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A B S T R A C T

Cells in the peripheral retina tend to have higher contrast sensitivity and respond at higher flicker frequencies
than those closer to the fovea. Although this predicts increased behavioural temporal contrast sensitivity in the
peripheral visual field, this effect is rarely observed in psychophysical experiments. It is unknown how temporal
contrast sensitivity is represented across eccentricity within cortical visual field maps and whether such sensi-
tivities reflect the response properties of retinal cells or psychophysical sensitivities. Here, we used functional
magnetic resonance imaging (fMRI) to measure contrast sensitivity profiles at four temporal frequencies in five
retinotopically-defined visual areas. We also measured population receptive field (pRF) parameters (polar angle,
eccentricity, and size) in the same areas. Overall contrast sensitivity, independent of pRF parameters, peaked at
10 Hz in all visual areas. In V1, V2, V3, and V3a, peripherally-tuned voxels had higher contrast sensitivity at a
high temporal frequency (20 Hz), while hV4 more closely reflected behavioural sensitivity profiles. We conclude
that our data reflect a cortical representation of the increased peripheral temporal contrast sensitivity that is
already present in the retina and that this bias must be compensated later in the cortical visual pathway.
1. Introduction

There is a mismatch between electrophysiological retinal measure-
ments and psychophysical measurements of temporal contrast sensitivity
across the visual field. Eccentricity-dependent differences in retinal
temporal sensitivity originate in the cone photoreceptors – peripheral
cones respond faster and are more sensitive to flicker when compared to
those in the fovea (Sinha et al., 2017). These signals are filtered through
the retinal ganglion cells (RGCs), where there is an increase in the pro-
portion of parasol to midget RGCs with increasing retinal eccentricity
(Connolly and van Essen, 1984; Dacey, 1993, 1994; Dacey and Petersen,
1992; De Monasterio and Gouras, 1975). Temporal frequency sensitivity
is thought to be related to the relative activity of parasol to midget RGC
populations which form the magnocellular and parvocellular pathway,
respectively (Hammett et al., 2000; Harris, 1980). On average, RGCs in
the periphery have larger receptive fields and cells with such receptive
fields have increased contrast sensitivity (Dacey and Petersen, 1992;
Enroth-Cugell and Shapley, 1973). Overall then, the peripheral retina has
relatively more parasol cells, those cells integrate from larger portions of
the retina, and they are fed by cones with brisker response kinetics
(Dacey and Petersen, 1992; Enroth-Cugell and Shapley, 1973; Sinha
.M. Himmelberg).
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et al., 2017). From such physiological differences we might expect sub-
jects to be more sensitive to low contrast flickering stimuli in more pe-
ripheral regions of the visual field.

These predictions are not generally confirmed by psychophysical
measurements of temporal contrast sensitivity across space. Previous
research has found that psychophysical temporal contrast thresholds are
approximately independent of visual field eccentricity (Koenderink et al.,
1978; Virsu et al., 1982; Wright and Johnston, 1983). Although such
thresholds (which by definition, occur at relatively low contrast) are
independent of eccentricity, very low spatial frequencies might be an
exception: previous papers report an increase in critical flicker frequency
with increasing eccentricity (Hartmann et al., 1979; Rovamo and Rani-
nen, 1984). How these eccentricity-dependent sensitivities to temporal
contrast are represented in the visual cortex is currently unknown.

The early visual cortex is organised retinotopically; visual space is
mapped topographically, with foveal receptive fields mapped towards
the occipital pole and more peripheral receptive fields mapped in
increasingly anterior areas of the cortex (Engel et al., 1997). Perhaps
then, investigating sensitivity to temporal contrast across cortical space
can help to explain the discrepancy between measurements of retinal and
psychophysical temporal contrast sensitivity. Previous research has
eptember 2018

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:marc.himmelberg@york.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.09.049&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.09.049
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.09.049
https://doi.org/10.1016/j.neuroimage.2018.09.049


M.M. Himmelberg, A.R. Wade NeuroImage 184 (2019) 462–474
found centrally located sustained and peripherally located transient
temporal channels in primary visual cortex, and these channels are
thought to reflect responses from different classes of cells (Horiguchi
et al., 2009). One might ask whether the relative weighting of response
properties of peripheral retinal cells to temporal frequency and contrast is
maintained in V1 and other early visual areas. One might also ask at what
point in the cortical pathway is temporal contrast sensitivity filtered to
reflect psychophysical sensitivity across space, rather than retinal sensi-
tivity. One might expect such filtering to occur in higher-order visual
areas that are typically specialized for complex feature identification
computations, and are less reliant on temporal frequency and contrast
information.

How do measurements of cortical temporal contrast sensitivity differ
across visual space, and how do such cortical sensitivities relate to
behaviour? To answer this, we used fMRI to measure voxel contrast
response functions (CRFs) at a range of temporal frequencies and plotted
responses as a function of pRF eccentricity in different visual areas.
Additionally, we obtained psychophysical temporal contrast threshold
measurements in central and near-peripheral regions of visual space.
Previous research has found that the optimal contrast sensitivity of the
primate visual system is approximately 8 Hz, thus we predicted that we
would observe a similar peak contrast sensitivity, independent of ec-
centricity, in our psychophysical and fMRI data (Hawken et al., 1996;
Kastner et al., 2004; Singh et al., 2000; Venkataraman et al., 2017). Next,
due to retinal biases, we predicted that in early visual areas contrast
sensitivity would be greater at a high temporal frequency in pRFs rep-
resenting more peripheral locations of the visual field. Conversely, if
cortical sensitivities are to shift to be more reflective of behaviour at
some point in the visual cortex, it is predicted that such areas will show
no difference in temporal contrast sensitivity across pRF eccentricity.

2. Materials and methods

2.1. Participants

Nineteen participants (mean� SD age, 27.89� 5.72; 9 males) were
recruited from the University of York. All participants had normal or
corrected to normal vision. Each participant completed a 1-h psycho-
physics session and two 1-h fMRI sessions. In the first fMRI session, two
high-resolution structural scans and six pRF functional runs were ob-
tained. In the second fMRI session, 10 temporal contrast sensitivity (TCS)
functional runs were obtained. All participants provided informed con-
sent before participating in the study. Experiments were conducted in
accordance with the Declaration of Helsinki and the study was approved
by the ethics committees at the York NeuroImaging Centre and the
University of York Department of Psychology.

2.2. Behavioural psychophysics

2.2.1. Experimental design
To investigate psychophysical temporal contrast sensitivity, we

measured contrast detection thresholds for four temporal frequency
conditions (1, 5, 10, and 20Hz) at two eccentricities (2� and 10�). 75%
correct detection thresholds were obtained using a ‘2 Alternative Forced
Choice’ (2AFC) method using four randomly interleaved Bayesian
staircases in separate eccentricity blocks (Kontsevich and Tyler, 1999). A
single block of 200 trials (50 of each temporal frequency condition) was
presented at either 2� or 10� from central fixation on the temporal visual
field meridian. Participants were instructed to maintain fixation on a
central cross and to respond, via keyboard press, whether the stimulus
grating appeared on the left or right of fixation. Participants were
informed via a toned ‘beep’ if their response was correct or incorrect.
These responses were recorded using Psykinematix software (KyberVi-
sion, Montreal, Canada, psykinematix.com). After each response, a
separate toned ‘beep’ was presented in conjunction with the fixation
crossed briefly changing to ‘o’ then back to ‘x’ to signify the onset
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succeeding trial, which then began 500ms later. The first 10 trials were
practice and not included in the analysis. The temporal frequency of the
stimulus was randomized within each block. Participants completed each
eccentricity condition block four times and responses were fit with
Weibull functions of stimulus contrast. This resulted in four 75% contrast
detection thresholds for each temporal frequency and eccentricity com-
bination. For each condition, the average of these 4 thresholds was the
final threshold.

2.2.2. Stimuli
Psychophysical stimuli (see Fig. 1) were designed using Psykinematix

software and were presented on a NEC MultiSync 200 CRT monitor
running at 120 Hz. Gamma correction was performed using a ‘Spyder5-
Pro’ (Datacolor, NJ, USA) display calibrator. Stimuli were circularly
windowed sine wave gratings outlined with thin white circles to elimi-
nate spatial uncertainty (Pelli, 1985). Grating spatial frequency was set to
1 cycle per degree (cpd) and were presented for 500ms. At 2� eccen-
tricity, the grating had a 0.5� radius. Using M-scaling to account for
cortical magnification, at 10� eccentricity the stimulus had a 1.021�

radius (Rovamo and Virsu, 1979).

2.3. Functional neuroimaging

2.3.1. fMRI stimulus display
Stimuli were presented in the scanner using an PROpixx DLP LED

projector (VPixx Technologies Inc., Saint-Bruno-de-Montarvile, QC,
Canada) with a long throw lens that projected the image through the
waveguide behind the scanner bore and onto an acrylic screen. The
image presented had a resolution of 1920� 1080 and a refresh rate of
120Hz. Participants viewed this screen at a viewing distance of 57 cm
using a mirror within the scanner. Gamma correction was performed
using a customized MR-safe ‘Spyder4’ (Datacolor, NJ, USA) display
calibrator.

2.3.2. fMRI data acquisition
Scans were completed on a GE Healthcare 3 T Sigma HDx Excite

scanner (GE Healthcare, Milwaukee, WI). Structural scans were obtained
using an 8-channel head coil (MRI Devices Corporation, Waukesha, WI)
to minimize magnetic field inhomogeneity. Functional scans were ob-
tained with a 16-channel posterior head coil (Nova Medical, Wilmington,
MA) to increase signal-to-noise in the occipital lobe.

2.3.3. Pre-processing of structural and functional scans
Two high-resolution, T1-weighted full-brain anatomical structural

scans were acquired for each participant (TR, 7.8ms; TE, 3.0ms; TI,
450ms; voxel size, 1.3� 1.3� 1mm3; flip angle, 20�; matrix size,
176� 256 x 257). To improve grey-white matter contrast, the two T1
scans were aligned and then averaged together using FSL tool FLIRT
(Jenkinson et al., 2012). This averaged T1 was automatically segmented
using a combination of FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)
and FSL, and manual corrections were made to the segmentation using
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) (Teo et al.,
1997). At the beginning of each functional session, one 16-channel coil
T1-weighted structural scan with the same spatial prescription as the
functional scans was acquired to aid in the alignment of functional data
to the T1-weighted anatomical structural scan.

Functional data were pre-processed and analysed using MATLAB
2016a (Mathworks, MA) and VISTA software (https://vistalab.stanford.
edu/software/) (Vista Lab, Stanford University). Between and within
scans motion correction was performed to compensate for any motion
artefacts that occurred during the scan session. Any scans with >3mm
movement were removed from the analysis. This resulted in the removal
of one pRF run for two participants and one temporal contrast sensitivity
scan for three participants. Functional runs were averaged across all
scans. Next, we usedmrVista tool rxAlign to co-register the 16-chanel coil
T1-weighted structural scan to the 8-channel coil T1-weighted full-brain

http://psykinematix.com
http://surfer.nmr.mgh.harvard.edu/
http://www.itksnap.org/pmwiki/pmwiki.php
https://vistalab.stanford.edu/software/
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Fig. 1. 2AFC stimulus at two eccentricity conditions. In A) a flickering stimulus grating appears in the right circle at 2� eccentricity, while in B) the flickering stimulus
grating appears in the right circle at 10� eccentricity. Participants must select which circle the grating appears in.
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anatomical scan. First, we applied a manual alignment by using landmark
points to bring the two volumes into approximate register. Next, we used
a robust EM-based registration algorithm as described by Nestares and
Heeger (2000) to fine tune the alignment. The final alignment was
checked by eye to ensure that the automatic registration procedure
optimised the fit. This alignment was used as a reference to align our
functional data to our full-brain anatomical scan. These functional data
were then interpolated to the anatomical segmentation.

2.3.4. Population receptive field mapping scans
pRF scan sessions consisted of six 6.5-min pRF stimulus presentation

runs collected using a standard EPI sequence (TR, 3000ms; TE, 30ms;
voxel size, 2� 2� 2.5mm3, flip angle 20�; matrix size, 96� 96 x 39).
Here, a drifting pRF bar stimulus was used to obtain retinotopic maps and
estimates of pRF parameters (Dumoulin andWandell, 2008). A single bar
(width 0.5�) was swept in one of eight directions within a circular
aperture (10� radius) with each sweep lasting 48 s. Using the conversion
of visual angle to retinal eccentricity, 10� radius corresponds to mapping
2.83mm radius retinal space (Drasdo and Fowler, 1974). To stimulate a
broad population of neurons, the pRF carrier consisted of pink noise at
5% contrast, where the noise pattern changed at 2 Hz (see Fig. 2). A 12 s
(4 TR) dummy run was included at the beginning of each functional run
to allow for the scanner magnetization to reach a steady state. To
maintain fixation throughout the scan, participants completed an atten-
tional task where they responded, via button press, when the orientation
of the fixation cross changed. This task was set up so that on average,
every 2 s there was a 30% chance of a change in the orientation of the
Fig. 2. Example of the stimulus used to obtain pRF parameter estimates. The
carrier is filled with pink noise that updates at 2 Hz as it drifts across the screen
in 8 directions within a circular aperture with a 10� radius.
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fixation cross.
Using mrVista, pRF positions (i.e. eccentricity and polar angle pa-

rameters) and sizes were estimated for each voxel using the standard pRF
model (Dumoulin and Wandell, 2008). In Fig. 3 we present exemplar
eccentricity, polar angle, and pRF size maps from one participant.
Following the nomenclature of Wandell et al. (2007) we delineated five
bilateral regions of interest (ROIs); V1, V2, V3, V3a, and hV4, by hand on
cortical flat maps based on polar angle reversals for each participant (see
Fig. 3B).
2.4. Temporal contrast sensitivity (TCS) functional scans

2.4.1. Stimulus
To investigate voxel temporal contrast sensitivity, we presented

participants with a vertically oriented contrast reversing sine grating
within a circular aperture (10� radius). The stimulus was generated and
presented using MATLAB 2016a and Psychtoolbox v.3.0.13 (Brainard,
1997). We modulated both the contrast and temporal frequency of the
grating. Within each functional run the sine wave grating was presented
at 20 condition combinations of Michelson contrast (1, 4, 8, 16, and 64%)
and temporal frequency flicker (1, 5, 10, and 20Hz) (Michelson, 1927).
The spatial frequency of the grating was held at 1 cpd. Each stimulus
condition was presented once per run and lasted 3 s. A baseline condition
of mean luminance was presented for 3 s during each run. Here, a single
contrast reversal was defined as one complete on-off cycle off the stim-
ulus. A visual representation of the experimental design is illustrated in
Fig. 4.

2.4.2. Data acquisition and analysis
TCS functional scan sessions consisted of ten 3.5-min stimulus pre-

sentation runs collected using an almost identical EPI sequence to that
used for the pRF mapping (TR, 3000ms; TE, 30ms; voxel size,
2� 2� 2.5mm3, flip angle 20�; matrix size, 96� 96 x 39). The stimulus
was presented using an event related design in which condition ordering
was randomized within each run. A randomized interstimulus interval
separated each condition and was jittered to last on average 6 s. Again, a
12 s (4 TR) dummy run was included at the beginning of each functional
run to allow for the scanner magnetization to reach a steady state. Par-
ticipants completed the same attentional task as the pRF runs throughout
the experiment.

TCS data were analysed using MATLAB 2016a and VISTA software. A
general linear model (GLM) was implemented to test the contribution of
stimulus condition to the BOLD time course (Friston et al., 1998). We
used the default two-gamma Boynton HRF from SPM5 and fit the model
to an averaged time course of BOLD signal changed for each stimulus
condition by minimizing the sum of squared errors (RSS) between the
predicted time series and the measured BOLD response. This resulted in
20 Beta weight estimates for each voxel, reflecting sensitivity to each
stimulus condition.



Fig. 3. Exemplar left hemisphere retinotopic maps with ROI border overlays presented on flattened cortical representations for one subject. In A) we present ec-
centricity maps in which pRF eccentricity increases with distance from the fovea. In B) we present polar angle maps with border overlays based on polar angle re-
versals. In C) we present pRF size maps, that show an increase in pRF size within and between ROIs.

Fig. 4. Visual representation of temporal contrast stimulus conditions. The sine
wave grating sweeps through 20 temporal contrast conditions, with each con-
dition being presented once per run for 3 s.
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2.5. Statistical analysis

2.5.1. Plotting beta weights as a function of eccentricity and pRF size
Only pRF and TCS voxels with �10% variance explained were

retained for further analysis. The pooled total voxel count for each ROI
and the total voxels removed for falling below 10% variance explained
are presented in Table 1. For each voxel within each participant's ROI, a
pRF eccentricity value and a pRF size value was extracted from the pRF
data. The same ROIs were then overlaid on each corresponding partici-
pants TCS data and 20 beta weights (1 beta weight per stimulus condi-
tion) were extracted for each voxel. Thus, each voxel was allocated 22
values: a pRF eccentricity value, a pRF size value, and 20 beta weights
reflecting voxel sensitivity to each TCS stimulus condition. Polar angle
values were not included in the analysis.

For each participant, beta weights were plotted as a function of pRF
Table 1
Results of voxel thresholding. Voxels with less than 10% VE in both the pRF and
the TCS data are removed from further analysis (N¼ 19).

ROI Pooled total voxels Pooled voxels under 10% VE Proportion removed

V1 77693 34314 44.16%
V2 76991 32555 42.28%
V3 70977 26907 37.81%
V3a 55659 23235 41.75%
hV4 25388 25388 49.59%
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eccentricity; foveal, parafoveal, or peripheral. For each ROI, foveal pRFs
were defined as being between 0.2� and 3.0� eccentricity, parafoveal
pRFs were defined as being between 3.0� and 6.0� eccentricity, and pe-
ripheral pRFs were defined as being between 6.0� and 10.0� eccentricity.
Visualisation of how these data are partitioned and their correspondence
to visual space is illustrated in Fig. 5.

pRF size and eccentricity are highly related measures: average pRF
sizes increase with eccentricity (Dumoulin and Wandell, 2008). For
completeness, we additionally analysed our data as a function of pRF size
to complement the eccentricity-based analysis. Each participant's beta
weights were plotted as a function of pRF size; small or large. Receptive
field sizes progressively increase as one moves up the visual hierarchy
and what constitutes a ‘small’ or ‘large’ pRF will differ depending on ROI
(Wandell et al., 2007). To account for this, within each ROI, ‘small pRFs’
were defined as having a size value between 0.25� (as a hard minimum)
and the median pRF size, whilst ‘large pRFs’ were defined as a size value
between the median and the maximum pRF size (with a maximum cut off
of 10�). These normalized pRF sizes are presented in Appendix Table A1
and the pRF size analysis is presented in the Supplementary Materials.

2.6. Contrast response functions

For each participant's ROIs, hyperbolic ratio functions were fitted at
each of the four temporal frequencies for each eccentricity partition of
data. We modelled contrast response using the following equation:

RðCÞ ¼ R0 þ Rmax
cn

cn50 þ cn

Where C is stimulus contrast, R0 is the baseline response, Rmax is the
maximum response rate, c50 is the semi saturation contrast, and the
exponent, n, is the rate at which changes occur and was held at 2
(Albrecht and Hamilton, 1982; Boynton et al., 1999). This resulted in
four contrast response functions (CRFs) per ROI at each eccentricity for
each participant (i.e. each participant had four CRFs within V1 foveal,
four CRFs within V1 parafoveal, and four CRFs within V1 peripheral).

From each CRF we extracted C50, the contrast semisaturation point.
This is the amount of contrast required to elicit half the maximum
response of the CRF. A decrease in C50 results in a leftward shift in the
CRF, indicating that less contrast is required to hit this 50% response,
thus, is representative of an increase in contrast sensitivity (Albrecht and
Hamilton, 1982). Illustration of such a shift in C50 is presented in Fig. 6.

2.7. Analysis - repeated measures ANOVAs

For our psychophysical experiment, we carried out a 4 (temporal



Fig. 5. Voxels are binned into 3 gradients of eccentricity – foveal (red), parafoveal (green), and peripheral (blue). In A) we present an eccentricity map on a right
hemisphere mesh of the visual cortex with overlaid hand drawn ROIs, noting the location of V1. B) shows how these voxel bins would be represented on a schematic
model of right hemisphere V1. In C) we present how the voxel bins in B) would be spatially tuned (ignoring polar angle) across the contralateral visual field.

Fig. 6. C50 plotted on two contrast response functions. C50 decreases when the
CRF is shifted left, thus less contrast is needed to hit 50% of the full response,
reflecting an increase contrast sensitivity.
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frequency) x 2 (eccentricity) repeated measures ANOVA with 75%
contrast detection thresholds as the dependent variable and looked at
simple effects to compare between conditions. For our fMRI experiment
we ran a 5 (ROI) x 4 (temporal frequency) x 3 (pRF eccentricity) repeated
measures ANOVA with C50 as the dependent variable and looked at
simple effects analyses to answer our targeted predictions.
2.8. Polynomial fits and bootstrapping

To find the temporal frequency at which contrast sensitivity peaks at
each eccentricity and within each ROI (or for psychophysics, at the two
visual field locations tested), we used MATLAB function ‘bootstrp’ to
bootstrap 2000 second order polynomial fits (generated using MATLAB
function ‘polyfit’) to the means of random permutations of our C50 data
(fMRI) and contrast detection thresholds (psychophysics). These data
were permutated using random sampling (19 draws) with replacement.
We then found the mean of the zero points of the first derivatives of each
of the 2000 second order polynomial fits. This point reflects the average
level of temporal frequency at which contrast sensitivity peaks.

3. Results

Our psychophysical data were broadly consistent with those from
previous studies indicating little difference in temporal frequency tuning
466
between fovea and near-periphery, and an overall ‘U’ shaped temporal
frequency threshold tuning function with a minimum contrast threshold
(peak sensitivity) around 8 Hz. In our imaging data, we found profound
changes in C50 as a function of both temporal frequency and pRF ec-
centricity. First, we found all visual areas studied had an overall (i.e.
ignoring any effects of eccentricity) peak in contrast sensitivity at 10 Hz.
Next, in early visual areas we found that pRFs representing the peripheral
visual field had increased contrast sensitivity at a high temporal fre-
quency (20 Hz) when compared to pRFs representing the fovea –

consistent with effects predicted from retinal physiology. This difference
disappeared in area hV4, where no consistent eccentricity-dependent
difference in contrast sensitivity at any temporal frequency could be
measured. We fed our 20 Hz C50 measurements from all ROIs into a linear
model and found that hV4 had the highest contribution to a fit of psy-
chophysical contrast sensitivity. Overall, we find that contrast sensitivity
in the periphery of V1, V2, V3, and V3a is increased at a high temporal
frequency, but this sensitivity is lost in hV4 as cortical tuning becomes
more similar that of the psychophysical observer. Here we present a
summary of our results for our psychophysical and fMRI data. Supporting
pRF size results are available in Supplementary Materials.

3.1. Psychophysical results: contrast sensitivity

A 2 x 4 repeated measures ANOVA was performed to assess whether
there was a difference in psychophysical contrast detection thresholds
between eccentricity and temporal frequency. Mauchly's test of Sphe-
ricity was violated for both the main effect of temporal frequency
(χ2(5)¼ 42.321, p < .001) and the temporal frequency * eccentricity
interaction effect (χ2(5)¼ 11.619, p¼ .041). Thus, a Greenhouse-Geisser
correction was applied to the results of these effects.

The analysis found a significant main effect of temporal frequency
(p< .001) and a significant eccentricity * temporal frequency interaction
effect (p< .001). F-values and p-values are presented in Appendix
Table A.2. As illustrated in Fig. 7A, contrast detection thresholds were
higher at 1 Hz when presented at 2� eccentricity (p< .000). Conversely,
at 20 Hz, contrast detection thresholds were higher at 10� eccentricity
(p< .000). Thresholds significantly differed as a function of temporal
frequency across both eccentricities, except for comparing between 5 Hz
and 10 Hz. All p-values are presented in Appendix Tables A.3 and A.4.

3.2. Psychophysical temporal frequency optima

To find the temporal frequency at which contrast sensitivity peaks, we
looked at the mean zero point of the first derivatives of bootstrapped
polynomial fits to our psychological threshold data. At 2� eccentricity
contrast sensitivity peaked at 9 Hz, while at 10� eccentricity contrast
sensitivity peaked at 6.6 Hz. Bootstrapped fits are presented in Fig. 7B
and mean zero points are presented in Appendix Table B1.



Fig. 7. Psychophysical contrast detection thresholds plotted as a function of temporal frequency, at two eccentricities. In A) we present contrast detection thresholds
plotted at four measured temporal frequencies at 2� and 10�. In B) we present bootstrapped fits to contrast detection thresholds plotted as a function of temporal
frequency at 2� and 10�. Overall, there is little difference in sensitivity at each temporal frequency between fovea and near periphery.
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3.3. fMRI results

A 5 x 4 x 3 repeated measures ANOVA was performed to assess
whether there was a difference in contrast sensitivity between ROIs,
temporal frequency, and eccentricity. Mauchly's test of Sphericity was
violated for the main effect of ROI (χ2(5)¼ 22.062, p ¼ .009) and the
interaction effects for ROI * eccentricity (χ2(35)¼ 52.540, p¼ .036), ROI
* temporal frequency (χ2(77) ¼ 121.003, p ¼ .003), and eccentricity *
temporal frequency (χ2(20) ¼ 42.136, p ¼ .003). Thus, a Greenhouse-
Geisser correction was applied to the results of these effects. The anal-
ysis found significant main effects for eccentricity (p¼ .004) and tem-
poral frequency (p¼ .007). F-values, p-values, and effect sizes for main
and interaction effects are presented in Appendix Table A.5.

3.4. Contrast sensitivity peaks around 10 Hz in all ROIs

First, we used a simple effects analysis to explore differences in
contrast sensitivity by comparing between the four temporal frequencies,
collapsed across pRF eccentricity, within each individual ROI. Sidak
corrections were applied to all possible comparisons. As presented in
Fig. 8. Mean C50 values plotted as a function of temporal frequency for each ROI. C50

at 10 Hz in all visual areas tested.
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Fig. 8, V1, V2, V3, and V3a had significantly reduced C50 at 10 Hz when
compared to 1 Hz and 20 Hz (p< .05), reflecting increased contrast
sensitivity at this temporal frequency. In hV4, C50 was significantly
reduced at 10 Hz when compared to 20 Hz (p¼ .004). P-values for these
simple effects are presented in Appendix Table A.6.

3.5. fMRI temporal frequency optima

As we did with our psychophysical data, we looked at the mean zero
point of the first derivatives of the bootstrapped polynomial fits to our C50
values to find, for each ROI and eccentricity, the temporal frequency at
which contrast sensitivity peaks. These zero points are presented in Ap-
pendix Table B.2 and examples of bootstrapped fits are illustrated in Fig. 9.
In V1 and V2, the optimal temporal frequency gradually increased with
eccentricity. However, in V3 and V3a the optimal temporal frequency
increased from foveal to parafoveal. In hV4 the optimal temporal frequency
is essentially identical between the foveal and parafovea. Fits to the data in
the periphery of hV4 (see hV4 of Fig. 9) were almost linear and no peak
could be computed reliably. We attribute this to variability within the hV4
C50estimates thatwerederived fromthebootstrappingprocedure.Thus, the
is consistently reduced at 10 Hz in all ROIs, indicating contrast sensitivity peaks



Fig. 9. Examples of bootstrapped polynomial fits to C50 values plotted as a function of temporal frequency for each eccentricity in all ROIs. The solid line is a second-
order bootstrapped polynomial fit to the data and the shaded outline is the standard deviation of 2000 permutations.
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peripheral hV4 fits presented here appear to differ when compared to the
corresponding mean hV4 C50 values as presented in Fig. 10.

3.6. Peripherally tuned pRFs have increased contrast sensitivity at 20 Hz in
V1, V2, V3, and V3a

A simple effects analysis was undertaken to explore differences in
Fig. 10. Mean C50 values plotted as a function pRF eccentricity at each temporal fr
ripheral pRFs, reflecting increased contrast sensitivity at 20 Hz in the cortical periph
temporal frequency.
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contrast sensitivity within each ROI at each temporal frequency,
comparing between foveal, parafoveal, and peripherally tuned pRFs.
Sidak corrections were applied to all possible comparisons. Mean C50
values at all temporal frequencies and at 20 Hz alone are presented in
Fig. 10. We found eccentricity-dependent differences in contrast sensi-
tivity at 20 Hz. Namely, we found that in V1, V2, V3, and V3a, C50 at
20 Hz was consistently decreased in peripherally tuned pRFs when
equency, for each ROI. In V1–V3a, C50 is significantly reduced at 20 Hz in pe-
ery. This effect disappears in hV4, where C50 is flat across eccentricity at each



Fig. 11. Mean contrast sensitivity maps at 20 Hz projected onto a cortical mesh (N¼ 19). Early visual field maps V1–V3a show decreasing C50 (indicating increasing
contrast sensitivity) with increasing eccentricity, whilst contrast sensitivity in hV4 is invariant (and relatively low) across space.

Fig. 12. Median bootstrapped beta weights after predicting a fit of psycho-
physical contrast sensitivity using C50 measurements at 20Hz from each ROI.
hV4 has the highest beta weight, indicating that this region is the best predictor
of psychophysical contrast sensitivity at 20 Hz.
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compared to foveally tuned pRFs (p< .05), reflecting increased contrast
sensitivity at a high temporal frequency in the cortical periphery. There
was no difference in contrast sensitivity as a function of eccentricity at 1,
5, or 10 Hz, in any ROI. In Fig. 11 we present a surface-based average
(N¼ 19) contrast sensitivity map at 20 Hz, projected onto an inflated
cortical mesh. Similar to previous psychophysical sensitivities, contrast
sensitivity in hV4 was invariant across eccentricity at all temporal fre-
quencies tested, including 20 Hz. All p-values are presented in Appendix
Table A.7.

3.7. Comparing psychophysical and fMRI contrast sensitivities

Unlike earlier visual areas, we found that contrast sensitivity at 20 Hz
in hV4 was relatively invariant across eccentricity. This finding is more
similar to psychophysical sensitivities from our own and other behav-
ioural studies that report little difference in temporal contrast sensitivity
across visual space (Koenderink et al., 1978; Virsu et al., 1982; Wright
and Johnston, 1983). Next, we aimed to examine the relationship be-
tween psychophysical performance and fMRI signals driven by 20 Hz
stimuli. Here, we bootstrapped 1000 estimates of 20 Hz fMRI C50 mea-
surements from the fovea and periphery of each ROI, and fed this data
into a linear model to assess how each ROI contributed to a fit of psy-
chophysical contrast sensitivity at 20 Hz. As illustrated in Fig. 12, we
found that C50 values from hV4 contributed proportionally more to our
psychophysical measurements when compared to early visual areas,
indicating that fMRI responses from this area best predict our psycho-
physical measurements. Bootstrapped beta weight statistics are available
in Appendix Table B.3.

4. Discussion

We havemeasured differences in psychophysical and cortical contrast
sensitivity that occur as a function of temporal frequency and visual field
eccentricity. Overall, our findings indicate that both psychophysical and
cortical contrast sensitivity follow a ‘U’ shape function and is maximal
between 8 and 12 Hz across visual space. Further, in early visual areas
there is a relative increase in contrast sensitivity at 20 Hz in pRFs tuned to
more peripheral regions of the visual field. We discuss these findings in
light of the physiological bias towards faster visual processing and
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increased contrast sensitivity in the peripheral retina. As we progressed
up the visual pathway to visual area hV4, we observed an equalisation of
temporal contrast sensitivity across eccentricity that was closer to psy-
chophysical measurements, suggesting that the peripheral bias in retinal
temporal contrast sensitivity disappears in this cortical area.
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4.1. Peak psychophysical and fMRI contrast sensitivity

Previous research has typically measured the primate visual system's
sensitivity to temporal frequency at a single level of contrast. These
studies invariably identify a bandpass peak in temporal sensitivity
occurring at approximately 8 Hz (Hawken et al., 1996; Kastner et al.,
2004; Kwong et al., 1992; Robson, 1966; Singh et al., 2000; Venkatara-
man et al., 2017). Our approach was similar to these studies, except that
we fit a CRF to a range of contrasts presented at different temporal fre-
quencies, then defined our measurement of contrast sensitivity as 50% of
the full CRF response (C50). Our data showed a similar bandpass pattern.
Peak psychophysical contrast sensitivity occurred at 9 Hz and 6.6 Hz at 2�

and 10� eccentricity, respectively. Similarly, in our fMRI data we found
contrast sensitivity generally peaked around 8 Hz, with the critical fre-
quency of this peak increasing between foveal and peripheral voxels. In
this respect, the overall ‘U’ shape of our behavioural and cortical contrast
sensitivity functions appears to be matched from a relatively early stage
in the visual hierarchy.

Perhaps surprisingly, previous research has found little change in
psychophysical temporal contrast sensitivity as a function of eccentricity
(Koenderink et al., 1978; Rovamo and Raninen, 1984; Virsu et al., 1982).
Although our own psychophysical data showed a slight decrease in
temporal contrast sensitivity from the fovea to the near periphery, these
differences were relatively small and may reflect difficulties in
compensating precisely for cortical magnification effects or stimulus
sizing in our own psychophysics (Granit and Harper, 1930; Hassan et al.,
2016).

4.2. Peripherally tuned pRFs have increased contrast sensitivity at 20 Hz

Physiological biases in the response properties of retinal cells lead
to increased temporal contrast sensitivity in more peripheral regions of
the retina. Peripheral cones respond faster than foveal cones, resulting
in greater peripheral sensitivity to rapidly changing input (Sinha et al.,
2017). There is also an eccentricity-dependent increase in the ratio of
parasol to midget RGCs, and parasol cells are relatively more sensitive
to high temporal frequencies and have increased contrast gain when
compared to midget cells (Connolly and van Essen, 1984; Dacey, 1993,
1994; Dacey and Petersen, 1992; De Monasterio and Gouras, 1975;
Schein and de Monasterio, 1987). At 10� eccentricity, measurements
of temporal contrast sensitivity are thought to reflect more isolated
functions of parasol RGCs (Croner and Kaplan, 1995; Gouras, 1968;
Kaplan et al., 1990; Kaplan and Shapley, 1986). Signals passed from
RGCs pass through the LGN, where the density of afferent parasol and
midget RGCs is maintained, before being sent to primary visual cortex
(Connolly and van Essen, 1984; Schein and de Monasterio, 1987). Our
data show that a sensitivity bias similar to that found in the retina and
LGN is present in early visual cortex, with relatively increased contrast
sensitivity at 20 Hz in peripherally tuned voxels.

It is well known that neuronal spatial frequency sensitivity tends to be
inversely related to temporal frequency sensitivity, thus, channels sen-
sitive to low spatial frequencies are often sensitive to higher temporal
frequencies (and vice versa). In addition, the sensitivity of these channels
changes as a function of eccentricity (D'Souza et al., 2016; Henriksson
et al., 2008; Kulikowski and Tolhurst, 1973; Shoham et al., 1997; Sun
et al., 2007). Here, we report measurements made at a single spatial
frequency (1 cpd). This frequency was chosen because it is well below the
spatial resolution limit at the highest eccentricities measured, yet gen-
erates robust responses in the fovea (D'Souza et al., 2016; Henriksson
et al., 2008; Welbourne et al., 2018). It is possible that our results would
change if a different spatial frequency was used: altering the base spatial
frequency might, for example, alter the balance of parvo-to magnocel-
lular cells contributing to the stimulus at each eccentricity, which would,
in turn, alter the average temporal response properties (Levitt et al.,
2001).
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4.3. hV4 is similar to the psychophysical observer

Unlike earlier visual areas, we found that temporal contrast sensi-
tivity does not significantly differ as a function of eccentricity in hV4.
Specifically, there appears to be little bias towards higher temporal
contrast sensitivity in more peripheral regions of hV4. Instead, temporal
contrast sensitivity in hV4 is more reflective of the behavioural observer.
After bootstrapping a linear model to assess the contribution of our 20 Hz
C50 data to a fit of psychophysical measurements, we found that hV4 had
a propotionally greater contribution to psychophysical sensitivities when
compared to all other visual areas. It may be that higher order areas
become increasingly invariant to eccentricity-dependent differences in
low-level features, including contrast and temporal frequency, and
instead represent more complex stimulus aspects relating to shape,
identity, and colour (Avidan et al., 2002; Felleman and Van Essen, 1991;
Milner and Goodale, 1995; Perry and Fallah, 2014). For example, hV4
has previously been found to have a much coarser representation of
spatial frequency and an increased tolerance to temporal dynamics when
compared to earlier visual areas, suggesting these areas are less con-
cerned with such low level visual properties (Henriksson et al., 2008;
Zhou et al., 2017). In a similar vein, ventral regions local to hV4 that are
concerned with global form and object representations such as FFA, PPA,
VO, and LOC, have at times found to be invariant to lower level visual
features, and fMRI responses within such regions can become impaired
when stimuli are presented at high temporal frequencies (D'Souza et al.,
2011; Grill-Spector et al., 1999; Jiang et al., 2007; Kanwisher, 2010; Liu
and Wandell, 2005; Mckeeff et al., 2007; Vernon et al., 2016). Although
this bias in retinal temporal contrast sensitivity is phased out by hV4, our
data found that this area also responds optimally around 10 Hz temporal
frequency – perhaps inheriting this sensitivity bias from earlier regions.

5. Conclusion

Our experiments have found that in general, psychophysical and fMRI
measurements of contrast sensitivity are relatively consistent and both
peak around 8Hz. Next, pRFs in early visual areas that represent more
peripheral regions of visual space show relatively increased contrast
sensitivity at a high temporal frequency when compared to those in the
cortical representation of the fovea. However, this bias in peripheral
cortical contrast sensitivity disappears by hV4, suggesting a relative in-
dependence of temporal contrast sensitivity across space in this area. This
independence is broadly consistent with behavioural measurements of
temporal contrast sensitivity, and suggests that neurons in area hV4 (and
possibly other higher-order ventral regions) are relatively invariant to the
eccentricity-dependent biases that are present in the early visual stream.
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Appendix A. Statistical output for pRF size normalisation statistics, ANOVA main effects, and simple effects analyses (*<.05, **<.01,
***<.001)
Table A.1
Normalized pRF sizes for each ROI (N¼ 19). For each ROI, small pRFs fall between the minimum and median
pRF size, and large pRFs fall between median and maximum pRF size.

Visual Area Min pRF size Median pRF size Max pRF size
471
V1
 0.25�
 1.72�
 9.89�
V2
 0.25�
 2.06�
 9.30�
V3
 0.25�
 2.89�
 9.74�
V3a
 0.25�
 4.06�
 10.0�
hV4
 0.25�
 4.7�
 10.0�
Table A.2
Tests of within-subjects effects for psychophysical data. Temporal frequency and eccentricity as IVs, and contrast detection
threshold as DV.

Source df F pη2 p
Temporal Frequency (GG)
 1.895
 88.179
 .830
 .000***

Eccentricity
 1
 3.824
 .175
 .066

TF*Eccentricity (GG)
 2.210
 23.459
 .566
 .000***
Table A.3
Simple effects comparisons for psychophysical data. Differences in
contrast detection thresholds, comparing between two factors of
eccentricity at each temporal frequency (N¼ 19).

Temporal Frequency 10�
1Hz
 2�
 .000***

5Hz
 2�
 .946

10 Hz
 2�
 .057

20 Hz
 2�
 .000***
Table A.4
Simple effects comparisons for psychophysical data. Differences in contrast detection thresholds, comparing between
four factors of temporal frequency at each eccentricity (N¼ 19).

Eccentricity 5 Hz 10 Hz 20 Hz
2�
 1Hz
 .000***
 .000***
 .023*

5Hz
 –
 .324
 .000

10Hz
 –
 –
 .000***
10�
 1Hz
 .000***
 .019*
 .000***

5Hz
 –
 .277
 .000***

10Hz
 –
 –
 .000**
Table A.5
Tests of within-subjects effects for fMRI data. ROI, eccentricity, and temporal frequency as IVs, and C50 as DV (N¼ 19).

Source df F p power
ROI (GG)
 2.749
 .684
 .554
 .177

Eccentricity
 2
 6.403
 .004**
 .875

TF
 3
 4.466
 .007**
 .853

ROI*Eccentricity (GG)
 4.334
 2.158
 .077
 .838

ROI*TF (GG)
 5.977
 1.638
 .145
 .602

Eccentricity*TF (GG)
 2.911
 2.132
 .110
 .504

ROI*Eccentricity*TF
 24
 1.314
 .148
 .927

https://doi.org/10.1016/j.neuroimage.2018.09.049
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Table A.6
Simple effects for fMRI data. Differences in C50, comparing between four factors of temporal frequency within
each ROI (N¼ 19).

Visual Area 5 Hz 10 Hz 20 Hz
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V1
 1 Hz
 .281
 .000***
 .295

5 Hz
 –
 .287
 .999

10 Hz
 –
 –
 .010*
V2
 1 Hz
 .682
 .006**
 .960

5 Hz
 –
 .279
 .990

10 Hz
 –
 –
 .004**
V3
 1 Hz
 .676
 .007**
 1.000

5 Hz
 –
 .449
 .909

10 Hz
 –
 –
 .007*
V3a
 1 Hz
 .813
 .045*
 1.000

5 Hz
 –
 .642
 .919

10 Hz
 –
 –
 .037*
hV4
 1 Hz
 .969
 .124
 .924

5 Hz
 –
 .595
 .549

10 Hz
 –
 –
 .004**
Table A.7
Simple effects for fMRI data. Differences in C50, comparing between three factors of eccentricity at each temporal
frequency within each ROI (N¼ 19).

Parafoveal Peripheral
V1
 1Hz
 Foveal
 .913
 .900

Parafoveal
 –
 .994
5Hz
 Foveal
 .072
 .072

Parafoveal
 –
 .963
10 Hz
 Foveal
 .284
 .136

Parafoveal
 –
 .358
20 Hz
 Foveal
 .026*
 .008**

Parafoveal
 –
 .061
V2
 1Hz
 Foveal
 .993
 .995

Parafoveal
 –
 .763
5Hz
 Foveal
 .827
 .585

Parafoveal
 –
 .763
10 Hz
 Foveal
 .302
 .222

Parafoveal
 –
 .214
20 Hz
 Foveal
 .319
 .046*

Parafoveal
 –
 .067
V3
 1Hz
 Foveal
 .566
 .922

Parafoveal
 –
 .864
5Hz
 Foveal
 .755
 .893

Parafoveal
 –
 .393
10 Hz
 Foveal
 .999
 .996

Parafoveal
 –
 .997
20 Hz
 Foveal
 .592
 .034*

Parafoveal
 –
 .086
V3a
 1Hz
 Foveal
 .512
 .938

Parafoveal
 –
 .186
5Hz
 Foveal
 .843
 .191

Parafoveal
 –
 .272
10 Hz
 Foveal
 .889
 .610

Parafoveal
 –
 .420
20 Hz
 Foveal
 .395
 .016*

Parafoveal
 –
 .033*
hV4
 1Hz
 Foveal
 .895
 .997

Parafoveal
 –
 .431
5Hz
 Foveal
 .957
 .953

Parafoveal
 –
 .995
10 Hz
 Foveal
 .481
 .118

Parafoveal
 –
 .174
20 Hz
 Foveal
 1.000
 .928

Parafoveal
 –
 .942
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Appendix B. Statistical output for bootstrapped psychophysics and fMRI data, and linear model results
Table B.1
Bootstrapped descriptive statistics psychophysical data (2000 iterations). Mean of the zero points of the first derivative
of our bootstrapped fits to contrast threshold data, which is representative of the temporal frequency at which psy-
chophysical contrast sensitivity peaks.

Bootstrap Distribution Mean Bootstrap Distribution Median SD
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2�
 9.00
 8.92
 .58

10�
 6.60
 6.54
 .57
Table B.2
Bootstrapped descriptive statistics for fMRI data (2000 iterations). Mean of the zero points of the first derivative of our boot-
strapped fits to C50 data, which is representative of the temporal frequency at which fMRI contrast sensitivity peaks.

Bootstrap Distribution Mean Bootstrap Distribution Median
V1
 Foveal
 8.41
 8.24

Parafoveal
 10.60
 10.55

Peripheral
 12.10
 12.03
V2
 Foveal
 7.59
 7.34

Parafoveal
 9.10
 9.06

Peripheral
 11.13
 11.33
V3
 Foveal
 6.17
 6.99

Parafoveal
 9.63
 9.31

Peripheral
 9.53
 9.47
V3a
 Foveal
 5.88
 6.25

Parafoveal
 9.55
 9.42

Peripheral
 9.16
 9.02
hV4
 Foveal
 7.01
 7.01

Parafoveal
 5.30
 5.75

Peripheral
 –
 –
Table B.3
Bootstrapped beta weight estimates (1000 iterations)
after feeding foveal and peripheral 20Hz C50 values
into a linear model to assess how each ROI contributed
to a fit of psychophysical contrast sensitivity.

ROI Bootstrap Median Beta Weight
V1
 0.18

V2
 0.21

V3
 0.22

V3a
 0.19

hV4
 0.24
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