific time points and centrifuged at 

200xg for 5 min. Pellets frozen at -80C for protein extraction. Epoxomicin (Santa Cruz 

Biotechnology, CA, USA) was added 1 hour prior to CCCP addition and SP600125 

(JNK inhibitor; Santa Cruz Biotechnology) or FR180204 (ERK inhibitor; Sigma) added 

2 hours prior to CCCP. 
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2.5. Western blotting 

Cell pellets were resuspended in ice-cold radioimmunoprecipitation assay 

buffer (RIPA) buffer (1% Nonidet-P-40, 0.5% sodium deoxycholate and 0.1% SDS in 

PBS) containing 1X Halt Protease and Phosphatase Inhibitor Cocktail (Pierce, 

Northumberland, UK) and 5mM EDTA, then left on ice for 30 min. Samples were then 

centrifuged at 14800xg for 10 min at 4°C and 5ȝl of supernatant used for a Bradford 

Assay (BioRad, Hertfordshire, UK) to determine protein concentrations. Remaining 

supernatant mixed with equal volume of 2X SDS loading buffer containing 0.2M DTT 

and frozen at -20°C for western blotting.  

 

Using a Mini-Protean II electrophoresis cell (Bio-Rad), protein extracts were 

subjected to Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) at 100V in running buffer (25mM Tris base, 250mM glycine, 0.1% SDS). Protein 

was transferred to Hybond-C extra nitrocellulose membrane (Amersham, 

Buckinghamshire, UK) at 100V for 90 min in transfer buffer (25mM Tris base, 192mM 

glycine, 20% methanol, 0.01% SDS). Membranes were blocked in 5% (w/v) milk in 

PBS for one hour at room temperature (RT) then incubated with primary antibodies 

prepared at 1:1000 dilutions (ȕ-actin at 1:2000) in block overnight at 4°C. Membranes 

were washed 6 times in PBS-T then incubated with a 1:2000 dilution of horseradish 

peroxidase-conjugated secondary antibody in block for 1 hour at RT. Membranes were 

washed 6 times in PBS-T then once in PBS. Target antigens detected using enhanced 

chemiluminescence Super Signal West Pico or Femto reagents (Pierce) on a 

ChemiDoc MP Imaging System with Image Lab 4.0.1 (Bio-Rad) for densitometry.  

 

2.6. Immunofluorescence and CellROX® assays 

Cells grown on methanol-sterilised glass coverslip were treated as required 

then medium removed and washed in PBS, then incubated at RT for 20 min in 4% 

paraformaldehyde (PFA), washed 3 times in PBS and permeabilised with PBS-0.1% 

Triton X-100 for 5 min. If required, CellROX® Reagent was added to medium at a final 

concentration of 5ȝM 30 minutes prior to fixation. Cells were washed 3 times in PBS 

then blocked in 0.1% milk powder in PBS for 30 min. Primary antibodies were prepared 

at 1:1000 dilutions (MTCO2 at 1:500) in block and centrifuged. Coverslips were 
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incubated with primary antibody solutions for 1 hour at RT then washed 3 times in 

PBS. Secondary antibodies were prepared at 1:500 dilutions in block (DAPI 1:1000) 

and centrifuged prior to 1 hour incubation with coverslips, which were washed 3 times 

in PBS after 1 hour. Coverslips mounted using Mowiol. Immunostaining was observed 

using a Nikon Eclipse Ti upright microscope supported by NIS Elements software. 

 

2.7. High-throughput immunofluorescence 

Cells were grown and treated in 96-well ViewPlates (PerkinElmer, Berkshire, 

UK). Fixation, permeabilisation and staining scaled down from above method before 

PBS added to each well. Plates were processed using the Operetta high-content/high-

throughput (HC/HT) wide-field fluorescence imaging system with Harmony software 

(PerkinElmer) with 20X or 40X objectives (10 or 17 fields of view per well, respectively). 

Up to 3 fluorescent channels were imaged. Focal planes determined at the start of 

each experiment. Images were analysed using Columbus software (PerkinElmer) in a 

non-biased manner. Objects around border of fields of view were excluded. The DAPI 

channel was used to detect nuclei (>30µm2 with contrast of over 0.10). Cell counts 

performed by Columbus software counting nuclei. TOTO3 imaged using far-red 

illumination. Mitochondria detected using Alexa Fluor 488. 

 

2.8. siRNA knockdown 

siRNA SMARTpools obtained from Dharmacon specific to JUN (c-JUN) (M-

003268-03-0005), JUNB (M-003269-01-00), JUND (M-003900-05-0005), FOS (c-

FOS) (M-003265-01-0005), FOSB (M-010086-03-0005), FOSL1 (FRA-2) (M-004341-

04-0005), FOSL2 (FRA-2) (M-004110-00-0005) and PARK2 (PARKIN) (M-003603-00-

0005). siRNA specific to non-targeting 1 (NT1) and polo-like kinase 1 (PLK1) were 

used as negative and positive transfection controls, respectively. A BLAST search was 

performed (http://blast.ncbi.nlm.nih.gov/Blast.cgi) for individual siRNAs in 

SMARTpools to predict for off-target effects. Final siRNA concentration was 50nM and 

carried out in duplicate. RNAiMAX transfection reagent mix was made up in Opti-MEM 

serum free medium according to manufacturer’s instructions. Cells were seeded at 

4,000 cells/well using a Fluid-X Xrd-384 dispenser and incubated for 48 hours with 

siRNA at 37C in 96 well plates. 
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2.9.  RNA extraction and RT-qPCR 

RNA isolation was performed by according to the TRIzol® manufacturers’ 

protocol (Life Technologies), with 1µl of RNase-free glycogen per sample prior to 

isopropanol and TURBO DNase kit (Ambion, UK) according to the manufacturers’ 

protocol. To quantify RNA, a NanoDrop® ND-1000 Spectrophotometer (Thermo 

Scientific, Loughborough, UK) was used. A 500ng dilution of RNA was made up in 5µl 

of RNase-free water, then heated to 65°C for 5 minutes after addition of 1µl random 

hexamers, 1µl dNTP mix (10mM dA, dC, dG and dT) and 7µl RNase-free water. After 

2 minutes on ice, samples were centrifuged then 4µl of 5X 1st strand buffer, 1µl 0.1M 

DTT and 1µl of SuperScript III reverse transcriptase (200U/µl) were added and 

incubated for 5 minutes. Samples were heated to 50°C for 50 minutes, followed by 

70°C for 15 minutes before cooling on ice. 

 

Reactions were run in duplicate in a MicroAmp® Optical 96-well Reaction Plate 

(Applied Biosystems, Warrington, UK) with a 20µl final volume in each well (1µl of 20X 

Taqman® Gene Expression Assay, 10µl of 2X Taqman® Gene Expression Master 

Mix, 7µl of RNase-free water and 2µl of 1:10 diluted cDNA) using the Taqman 

recommended qPCR cycle (50°C 2 minutes, 95°C 10 minutes, then; 95°C 15 seconds 

and annealing/extension at 60°C for 1 minute for 40 cycles) on the ABI 7500 Real Time 

PCR System (Applied Biosystems) using 7500 SDS software. Primer efficiencies were 

assessed. To calculate the relative expression level of a gene of interest (GOI) the 

Ct method (39) was used for primer/probe efficiencies of 100% (-/+10%). To 

calculate relative expression using primers of <90% efficiency, the standard curve 

method was employed (40) then incorporated as part of the Livak method. 

 

2.10.  Statistical Analysis 

Independent biological repeats, denoted by ‘n’ values, refer to complete 

independent repeats of experiments. Error bars represent standard error of the mean 

(SEM) or standard deviation (SD) for mean values replicates. Statistical analysis was 

performed using Prism GraphPad 6 software. Appropriate tests were performed for 

individual experiments with post-hoc analysis if required. 
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3. Results 

 

3.1. Parkin overexpression sensitises cells to mitochondrial uncoupling. 

SH-SY5Y cells were used as a neuronal-like model to study the AP-1 response 

to mitochondrial stress, using CCCP to induce mitochondrial uncoupling and 

PINK1/Parkin-mediated mitophagy (26-29). Overexpression of Parkin was maintained 

post-differentiation with RA/BDNF (Fig 1A). Several differentiation protocols were 

assessed with RA/BDNF inducing the greatest neurite outgrowth (S1 Fig), a 

characteristic of SNpc dopaminergic neurons (41, 42), so this was chosen for further 

study. In undifferentiated cells, Parkin overexpression did not alter rate of proliferation 

(S1 Fig), but did sensitise cells towards differentiation (Fig 1B). 

 

Parkin is generally considered cytoprotective. However, we previously 

demonstrated that accelerating mitophagy through Parkin overexpression reduced cell 

viability upon mitochondrial uncoupling in HEK293 cells (38). To investigate the effect 

of Parkin overexpression in the SH-SY5Y stress response, undifferentiated WT and 

Parkin overexpressing SH-SY5Y cells were treated with CCCP, H2O2 (cellular 

oxidative stress), rotenone (complex I inhibitor) or epoxomicin (proteasomal inhibition) 

for 24 hours and surviving cells counted. Parkin specifically sensitised cells to 

mitochondrial uncoupling, but not other forms of stress (Fig 1C). 

 

CellROX® Green Reagent was used to determine ROS levels over a 24 hour 

period post-CCCP treatment. Treatment of cells with 5ȝM CCCP induced oxidative 

stress, with ROS levels peaking at around 2 hours and resolving back to basal levels 

by 24 hours (Fig 1D). This was cytotoxic but did not result in the death of the entire cell 

population after 24h (Fig 1C), thus was chosen for further study. 

 

3.2. c-Jun can act anti- or pro-apoptotically, depending on the 

mitochondrial stress level. 
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The Nrf2-mediated antioxidant response is epigenetically repressed in some 

neurons (43). AP-1-mediation of stress responses may therefore play a more pivotal 

role in neurons than in other cell types. AP-1 proteins in undifferentiated and 

differentiated SH-SY5Y cells were observed by immunofluorescence (S2 and S3 Figs). 

To investigate a functional role for AP-1 transcription factors in the mitochondrial stress 

response, a targeted siRNA screen was carried out. Individual JUN and FOS family 

genes, along with PARKIN, were knocked down prior to 24 hour CCCP treatment, then 

cells fixed, stained for DAPI and counted (Figure 1E). NT-1, a scrambled siRNA 

control, was used as a siRNA control for comparison. PLK1 knockdown, a positive 

control for transfection efficacy, resulted in significant cell death. Interestingly, PARKIN 

knockdown did not significantly reduce cell survival after uncoupling compared to 

control. c-FOS siRNA led to significant death in control cells, accounting for lower cell 

numbers in the CCCP-treated group. 

 

c-Jun is generally considered to be pro-apoptotic under stress conditions in 

neurons (1, 7, 44-46). In contrast, c-JUN knockdown caused an increase in CCCP-

induced cell death (Figs 1F and G). However, c-JUN knockdown prior to 30M CCCP 

conversely reduced cell death (Fig 1H), suggesting a dual role for c-Jun in this context.  

In cells overexpressing Parkin, knockdown of c-JUN did not alter cell survival (Fig 1I). 

 

To further characterise the c-Jun response, western blotting was carried out 

over a time course. During the first 6 hours in undifferentiated WT cells, no significant 

change in total c-Jun levels was observed (Fig 2A), but S63 phosphorylated c-Jun 

became significantly elevated (Fig 2B), the latter even more so in differentiated cells. 

Parkin overexpression appears to perturb the decline observed in WT cells after their 

initial increase. Differentiation resulted in an exaggerated c-Jun response, consistent 

with the hypothesis that it may be more functionally important in neuronal cells. S63 

phosphorylated c-Jun/c-Jun ratios also differed between cell lines (Fig 2C).  

 

Over a longer period of uncoupling c-Jun levels were elevated (Fig 3A). Due to 

the sensitivity of differentiated cells to CCCP, it was only possible to examine this up 

to 12 hours post-uncoupling. Phosphorylation of c-Jun was distinct in each of 3 cell 
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lines assessed (Fig 3B), as were the phosphorylated c-Jun/c-Jun ratios (Fig 3C). 

Parkin overexpression again prevented the decline observed in WT cells after their 

initial increase Doublets of phosphorylated c-Jun were observed at 2 and 12 hours 

post-CCCP in differentiated cells, suggesting additional residues were 

phosphorylated. We also observed modulation of other AP-1 proteins (S4 – S6 Figs).  

 

To monitor changes at transcriptional level, qPCR analysis was employed to 

assess relative changes in mRNA levels of AP-1 genes. Expression of all 3 JUN genes 

underwent modulation in response to mitochondrial uncoupling (Figs 3D & S7). c-JUN 

expression was regulated in a biphasic manner, with the initial increase in expression 

detected at 1 hour post-CCCP followed by a drop in mRNA levels between 2 and 6 

hours, which was then proceeded by a progressive increase. Changes in PARKIN 

expression showed that the mitophagic response was regulated at the transcriptional 

level (Fig 3E). To assess the potential c-Jun-mediated apoptotic response relative 

mRNA levels of BIM were assessed, as BIM upregulation in response to oxidative 

stress in neurons by JNK/c-Jun (47) is critical for neuronal apoptosis (48). 

Mitochondrial uncoupling led to a rapid increase in BIM expression (Fig 3F), which 

remained elevated throughout. These data suggested a role for c-Jun in the neuronal 

response to mitochondrial stress and so we aimed to investigate this further. 

 

3.3. The c-Jun response is differentially regulated by JNK and ERK 

AP-1 transcription factors undergo substantial regulation via MAPK-mediated 

phosphorylation (11), with JNK considered the primary c-Jun regulator (49) We 

therefore investigated the MAPK-dependent modulation of c-Jun by treating cells with 

SP600125, a JNK inhibitor, or FR180204, an ERK inhibitor, prior to mitochondrial 

uncoupling. It has been recently shown in SH-SY5Y cells that uncoupling and 

mitochondrial ATP output is relative to CCCP concentration (50). We therefore decided 

to investigate how this would affect MAPK regulation of c-Jun.  

 

Under lower mitochondrial uncoupling (5M CCCP), JNK and ERK both acted 

to regulate overall c-Jun levels (Fig 4A). Although JNK inhibition prevented 

phosphorylation of c-Jun S63, ERK inhibition resulted in greater phosphorylation (Fig 
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4B), suggesting ERK repressed JNK-mediated phosphorylation of c-Jun. Under higher 

levels of uncoupling (30M CCCP), the increase in c-Jun levels was regulated by ERK 

and supressed by JNK (Fig 4C). The transient boost in c-Jun S63 phosphorylation 2 

hours after uncoupling was also mediated by ERK, which again may be antagonised 

by JNK (Fig 4D). JNK and ERK are therefore likely to both be important under these 

conditions. 

 

3.4. JNK regulates cell death under high levels of mitochondrial stress in 

differentiated SH-SY5Y cells.  

MAPK inhibition was then examined in differentiated SH-SY5Y cells. JNK 

inhibition did not have a significant effect on cell death induced by lower uncoupling 

conditions, but did have a significant effect under higher levels of uncoupling (Figs 5A 

and 5B), increasing survival by around 6-fold. The lower concentration of JNK inhibitor 

failed to increase cell survival, as did ERK inhibition. This is consistent with a model in 

which JNK-regulated apoptosis is only initiated once a critical threshold of 

mitochondrial damage is passed. Undifferentiated Parkin overexpressing cells were 

significantly more sensitive to CCCP than WT cells (Fig 1C). This also appeared to be 

the case in differentiated cells, even with JNK inhibition (Fig 5C). 

 

Complete Parkin-dependent mitophagy requires ubiquitin-proteasome system 

(UPS) activity, with proteasomal inhibition blocking Parkin activity (38, 51). Autophagic 

inhibition alone does not perturb UPS-dependent degradation of outer membrane 

mitochondrial proteins (52). To investigate if proteasomal dysfunction exacerbated cell 

death in response to mitochondrial stress and whether this was regulated by MAPK 

signalling, proteasomal inhibition was induced using epoxomicin. This induced cell 

death in differentiated WT and Parkin SH-SY5Y cells, which was not rescued by MAPK 

inhibition (Figs 5D and 5E). However, JNK inhibition did rescue UPS-deficient cells 

also undergoing mitochondrial uncoupling.  

 

Data from non-neuronal models has demonstrated that mitochondria undergo 

perinuclear clustering early in mitophagy (28, 53-55). However, in neurons most 

mitochondria reside within axons and may not undergo somal degradation, with axonal 
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lysosomes and autophagosomes observed (56-58). Inducing damage in axonal 

mitochondria leads to rapid local recruitment of Parkin and other mitophagic machinery 

and localised clustering within autophagosomes (59).  

 

We asked whether the inhibition of specific pathways impacted on 

mitochondrial clustering upon uncoupling. Differentiated WT SH-SY5Y cells underwent 

uncoupling following MAPK/proteasomal inhibition and mitochondrial clustering was 

analysed 3 hours after CCCP treatment (Figs 5F, 5G and S8) with TOTO-3 staining 

labelling the cytoplasm for high-throughput image analysis (60). Uncoupling induced a 

significant increase in the number of mitochondrial clusters (Fig 5G). UPS inhibition 

reduced mitochondrial clusters post-uncoupling. JNK inhibition reduced mitochondrial 

clustering in UPS-deficient cells only at the highest level of uncoupling, suggesting that 

this pathway may only be activated in response to higher levels of mitochondrial 

damage. Although proteasomal inhibition antagonised mitochondrial clustering, no 

significant effect was found from the inhibition of either JNK or ERK alone. Thus, MAPK 

activity does not appear to regulate mitochondrial clustering. 

 

3.5. c-Jun activity under mitochondrial stress may be regulated by Parkin-

mediated mitophagy to form a regulatory feedback loop 

Parkin overexpressing cells showed a greater increase in c-Jun protein levels 

24 hours after mitochondrial uncoupling than WT cells (Fig 3A). c-Jun has previously 

been shown to repress PARKIN expression (7). We therefore investigated the link 

between c-Jun and Parkin-dependent mitophagy. As UPS activation is critical for 

mitophagy, we tested the effect that proteasomal inhibition had on the c-Jun response 

to mitochondrial uncoupling. c-Jun protein levels in UPS-deficient cells (Fig 6A) did not 

show the marginal reduction observed in the normal CCCP response (Fig 2A). 

Proteasomal inhibition in the absence of uncoupling did not significantly alter c-Jun 

protein levels (Fig 6B), thus control levels (-/+ epoxomicin) were a comparable basal 

point. Over a longer period of uncoupling, c-Jun levels became increasingly elevated 

in UPS-deficient cells (Fig 6C).  
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To investigate whether a specific functional link between c-Jun and Parkin 

existed, we used previously characterised HEK293 cell lines that inducibly over-

express different Parkin mutants (38). Some of these lines expressed non-functional 

PD-associated PARKIN mutations (T240R, R275Y, R42C) or reduced E3 ligase 

mutants (R42P), allowing us to assess whether modulation of c-Jun levels was 

dependent on Parkin E3 ligase activity. Compared to untransfected cells, the induction 

of WT Parkin expression and subsequent mitochondrial uncoupling resulted in a 

significant increase in c-Jun protein levels (Figs 6D and 6E). Cells expressing R42P 

Parkin, a functional mutant demonstrating reduced mitophagic activity (53, 61-63) 

exhibited a similar c-Jun induction profile to cells expressing WT Parkin. Expressing 

mutant forms of Parkin generally resulted in a down regulation of the c-Jun response 

to mitochondrial uncoupling. Strikingly, inducing the expression of the T240R mutant 

construct increased the c-Jun response to CCCP-induced stress. Notably, although 

the R275Y, R42C and T240R mutants are all E3 ligase-deficient, only the latter 

induced an elevation in c-Jun levels relative to WT Parkin upon uncoupling. 

 

4. Discussion 

We aimed to investigate how neuronal decisions to initiate either adaptive or 

apoptotic responses are made in response to mitochondrial stress. In particular, how 

mitophagic and signalling pathways interlinked to regulate different arms of the stress 

response. The SH-SY5Y neuron-like cell line was used to demonstrate the 

involvement of the JNK/c-Jun pathway in dictating response to mitochondrial 

dysfunction in a neuronal context. CCCP uncoupled mitochondria and induced 

oxidative stress and has been shown to induce apoptosis in SH-SY5Y cells at a wide 

range of concentrations (64-66). Utilising both undifferentiated and differentiated cells 

allowed the identification and functional analysis of MAPK and AP-1 pathways in this 

response. It also highlighted differences between these cell models, illustrating the 

importance of choosing an appropriate experimental system in such work. 

Furthermore, our results, along with previously published works, would suggest that 

MAPK inhibition may not be an effective therapeutic strategy in vivo due to it leading 

to the downregulation protective pathways, as well as the intended apoptotic 

pathways. 
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4.1. The role of c-Jun is dictated by the level of stress 

While many AP-1 transcription factors underwent modulation upon 

mitochondrial coupling, siRNA knockdowns suggested c-Jun can act in an anti- or pro-

apoptotic manner and that this was dependent on the level of mitochondrial damage. 

This c-Jun response was differentially regulated by JNK and ERK and this regulation 

was, again, dependent on the level of stress. Parkin overexpression or differentiation 

towards a more neuronal-like phenotype induced significant alterations in the early c-

Jun response to mitochondrial uncoupling. Differentiation resulted in an exaggerated 

c-Jun response, suggesting it may be more critical in neuronal cells.   

 

Several studies have implicated c-Jun as a pro-apoptotic factor in neuronal and 

non-neuronal cells undergoing different forms of stress (44-46, 67-69). Initially our 

results suggested that c-Jun was anti-apoptotic upon mitochondrial uncoupling. 

Further investigation revealed that under higher levels of mitochondrial dysfunction, c-

Jun promoted apoptosis. MAPK/c-Jun activity has recently been shown to regulate 

both cell death and survival under different levels of PD-associated stress (9). These 

data suggest biphasic modulation of c-JUN expression may allow c-Jun signalling to 

underpin responses to both lower and higher levels of mitochondrial stress and 

mediate an apoptotic or cytoprotective response, as appropriate. The level of stress 

would dictate how c-Jun protein levels and activity were altered. Dysregulation of this 

biphasic reaction at normally non-cytotoxic levels of mitochondrial damage (e.g. due 

to UPS dysfunction) could lower the threshold of stress at which c-Jun promotes 

neuronal apoptosis. 

 

4.2. MAPKs play a critical role in the regulation of c-Jun and the cell death 

response 

Our data revealed both JNK and ERK can regulate c-Jun protein levels and 

phosphorylation in response to differing levels of mitochondrial stress. It is likely that 

overall regulation reflects crosstalk between MAPK pathways (16), allowing alternative 

c-Jun activities to be dictated. Here, JNK-dependent cell death was not initiated by 

proteasomal dysfunction, but if mitochondrial depolarisation occurred in parallel with 

UPS-deficiency, the JNK pathway became dominant in inducing cell death. The idea 
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of inhibiting MAPKs such as JNK or ERK has been extensively explored in PD models, 

however, these data would suggest that inhibition upstream of transcription factors 

such as c-Jun will in fact lead to the inhibition of numerous other pathways, some of 

which will not be driving PD pathology. 

 

JNK has been previously proposed as a therapeutic target in 

neurodegenerative studies as it is generally associated with neuronal death (49, 70). 

Despite JNK inhibition in animal and cell models yielding promising results, a trial in 

PD patients involving the kinase inhibitor CEP-1347 was not successful (12). As JNK 

signalling plays a role in synaptic plasticity (71) and neuronal development (43), as 

well as our data suggesting it plays a role in the initial adaptive response, inhibition of 

this whole class of kinases could perturb protective activities that are normally 

functional in PD neurons. Indeed, it is likely that these endogenous protective 

pathways are in fact slowing down the progression of neurodegeneration, and thus 

their perturbation may accelerate disease pathology. 

 

4.3. Parkin and MAPK/AP-1 signalling 

Parkin activity has been linked to JNK repression (4, 34, 72-74) and can act 

both pro- and anti-apoptotically, depending on the level of stress (65). Additionally, 

JNK stabilises PINK1 under stress (75). Parkin overexpression increases sensitivity to 

mitochondrial uncoupling in HEK293 cells (38) and SH-SY5Y cells. BIM, induced by c-

Jun to initiate neuronal apoptosis (45), may regulate crosstalk between autophagy and 

apoptosis (76, 77) by promoting Parkin recruitment to mitochondria normally perturbed 

by pro-survival Bcl-2 proteins (66). Indeed, BIM accumulates on the MOM under stress 

to initiate BAX-dependent cytochrome c release (78). Therefore, chronic activation of 

the JNK/c-Jun pathway may lead to increased BIM-mediated recruitment of Parkin to 

damaged mitochondria, promoting apoptosis once a threshold of damage is 

surpassed.  

 

Our data suggests Parkin mutations that perturb its mitochondrial translocation 

lead to exacerbation of c-Jun signaling upon uncoupling. This is summarised in Table 

1 (26, 27, 38, 53, 54, 61-63, 79-82). This perturbation may represent a potential 
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mechanism by which c-Jun-dependent neuronal apoptosis occurs in some PD 

neurons. As JNK translocation to damaged mitochondria (83) induces neuronal 

apoptosis (84, 85) and  amplifies mitochondrial ROS production (86), it may be critical 

step in setting the threshold at which irreversible mitochondrial damage has occurred. 

Parkin could therefore function to regulate mitochondrial JNK signaling to manage the 

threshold of tolerable damage. When damage levels saturate adaptive responses, 

excessive mitochondrial JNK would shift the equilibrium towards apoptosis. Therefore, 

specifically targeting the inhibition of mitochondrial JNK, instead of all cellular JNK, 

may represent a better therapeutic target in order to prevent any unwanted dampening 

of JNK-mediated cytoprotection. Indeed, this translocation may be isoform specific, or 

rely on distinct phosphorylation events, to potentially regulate apoptotic c-Jun 

signalling. ATF4 upregulates PARKIN expression (7, 8) and is a critical regulator of the 

mitochondrial stress response (87). As c-Jun represses ATF4-mediated PARKIN 

expression (7), regulatory feedback loops would be critical in determining the 

appropriate pathways to activate (Fig 7). Under excessive stress c-Jun would supress 

PARKIN, antagonising cytoprotective Parkin-mediated mitophagy to facilitate 

apoptosis of irreversibly damaged cells. The fact we only observed increased 

apoptosis in Parkin overexpressing cells treated with CCCP and not H2O2 or rotenone 

indicates that this apoptotic promotion by Parkin is not due to oxidative stress, agreeing 

with previous data (65). Therefore, cross-talk between JNK/c-Jun and Parkin pathways 

could be critical in determining when a switch between adaptive/apoptotic responses 

occurs. 

 

4.4. Conclusions 

Previous studies have shown Parkin to regulate MAPK signalling (4, 34). 

Conversely, PARKIN expression can be regulated by the JNK/c-Jun pathway (7). ERK 

has also been shown to localise to damaged mitochondria in order to coordinate 

mitophagy (17). Although our data further suggests a critical role for MAPK/AP-1 in 

regulating mitochondrial damage-induced cell death, it is clear from additional studies 

that these pathways also regulate protective stress responses. Therefore, simple 

kinase inhibition could in fact be detrimental in an in vivo setting whereby disease 

progression occurs over decades due to these protective pathways constantly 

activating homeostatic mechanisms.  
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Nigral dopaminergic neurons demonstrate characteristics such higher basal 

levels of oxidative stress and greater axonal mitochondrial density due to increased 

bioenergetic demands compared to other neurons (41). This combination of factors 

potentially explains their specific degeneration in PD (42). How neuronal fate decisions 

are made in relation to the type or level of stress remains relatively unexplored. 

Perturbation of adaptive responses (e.g. by PARKIN mutations or non-specific MAPK 

inhibition) would lower this damage threshold by which apoptosis is activated and in 

cells such as nigral dopaminergic neurons that are both susceptible to damage and 

non-renewable this could lead to neurodegeneration. 

 

Previous studies have found that AP-1 proteins FosB, FosB and JunD are 

involved in long-term neuronal stress adaptations (88-92). Here, we focus on early 

adaptive responses within a novel feedback loop whereby Parkin activity modulates 

the c-Jun levels in response to mitochondrial stress, potentially relying on the 

mitochondrial recruitment of Parkin. As ROS is critical in regulating neuronal function 

(43, 71), it is important that stress response feedback loops in neurons function 

correctly to properly differentiate between survivable and cytotoxic levels of stress. 

Future work will therefore be crucial to dissect different neuronal pathways and identify 

specific proteins or events, such as the mitochondrial localisation of specific JNK 

isoforms and their regulation of c-Jun, that are unique to the neurodegenerative 

apoptotic responses. 
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Parkin mutant 

WT R275Y T240R S131A Y143F R42P R42C R275W T415N C289G G430D C352G K161N K211N 

Region of mutation n/a RING1 RING1 
SH2-like 
domain 

SH2-like 
domain 

UBL 
domain 

UBL 
domain 

RING1 RING2 RING1 RING2 
IBR 

domain 

SH2-
like 

domain 

SH2-
like 

domain 

E3 ubiquitin ligase 
activity 

 غ غ غ غ ? غ غ ? ض ض ض غ غ ض

Mitophagy blocked 
by proteasomal 

inhibition 
 n/a n/a n/a n/a n/a n/a n/a n/a ض غ ض n/a n/a ض

Recruited to 
depolarised 

mitochondria 
 غ ض ض ض غ غ ض ض ض ض ض ض غ ? ض

Induces 
mitochondrial 

clustering 
 غ ض غ غ غ غ ض Delayed ض ض ض ض غ غ ض

Induces 
mitochondrial 
degradation 

 غ غ غ غ غ غ غ غ ض ض ض غ غ ض

Change in c-Jun 
levels 24h post-

CCCP (relative to 
WT) 

n/a Decrease Increase Decrease Decrease 
No 

change 
Decrease ? ? ? ? ? ? ? 

 

Table 1: Parkin mutations perturb mitophagy at different stages. Previous data 

demonstrates that dysfunction occurs at different stages of mitophagy depending on the Parkin 

mutant. To date, the steps at which this disruption occurs for each mutant shown here has not 

been fully elucidated. Our data suggests that Parkin translocation to mitochondria upon 

uncoupling may be critical in the regulation of c-Jun. Note: some studies demonstrate 

contradictory data and some boxes therefore contain both ticks and crosses. n/a = not 

available. ‘?’ represents unknown. 
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Figure 1: Parkin and c-Jun play a role in CCCP-induced apoptosis. SH-SY5Y cells in 

undifferentiated form or differentiated form (differentiated by 10ȝM retinoic acid (RA) for 3 days 

(10% serum) followed by 50ng/ml BDNF (no serum) for 3 days). (A) Western blot analysis 

revealed Parkin overexpression was maintained post-differentiation. (B) Parkin overexpression 

resulted in greater sensitivity to RA/BDNF differentiation. DAPI counts were performed using 

an Operetta system (n = 3) and analysed using an unpaired two-tailed t-test (****p < 0.001). (C) 

Parkin overexpression rendered undifferentiated cells more sensitive to mitochondrial 

uncoupling. Cells plated at 4,000 cells/well for 24 hours were then exposed to 5ȝM CCCP, 

50ȝM H2O2, 0.1ȝM rotenone or 100nM epoxomicin over a 24-hour period, then fixed and 

stained with DAPI and counts performed on an Operetta system (n = 4). Statistical significance 

was ascertained using a 2way ANOVA (Bonferroni’s) (*p<0.05, **p<0.01). (D) Treatment of SH-

SY5Y cells with 5ȝM CCCP induced oxidative stress. Cells were stained with the mitochondrial 
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marker MTCO2 (red), CellROX® (green) and DAPI (blue). CellROX® Green staining showed 

(E) Knockdown by siRNA SMARTpools was performed 48 hours prior to CCCP challenge and 

cell counts (relative to DMSO-treated NT-1 knockdown cells) performed on an Operetta 

imaging system using DAPI-stained nuclei (n = 3). A siRNA screen of the AP-1 proteins and 

Parkin, using NT1 (non-targeting 1) and PLK1 (polo-like kinases) as negative and transfection 

controls respectively, showed c-Jun may play a role in the cell death response to mitochondrial 

uncoupling. (F) Knockdown of c-Jun was confirmed by western blot. Cell death for knockdowns 

was quantified using the Operetta system. (G) siRNA knockdown of c-Jun resulted in increased 

death induced by 5ȝM CCCP. (H) Under 30ȝM CCCP conditions, knockdown of c-Jun reduced 

cell death. (I) No significant alteration to the level of cell death was observed after c-Jun was 

knocked down prior to uncoupling in Parkin overexpressing cells. Statistical significance was 

assessed using an unpaired 2-tailed t-test (*p<0.05). Error bars represent SEM. 
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Figure 2: c-Jun is rapidly modulated in response to mitochondrial uncoupling. Western 

blot analysis was carried out on protein extracts obtained at specific time points after the 

treatment of undifferentiated/differentiated WT or undifferentiated Parkin overexpressing SH-

SY5Y cells with 5M CCCP over a 6 hour period. Where required, cells were differentiated in 

10ȝM RA for 3 days (10% serum) followed by 50ng/ml BDNF (no serum) for 3 days prior to 

treatment with CCCP. Densitometry was calculated relative to the loading control (n = 3). (A) 

Statistically significant changes in c-Jun protein levels were observed in Parkin and 

differentiated SH-SY5Y lines. (B) Phosphorylated (S63) c-Jun levels show significant elevation 

after uncoupling. (C) Average values for total c-Jun and phosphorylated (S63) c-Jun levels were 

used to calculate the phospho/total c-Jun ratio over the first 6 hours of uncoupling. Statistical 

significance was determined using a 2way ANOVA (Dunnett’s) (*p<0.05, **p<0.01, ***p<0.005). 

Quantified levels were compared to levels at time point 0.  Error bars represent SEM.  
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Figure 3: The c-Jun response to mitochondrial uncoupling is variably modulated over 

the 24 hour period of stress. Western blot analysis was carried out on protein extracts 

obtained at specific time points after the treatment of undifferentiated/differentiated WT or 

undifferentiated Parkin overexpressing SH-SY5Y cells with 5M CCCP over a 24 hour period 

(n = 3). Where required, cells were differentiated in 10ȝM RA for 3 days (10% serum) followed 

by 50ng/ml BDNF (no serum) for 3 days prior to treatment with CCCP. Differentiated cells were 

highly sensitive to CCCP challenge and a sufficient quantity of extract was only obtained up to 

the 12 hour time point. Densitometry was calculated relative to the loading control. (A) 

Significant increases in c-Jun levels were observed in all 3 cell lines undergoing uncoupling. 

(B) Phosphorylated (S63) c-Jun levels showed more significant elevation in differentiated cells.. 

(C) Average values for total c-Jun and phosphorylated (S63) c-Jun levels were used to calculate 

the phospho/total c-Jun ratio over 24 hours of uncoupling. (D-E) cDNA obtained from RNA 

extracts over the 24h after 5M CCCP challenge in undifferentiated WT SH-SY5Y cells was 

analysed for relative expression of the individual AP-1 genes by qPCR. Expression levels are 

relative to the 0h time point. (D) c-JUN expression was regulated in a biphasic manner upon 
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uncoupling. (E) PARKIN expression was upregulated in response to mitochondrial uncoupling. 

(F) BIM expression was upregulated within 1h of uncoupling, before dropping. qPCR Graphs 

show 2 independent biological repeats (1st – blue, 2nd – orange) with errors bars representing 

variation between technical replicates within a single experiment. Statistical significance was 

determined using a 2way ANOVA (Dunnett’s) (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001). 

Quantified levels were compared to levels at time point 0.  Error bars represent SEM (westerns) 

or SD (qPCR). 
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Figure 4: JNK and ERK modulate c-Jun levels in response to different levels of 

mitochondrial stress. Western blot analysis was carried out on extracts obtained at different 

time points from undifferentiated WT SH-SY5Y cells that were treated with 10ȝM SP600125 or 

1ȝM FR180204 2h prior to challenge with CCCP. (A) Inhibition of both JNK and ERK 

suppressed the increase in c-Jun levels seen in response to 5ȝM CCCP. (B) Following 

challenge with 5ȝM CCCP, JNK inihibition decreased c-Jun S63 phosphorylation, whereas 

ERK inhibition increased it. (C) In response to 30ȝM CCCP, ERK-induced c-Jun upregulation 

was perturbed by JNK activity. (D) ERK activity regulated transient c-Jun S63 phosphorylation 

in response to higher levels of uncoupling, while JNK contributed to the regulation of this 

phosphorylation (n = 2). Statistical significance was determined using a 2-way ANOVA 

(Tukey’s) relative to the inhibitor vehicle control (DMSO) at each time point (*p<0.05, **p<0.01, 

***p<0.005, ****p<0.001). Error bars represent SEM. 
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Figure 5: JNK promotes apoptosis in differentiated WT SH-SY5Y cells in response to 

high levels of mitochondrial stress. Cells were differentiated in 10ȝM RA for 3 days (10% 

serum) followed by 50ng/ml BDNF (no serum) for 3 days in 96-well Operetta plates, then treated 

with SP600125 (JNK inhibitor), FR180204 (ERK inhibitor) and/or 100nM epoxomicin 

(proteasomal inhibitor) prior to CCCP exposure. Images were captured using an Operetta 

imaging system and analysed using Columbus software. Nuclei stained with DAPI (blue) and 

cytoplasm with TOTO-3 (cytoplasm). (A) Examples of images captured on the Operetta at 20X 

magnification. (B) A significant rescue in cell numbers by JNK inhibition was only seen in 

cultures challenged with high levels of CCCP (n = 4). (C) MAPK inhibition in differentiated 

Parkin overexpressing SH-SY5Y cells (n = 4). (D & E) JNK-mediated apoptosis did not occur 

in differentiated WT cells undergoing proteasomal inhibition, but was initiated upon the addition 

of mitochondrial uncoupling (n = 4). (F & G) Columbus software was used to analyse images 

captured using the Operetta. Mitochondrial clusters on the FITC channel (green) within the 

cytoplasm (TOTO3 – red) were labelled and counted relative to nuclei on the DAPI channel. 

Mitochondrial clustering 3h post-CCCP challenge in differentiated WT SH-SY5Y cells was 
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perturbed by proteasomal inhibition but not MAPK inhibition (n = 3).  Statistical significance was 

determined using a 2-way ANOVA (Tukey’s) (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001). 

Comparisons were made between inhibitor-treatment and inhibitor vehicle control of the same 

CCCP concentration, unless otherwise indicated by horizontal bars. Error bars represent SEM. 
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Figure 6: Parkin and c-Jun activity may be functionally linked. (A) Undifferentiated WT SH-

SY5Y cells were treated with 100nM epoxomicin 1h prior to challenge with 5ȝM CCCP for up 

to 6h. Extracts were obtained at required time points for analysis by western blotting and c-Jun 

levels were calculated relative to -actin. (n = 3). (B) Densitometric analysis of western blots 

showed c-Jun levels relative to -actin were comparable with and without 1 hour 100nM 

epoxomicin treatment in the absence of CCCP (n = 3). (C) Over a 24h period of uncoupling 

following proteasomal inhibition, a massive increase in c-Jun levels was observed from 6h 

onwards compared to cells undergoing uncoupling without epoxomicin treatment (n = 3). (D) In 

a HEK293 model, expression of different Parkin constructs was induced by tetracycline for 24h. 

Cells were then treated with 5M CCCP for 24h and protein extracts used to measure c-Jun 

levels by western blotting. Representative western blots for each Parkin mutant are shown. (F) 

Quantitative densitometric analysis of these blots was performed (n = 3). c-Jun levels were 

compared to those in cells not treated with CCCP or tetracycline for each Parkin construct 

unless otherwise shown. T240R appears to exacerbate the c-Jun response. Statistical 

significance was ascertained by 2-way ANOVA (Bonferonni’s) (*p<0.05, **p<0.01, ***p<0.005, 

****p<0.001). Error bars represent SEM. 
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Figure 7: Potential regulatory pathways in the neuronal response to mitochondrial 

damage in PD. (A) Increased ROS production occurs in damaged mitochondria. Acute bursts 

of mitochondrial ROS initiate redox-sensitive signalling as part of normal neuronal function, with 

Parkin suppressing mitochondrial MAPK activity. Under these physiological conditions where, 

unlike models using uncouplers to induce mitochondrial damage in order to exaggerate in vivo 

situations, Parkin is cytoprotective. (B) High levels of stress activates MAPK signalling, RO 

accumulation and Parkin-dependent degradation of MCL-1. This leads to JNK/c-Jun pathways 

inducing the expression of pro-apoptotic genes such as BIM. Models using Parkin 

overexpression models will, however, lower the threshold at which Parkin promotes apoptosis 

under uncoupling conditions. (C) Some Parkin mutations antagonise its stress-induced 

mitochondrial translocation and resulting suppression of MAPK signalling. Mitochondrial ROS 

production increased by mitochondrial JNK activity promotes neuronal death pathways, which 

may be exacerbated by the failure of mutant Parkin to initiate mitophagy. 
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