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A priori Nyström-method error bounds in approximate solutions of 1-D

Fredholm integro-differential equations

Abigail I Fairbairn and Mark A Kelmanson∗

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

A novel procedure is proposed for the a priori computation of error bounds for the ubiquitous Nyström

solver applied to one-dimensional Fredholm integro-differential equations. The distinctive feature of the

new approach is that the bounds are computed not only to spectral accuracy, but also explicitly, and in

terms of only the numerical solution itself. Details are given of both the error analysis and its numerical

implementation, and a corroborative asymptotic theory is developed in order to yield independent pre-

dictions of the convergence rates expected from Nyström discretisations of increasing order. All theory

is first convincingly validated on a proof-of-concept continuous-kernel test problem whose solution is a

priori known. The method is then applied to a novel integro-differential-equation formulation of a static,

fourth-order, Euler-Bernoulli beam-deflection boundary-value problem in which the flexural rigidity varies

along the beam, and for which no exact solution is attainable; in this case, validation of the resulting

discontinuous-kernel approach is achieved using an asymptotic solution derived on the (realistic) assump-

tion that variations in the cross-section of the beam occur on spatial scales an order of magnitude less than

the beam’s length and width. Potential limitations of the new approach are discussed.

Keywords: Integro-ordinary differential equations, error bounds, spectral collocation and related

methods, numerical approximation of solutions

2010 MSC: 45J05, 65L70, 65M70, 74G15

1. Introduction

1.1. Motivation

A plethora of literature is devoted to the computation of approximate solutions of engineering prob-

lems using integral-equation techniques, which offer advantages over differential solvers on several fronts.

Specifically, the principal advantages of reformulating a two-point boundary-value problem (BVP) as an

equivalent Fredholm integral equation (FIE) are: (i) the latter can often be solved to spectral accuracy

using collocation employing quadrature abscissae at the roots or extrema of orthogonal polynomials; (ii)

the boundary conditions (BCs) can be incorporated either exactly or to spectral accuracy [24, 8] rather
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than by, e.g., one-sided finite-difference formulae of low-order accuracy, and (iii) discretisation of higher-

order derivatives in the original BVP using higher powers of ill-conditioned [6] differentiation matrices is

avoided.

Although approximation methods for the solution of FIEs have burgeoned since the 1960s, only a

handful have examined the aspect, of obvious practical importance, of a priori error estimates. Moreover,

even in these few studies, convergence to zero (with an increasing number of collocation nodes) of errors

is either merely demonstrated by comparison against known solutions of test problems, or the order of

convergence, rather than quantification of the error itself, is estimated. An overview of, and a method to

circumvent this shortcoming is given in [12], in which the present authors disseminate the first (to our

knowledge) analysis for and implementation of a technique for the explicit computation and quantification

of spectrally accurate error bounds using only the approximate, computed numerical solution of the FIE.

Though test problems are indeed considered in [12], it is stressed that these are used only to demonstrate

that the new a priori theoretically predicted error estimates agree to spectral accuracy with the a posteriori

calculated ones. That is, in the usual practical situation that the exact solution is unknown, the new approach

offers a cheap and efficient means of computing spectrally accurate a priori error tolerances.

In this paper an approach is developed for predicting spectrally accurate error bounds in the approx-

imate solution of BVPs reformulated as integro-differential equations (IDEs); note that the present work

does not use the term integro-differential to signify spatial integration coupled with temporal differentia-

tion1; here, both differential and integral operators are spatial. Accordingly, the aim of the present work

is to analyse and to develop a novel error-prediction theory, and to implement it by embedding it into a

Nyström-based procedure for approximating the solution of IDEs. In the last two decades, IDEs have fre-

quently arisen in the study of engineering problems [9, 10, 20, 17, 21, 26], in the last of which a statement

is made that partially motivates the need for the present work: “. . . numerical methods are usually applied

in the literature to deal with the resulting integro-differential equations2 . . . which are shown to be time

consuming and the numerical errors are sometimes hard to detect for some specific nonlocal kernels.” In

keeping with this motivation, a novel formulation and spectrally accurate solution of an Euler-Bernoulli

beam-deflection problem is subsequently presented.

1.2. Background, aims and objectives

Further discussion is facilitated by considering a canonical form of IDE relative to which prior art and

present goals can be clarified. As stated above, there is a considerable literature devoted to the computation

of the approximate solution of IDEs, for the unknown function u(x), whose normalised canonical form [1,

1 For example, as in the peridynamic theory of solids (see, e.g., [23, 11]).
2Governing the static bending of Euler-Bernoulli beams.
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eqns (18) and (24)]) on the interval [−1, 1] is

u(x)− µ(x)u′(x)− λ
∫

1

−1

K(x, x̃)u(x̃) dx̃ = f(x) , x ∈ [−1, 1] , (1)

in which the source function f : [−1, 1] → R, the kernel K : [−1, 1] × [−1, 1] → R and coefficient

function µ : [−1, 1] → R are prescribed functions of x, x̃ ∈ [−1, 1], and λ ∈ R is a constant. For now,

discussion of the BC that augments (1) is deferred until §2. The Fredholm IDE (1) is of practical relevance:

for example, the fourth-order Euler-Bernoulli ordinary differential equation for the small deflection u(x)

of a simply-supported loaded beam of non-constant cross-section (and hence flexural rigidity) may be

reformulated as an IDE by repeated integration to yield an IDE of precisely the form (1); full details of a

novel derivation of this reformulation, and a generic extension thereof, are provided in Appendix B.

Many authors [18, 4, 27, 15, 16, 7, 28, 5, 3, 19, 22] have developed a diverse range of numerical

methods for obtaining the solution of not only (1) but also its extension to higher differential orders. The

primary aim of the present paper is to develop and to implement a computational method that yields ex-

plicitly computable and spectrally accurate a priori error predictions for the numerical solution of (1) using

Nyström-type methods. Indeed, in spite of the considerable amount of apparently related literature, the

formal development of a mathematical framework for conducting error analyses continues to be relatively

rare. For example, despite the diversity of the numerical approaches deployed in the above-cited literature,

only a few of the citations contain even brief discussion of errors, and none presents a priori computable

error estimates, let alone to the spectral accuracy obtained herein. [18, §2] proves convergence to zero of

the Nyström errors in the Fredholm component resulting from an IDE-to-IE conversion; [15, §3] computes

an error function as a solution of a perturbation IDE that itself is subject to discretisation error; [28, §4] dis-

cusses the accuracy of the solution in terms of an estimated error function, though this is not used to make

quantifiable error-bound predictions per se; [19, §4] includes a brief error analysis of a wavelet approach,

giving error bounds for only the first derivative of the solution rather than the solution itself, and; [2, §4]

proves a convergence theorem for the iterative method, but does not explicitly analyse errors. By contrast,

the authors’ recent companion paper [13] extends the IDE-to-FIE approach of [18] to obtain the first-ever

spectrally accurate a priori error estimates of numerical solutions of (1).

Accordingly, it is hoped that the present work will augment the existing literature in a novel and useful

way by providing a method for computing error bounds for the (Nyström) numerical solution of (1) not only

a priori, but also, as in [13], explicitly in terms of only the numerical solution itself. As it transpires, the

predicted bounds are spectrally accurate for a diverse class of problems, adding to the merit of the approach.

Additionally, the method presented in this paper can be extended to admit higher-order derivatives of u(x)

in (1) whereas the transformation method presented in [18, 13] is restricted to first-order IDEs.

The remainder of this paper is structured as follows. In §2 is presented the IDE problem and its Nyström

discretisation on nodal distributions based on Gauss-Legendre, -Radau and -Lobatto formulae. For clarity,

technical details of the implementation of two distinct procedures for (direct and indirect) incorporation
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of the BC that augments (1) are deferred to Appendix A. The main error analysis of §3 is split into two

parts: the fundamental operator theory in §3.1 that underpins all results required for both implementing the

method and conducting the error-bound computation, and; an asymptotic approach is developed in §3.2 to

yield a priori predictions of the convergence rates of the computed errors. Presented in §4 is a convincing

validation of all theory via implementation on two disparate test problems: in §4.1, a proof-of-concept

problem with a priori known solution and, in §4.2 a practical Euler-Bernoulli beam-deflection problem

(newly formulated in Appendix B) for which an exact solution is unattainable due to the spatially varying

flexural rigidity of the beam, and for which the error-bound prediction is therefore of genuine practical

importance. The paper culminates in §4.3 with a general discussion of both the findings of the present

work and the limitations of the theory presented.

2. Problem outline and spectral discretisation

First, IDE (1) is augmented by the boundary condition (hereafter BC)

u(ξ) = ζ , ξ ∈ [−1, 1] , (2)

in which ζ ∈ R is a prescribed constant. Note that (2) is not intended to convey that u is constant throughout

[−1, 1], but rather that the BC can be enforced at any location ξ in [−1, 1]. In symbolic form, (1) is

u− µDu− λKu = f (3)

in which u, f ∈ C ≡ C[−1, 1], the Banach space with supremum norm
∣∣∣∣ ·

∣∣∣∣ on which the action of

differential operator D on u is defined by

Du = (Du)(x) ≡ u′(x) , (4)

where a prime denotes differentiation with respect to x. The action of the compact integral operator K on

u in (3) is defined by

Ku = (Ku)(x) ≡
∫

1

−1

K(x, x̃)u(x̃) dx̃ . (5)

For later use, it is convenient to define the linear operator A by

A ≡ µD + λK . (6)

The present error analysis utilises approximate solutions of (1) and (2) in which the actions of D and

K have been approximated to spectral accuracy using finite-rank operators DN and KN for, respectively,

discrete differentiation and numerical quadrature. Accordingly, procedures for implementing DN and KN

are now established.

It is well known that optimal N -node distributions for constructing the differentiation matrix repre-

senting DN are based on the roots of Chebyshev polynomials [24]. However, when the weight function is
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unity in the integrand in (5), optimal nodes for the quadrature rule representing KN are given by roots of

Legendre polynomials. The method presently developed therefore employs a Legendre-root distribution to

construct a near-optimal DN and an optimal KN ; the effects of this trade-off in optimality is performed

in order to preclude computationally expensive interpolation between the two node sets. In the hybrid

integro-differential approximation procedure now developed, the action of KN is given by

Ku ≈ KN u ≡
N∑

j=1

w
(ν)
j,N K(x, x̃

(ν)
j,N)u(x̃

(ν)
j,N), (7)

wherein w
(ν)
j,N and x̃

(ν)
j,N are respectively the weights and abscissae of the N -node quadrature rule incorpo-

rating ν pre-specified nodes and the abscissae are ordered with 1 ≤ i < j ≤ N ⇒ −1 ≤ x̃i,N < x̃j,N ≤ 1.

Specifically [12], ν = 0, 1 and 2 correspond to, in decreasing order of optimality, Gauss-Legendre,

Legendre-Gauss-Radau and Legendre-Gauss-Lobatto nodes respectively. Much of the ensuing analysis

is thus dependent upon ν which, for the sake of clarity, is henceforth notationally suppressed unless it

quantitavely affects a result. It will also be assumed that integer suffices i and j in all subsequent discrete

formulae satisfy 1 ≤ i, j ≤ N .

On all node sets, the action of DN is given by

Du ≈ DN u =
N∑

j=1

L′
j,N(x)u(x̃j,N) , (8)

wherein the first derivative of the standard Lagrange basis function Lj,N(x) is given by

L′
j,N(x) =

(x− x̃j,N) p ′
N
(x)− pN(x)

(x− x̃j,N)2 p ′
N
(x̃j,N)

, (9)

in which pN(x) is the monic polynomial

pN(x) ≡
N∏

j=1

(x− x̃j,N) , (10)

whose (ν-dependent) roots are the abscissae x̃j,N defined in (7). Note that, if u′(x) in (1) is replaced by

u(m)(x), then D in (6) is replaced by Dm and (8) is replaced by

D
mu ≈ D

(m)
N u =

N∑

j=1

L
(m)
j,N (x)u(x̃j,N) , (11)

and recall that the authors’ related method [13] can be applied only when m = 1. Using (7) and (8), the

approximate solution uN(x) of (1) satisfies the discretised equation

uN(x)− µ(x)
N∑

j=1

L′
j,N(x)uN(x̃j,N)− λ

N∑

j=1

wj,N K(x, x̃j,N)uN(x̃j,N) = f(x) , (12)

whose symbolic form is (cf. (3))

uN − µDN uN − λKN uN = f , (13)
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suggesting (cf. (6)) that the linear operator AN that approximates A is defined by

AN ≡ µDN + λKN . (14)

Defining αj,N(x) by

αj,N(x) ≡ µ(x)L′
j,N(x) + λwj,N K(x, x̃j,N) , (15)

discretisation of (12) yields

uN(x)−
N∑

j=1

αj,N(x)uN(x̃j,N) = f(x) , (16)

so that, by (14)–(16),

AN uN(x) ≡
N∑

j=1

αj,N(x)uN(x̃j,N) . (17)

Collocating (16) at nodes x = x̃i,N yields the N ×N linear system

N∑

j=1

(
δij − αj,N(x̃i,N)

)
uN(x̃j,N) = f(x̃i,N) , i = 1(1)N . (18)

In matrix form, (18) is

(IN −AN)uN = fN , (19)

in which matrix and vector entries are given by

{IN}i,j = δij , {AN}i,j = αj,N(x̃i,N) , {uN}i = uN(x̃i,N) and {fN}i = f(x̃i,N) . (20)

Note that the matrix AN is the linear combination

AN = diag{µ(x̃i,N)}DN + λKN (21)

of the differentiation and quadrature matrices DN and KN respectively given by

{DN}i,j = L′
j,N(x̃i,N) and {KN}i,j = wj,N K(x̃i,N , x̃j,N) . (22)

The discrete formulation is completed by incorporating the BC (2), thereby reducing (18) to an (N − 1)×
(N − 1) system: this can be done in one of two ways, depending on whether or not ξ in (2) coincides

with a quadrature node x̃j,N . In what follows, ũN and ûN will denote numerical solutions obtained via,

respectively, so-called direct (“case-1”) and indirect (“case-2”) BC enforcement. Since the present main

focus is on the novel error analysis, details concerning the implementation of the two different cases are

deferred to Appendix A.

3. Error Analysis

The theoretical framework for the error analysis of the IDE Nyström method in §2 is now presented,

the goal being the determination of a priori accurate bounds for the error norms
∣∣∣∣u − ũN

∣∣∣∣ and
∣∣∣∣u − ûN

∣∣∣∣
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wherein, as stated above, the supremum norm of the Banach space C = C[−1, 1] is implied. This analysis

extends the pure-IE approach in [12] in order to circumvent the presence of the unbounded differential

operator D , which precludes the standard approach that implicitly utilises
∣∣∣∣D

∣∣∣∣, whose unboundedness

violates the conditions underlying the theorem [4, Thm. 4.1.2] on which the pure-IE error analysis is

founded. A formal operator approach for circumventing this issue is now derived.

3.1. Operator theory

Throughout this section, the action of all (linear, either single or compound) operators P on functions

g(x) for x ∈ [−1, 1] is to be interpreted as P g(x) ≡ (P g)(x). Using this notation, the operator form of

(1) is, from (3) and (6),

u(x)−Au(x) = f(x) , (23)

u(ξ) = ζ . (24)

The corresponding operator form of the Nyström implementation of (12) is established by noting that tildes

and hats can be respectively dropped from (A.5) and (A.11) to yield the generic interpolation formula

uN(x) = f(x) + αk,N(x)u
∗
N
(x̃k,N) +

N∑

j=1
j 6=k

αj,N(x)u
∗
N
(x̃j,N) , x ∈ [−1, 1] , (25)

which both includes the BC (A.2) or pseudo-BC (A.8), and may be written using (A.1) as

uN(x) = f(x) +AN u
∗
N
(x) , x ∈ [−1, 1] . (26)

Note that, as stated in Appendix A, the notation u∗
N
(x̃j,N) in (25) and (26) indicates a nodal value of uN(x)

determined by collocation in the first stage of the Nyström process, rather than by interpolation in the

second stage. Subtracting AN uN(x) from both sides of (26), definitions (17) and (A.1) yield

uN(x)−AN uN(x) = f(x) +AN

(
u∗

N
(x)− uN(x)

)

= f(x) +

N∑

j=1

αj,N(x)
(
u∗

N
(x̃j,N)− uN(x̃j,N)

)
, x ∈ [−1, 1] , (27)

in which all terms in the sum vanish except for the one with j = k because this is the only index for which,

by (A.6) and (A.13), the collocated nodal value u∗
N
(x̃j,N) is not equal to the interpolated value uN(x̃j,N).

Therefore, defining the residual by

ρN(x) = αk,N(x)
(
uN(x̃k,N)− u∗N(x̃k,N)

)
, x ∈ [−1, 1] , (28)

the required operator form of (12) that incorporates the BC u∗
N
(x̃k,N)← ζ̂ or u∗

N
(x̃k,N)← ζ̃ is

uN(x)−AN uN(x) = f(x)− ρN(x) . (29)
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It is noteworthy that, unless αk,N(x) ≡ 0, the residual does not vanish; by (A.6) in case 1 (the direct BC

(A.2)) and by (A.13) in case 2 (the indirect BC (A.8)). However, as discussed above, αk,N(x) will vanish

with zero probability for the arbitrary values listed immediately after (A.8).

Note that, in the absence of (24), the unbounded differentiation operator D in A admits two different

solutions3 u 6= v of (23) for which (I − A)u = f and (I − A) v = f , where I is the identity operator;

that is, unlike its counterpart I − λK in the pure FIE, I − A is not one-to-one and hence not invertible,

so that the theory of compact operators underlying the standard FIE error analysis [4, Thm. 1.1] cannot be

applied.

The problem can be reformulated in terms of bounded operators by first defining the punctured identity

operator Ī whose action on the function v ∈ C is defined by

Ī v(x) ≡ v̄(x) =




v(x) x 6= ξ

0 x = ξ

; (30)

that is, v(x) is punctured at the value of x at which the BC is assigned. Operating on both sides of the exact

IDE (23) with Ī yields Ī (I−A)u(x) = Ī f(x), or, equivalently, by defining Ā = Ī A and using (30),

(Ī− Ā)u(x) = f̄(x) . (31)

Operating on both sides of (29) with Ī and defining ĀN ≡ Ī AN , there results

(Ī− ĀN)uN(x) = f̄(x)− ρ̄N(x) . (32)

Subtraction of (32) from (31), addition of ĀuN(x) to both sides and factorisation of u(x)− uN(x) yields

an operator equation for the error in the form

(Ī− Ā)
(
u(x)− uN(x)

)
= (Ā− ĀN)uN(x) + ρ̄N(x) , (33)

which reveals that the error in the numerical solution uN(x) is a combination of (i) the residual associated

with the imposition of a pseudo-BC at the first stage of the Nyström process, and (ii) the truncation error

due to the discretisation of both the differential and integral operators in the original IDE.

By inclusion of BC (24), equation (33) has a unique solution and thus Ī−Ā is one-to-one and invertible;

recall that I −A was not4. Suppressing the uniform argument x throughout, inversion of (33) yields

u− uN = (Ī− Ā)−1
Ī
{
(A−AN)uN + ρN

}
, (34)

3For example, in the case of a separable kernel, a “free” IDE reduces to a first-order ODE whose solution, determined via an

integrating factor, includes an arbitrary constant.
4A well-known discrete manifestation of this is the non-invertibility of DN and invertibility of D̄N , respectively the full and

reduced differentiation matrices defined in §2, which are the discrete counterparts of the operators D and D̄ respectively contained

in A and Ā . The puncturing of DN is implemented by removal of one row and one column (see [24, p.125]) to form the reduced

matrix D̄N .
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equivalently, via (29),

u− uN = (Ī− Ā)−1
Ī (AuN − uN + f) , (35)

which has the merit over (34) of avoiding the need to compute both the residual ρN(x) and AN uN(x).

Thus the error bound follows either from (34) in terms of the residual and operator-discretisation error as

∣∣∣∣u− uN

∣∣∣∣ ≤
∣∣∣∣(Ī− Ā)−1

∣∣∣∣∣∣∣∣(A−AN)uN + ρN

∣∣∣∣ , (36)

or from (35) in terms of only the numerical solution, and avoiding the need to compute AN uN , as

∣∣∣∣u− uN

∣∣∣∣ ≤
∣∣∣∣(Ī− Ā)−1

∣∣∣∣∣∣∣∣uN −AuN − f
∣∣∣∣ . (37)

Note that form (36) admits an asymptotic analysis (see §3.2) of the bound on the operator-discretisation

term, whereas form (37) admits the interpretation that the error is proportional to the residual obtained

when the numerical solution uN(x) of approximate IDE (29) is inserted into the exact IDE (23). Although

the second term

SN ≡
∣∣∣∣uN −AuN − f

∣∣∣∣ (38)

in the product on the right-hand side of (37) can be computed directly using the numerical solution uN ,

only a bound on the first such term can be obtained; this is now sought.

Because by (6), (14) and (30) the operators Ā and ĀN are linear in their sub-operators, the procedure

adopted in the IE error analysis in [12, §2.3] applied to K and KN can here be extended to Ā and ĀN in

(34) without presenting the minutiae of the full derivation. Specifically, since both the numerical integration

and differentiation schemes are convergent for all continuous functions on C then, for sufficiently large N ,

by [4, Thm. 4.1.2], (Ī− Ā)−1 exists and is uniformly bounded, and

∣∣∣∣(Ī− Ā)−1
∣∣∣∣ ≤ FN ≡

1 +
∣∣∣∣(Ī− ĀN)

−1
∣∣∣∣ ∣∣∣∣Ā

∣∣∣∣
1−

∣∣∣∣(Ī− ĀN)−1
∣∣∣∣ ∣∣∣∣(Ā− ĀN) Ā

∣∣∣∣ , (39)

which defines the factor FN and in which the denominator is by construction positive. Then (37) yields a

bound BN on the error norm EN given by

EN ≡
∣∣∣∣u− uN

∣∣∣∣ ≤ BN ≡ FN SN , (40)

which both defines BN and expresses the Nyström IDE-approximation error in terms of only the numerical

solution uN . With SN given by (38), it therefore remains only to compute FN , to which end the element
∣∣∣∣(Ī−ĀN)

−1
∣∣∣∣ in (39) is computed as

∣∣∣∣(Ī−ĀN)
−1(1̄)

∣∣∣∣ for the reasons given in [4, Eqns. (4.1.13)–(4.1.17)].

Accordingly, first define the function gN by

gN ≡ (Ī− ĀN)
−1 (1̄) , (41)

so that gN(x) is the solution of the IDE

gN(x)− ĀN gN(x) = 1̄ . (42)
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Thus gN(x) satisfies the IDE

gN(x)−AN gN(x) = 1 , (43)

for which no BC is specified a priori. Imposing a BC and pursuing the argument yielding (32) would result

in gN(x) satisfying

gN(x)−AN gN(x) = 1− σN(x) (44)

in which (cf. (28)) σN(x) = αk,N(x)
(
gN(x̃k,N)− g∗N(x̃k,N)

)
is the residual. Comparison of (43) and (44)

therefore forces the residual to vanish for all x ∈ [−1, 1], which requires gN(x̃k,N) = g∗
N
(x̃k,N), which is

possible only if (43) is collocated at x = x̃k,N . Therefore, by the argument following (27), collocation of

(43) must occur at all nodes x̃i,N , including i = k, thereby precluding the imposition of a BC. But since

only a solution gN(x) of IDE (43) is required, such a collocation is sufficient, and hence the matrix system

to be solved is

(IN −AN)gN = 1 (45)

in which IN and AN are as given in (20), and the vector entries of gN and 1 are given by

{gN}i = gN(x̃i,N) and {1}i = 1 . (46)

Solving (45) yields the nodal solution whence gN(x) is given by the interpolation formula

gN(x) = 1 +

N∑

j=1

αj,N(x) gN(x̃j,N) , (47)

using which the required inverse norm in (39) is computed as

∣∣∣∣(Ī− ĀN)
−1

∣∣∣∣ =
∣∣∣∣gN

∣∣∣∣ . (48)

The remaining components in (39) are computed using (again) the approach in [4, Eqns. (4.1.13)–(4.1.17)],

which yields
∣∣∣∣Ā

∣∣∣∣ =
∣∣∣∣Ā(1)

∣∣∣∣ = |λ|
∣∣∣∣K̄(1)

∣∣∣∣ (49)

and
∣∣∣∣(Ā− ĀN) Ā

∣∣∣∣ =
∣∣∣∣(Ā− ĀN) Ā(1)

∣∣∣∣ = |λ|
∣∣∣∣(Ā− ĀN)K̄(1)

∣∣∣∣ . (50)

As the analysis of §3.2 reveals [12, Eq. (20) et seq.],
∣∣∣∣(Ā − ĀN) Ā

∣∣∣∣ will in general decay exponentially

with N .

3.2. Asymptotic convergence rates for the error bound

Although (37) and (40) are used to compute the error bound BN , a priori estimates of the asymptotic

convergence of the bound as N → ∞ can be estimated using (36), which is algebraically equivalent to

(37). The first term (the operator-discretisation error) in braces on the right-hand side of (36), δN say, is

first bounded using (6), from which

δN ≡
∣∣∣∣(A−AN)uN

∣∣∣∣ ≤
∣∣∣∣µ

∣∣∣∣∣∣∣∣(D−DN)uN

∣∣∣∣+ |λ|
∣∣∣∣(K−KN)uN

∣∣∣∣ , (51)
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Legendre, ν = 0 Radau, ν = 1 Lobatto, ν = 2 Asymptotic, N →∞

φ
(ν)
N

2N−1N(N + 1)N !

(2N)!

2NN2N !

(2N)!

2N(2N − 1)N !

(2N)!

2ν−3/2

N (ν2−ν−4)/2

( e

2N

)
N

ψ
(ν)
N

22N+1(N !)4

(2N + 1)
(
(2N)!

)3

22N+2(N !)4
(
(2N)!

)3

22N+2(2N − 1)2(N !)4

(N − 1)
(
(2N)!

)3

22ν−1
√
π

N (1−2ν)/2

( e

4N

)2N

Table 1: The coefficients φ
(ν)
N

and ψ
(ν)
N

that respectively scale the numerical differentiation and quadrature error bounds in (52). The

final column contains the respective asymptotic values as N → ∞.

in which a combination of presently derived and standard results for Lagrange interpolation and Gaussian

quadrature yields

∣∣∣∣(D−DN)uN

∣∣∣∣ ≤ φ(ν)N

∣∣∣∣u(N)
N

∣∣∣∣ and
∣∣∣∣(K−KN)uN

∣∣∣∣ ≤ ψ(ν)
N K2N−ν , (52)

where the coefficients φ
(ν)
N and ψ

(ν)
N for different node sets (i.e. different ν) are listed in Table 1, and

KM ≡ max
x,x̃∈[−1,1]

∣∣∣∣
∂M

∂x̃M

(
K(x, x̃)uN(x̃)

)∣∣∣∣ , (53)

the argument on the right-hand side of which appears (with M = 2N ) in the mean-value remainder of the

N -point Gauss-Legendre-quadrature error (K−KN)uN . By (51), (52) and (53), the operator-discretisation

error is bounded by

δN ≤ φ(ν)N

∣∣∣∣µ
∣∣∣∣ ∣∣∣∣u(N)

N

∣∣∣∣+ |λ|ψ(ν)
N K2N−ν . (54)

As N →∞ it is readily shown, using the asymptotic limits in the last column of Table 1, that

ψ
(ν)
N

φ
(ν)
N

→ 2ν+1/2
√
π

N (5−ν−ν2)/2

( e

8N

)N
, (55)

the right-hand side of which is, irrespective of ν, of the order of double-precision machine error forN ≈ 10.

That is, (55) reveals that, for practical purposes, in general (54) may be well approximated by

δN ≤ φ(ν)N

∣∣∣∣µ
∣∣∣∣ ∣∣∣∣u(N)

N

∣∣∣∣ , N ≫ 1 . (56)

Since it is readily determined from the entries in the last column of Table 1 that φ
(ν)
N ∼ O(N−N ) and

ψ
(ν)
N ∼ O(N−2N ) as N →∞, the predicted rate (56) of error convergence is valid when, via (54),

∣∣∣∣u(N)
N

∣∣∣∣ ∼ o(NN ) and K2N−ν ∼ o(N2N ), N →∞ ; (57)

that is, the conditions under which the present error analysis holds are non-restrictive and realisable in a

plethora of situations. By contrast, it is worth noting that similar spectrally accurate a priori estimates
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cannot emerge from the approach of [18], in which the Volterra component is integrated using Simpson’s

rule.

Though the asymptotic large-N behaviour of ρN(x), which also appears on the right-hand side of (36),

cannot be explicitly determined using (28), note that, since both uN(x̃k,N) and u∗
N
(x̃k,N) in (28) are given

by a Nyström process for which (56) yields the error-convergence rate, the difference uN(x̃k,N)−u∗N(x̃k,N)
in (28) must also be proportional to the same rate, i.e.,

∣∣∣∣ρN

∣∣∣∣ ∼ φ
(ν)
N

∣∣∣∣u(N)
N

∣∣∣∣ , N →∞ , (58)

and hence the entire second term on the right-hand side of (36) converges to zero at the rate in (56). Thus,

via (36), (40), (56) and (58), and provided conditions (57) are met, the overall asymptotic error-convergence

rate is

EN ≡
∣∣∣∣u− uN

∣∣∣∣ ∼ φ
(ν)
N

∣∣∣∣u(N)
N

∣∣∣∣ , N →∞ . (59)

In §4, all predicted asymptotic rates (56), (58) and (59) are validated, on test problems, against the explicitly

computed error bound given by (37).

Finally, by defining

κ(x) ≡
∫

1

−1

K(x, x̃) dx̃ and LM ≡ max
x,x̃∈[−1,1]

∣∣∣∣
∂M

∂x̃M

(
K(x, x̃)κ(x̃)

)∣∣∣∣ , (60)

and employing the argument used to obtain (57), it is readily seen that, provided

∣∣∣∣κ(N)
∣∣∣∣ ∼ o(NN ) and L2N−ν ∼ o(N2N ), N →∞ , (61)

then (50) and (a modified) (56) reveal that the denominator in (39) behaves as 1 + O(N−N ) as N → ∞,

and hence the numerator of (39) is positive by construction, as demanded by the compact operator theory

underlying the entire error analysis. As the results of §4 reveal, the asymptotic results derived above are in

practice realised for relatively low values of N .

4. Test problems, results and discussion

Using the Maple algebraic manipulator, implementation of the theory of the preceding sections was

conducted on all nodal distributions on two test problems: first, a method-validation problem with a known

solution, and; second, a novel formulation of an Euler-Bernoulli beam-deflection problem, atypical in

the sense that the (simply-supported) beam has a non-uniform cross-section, thereby inducing a spatially-

dependent flexural rigidity that precludes the a priori determination of an exact solution.

4.1. Test-problem 1: validation using a known exact solution

In the specific case that the sub-components of (1) are

µ(x) = x4 − 4 , K(x, x̃) = x2 x̃ sin x̃ , λ = 1
2 , u(−1) = 1 + cos 1 and

f(x) = (3x3 − 1)x3 + (x4 − 4) sinx+ cosx+ 1
8 (2 cos 2− sin 2− 96)x2 , (62)
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the exact solution of (1) is u(x) = cosx − x3. Using this solution and the sub-components in (62), it is

readily established that, as N → ∞: (a)
∣∣∣∣u(N)

∣∣∣∣ ∼ 1 and K2N ∼ 22NN , and so the error-convergence

criterion (57) is satisfied, and; (b)
∣∣∣∣κ(N)

∣∣∣∣ = 0 and L2N ∼ 16(sin 1 − cos 1)N3, and hence by (61) the

theory of §3 valid. Accordingly, it is expected that the new method will predict accurate error estimates.

In the terminology of [13], (62) is deemed to be a “smooth” problem: both computed and predicted errors

for more challenging so-called “Runge”, “steep” and “oscillatory” problems [13, Table 1 and Figure 5]

are less accurate than those for the “smooth” problem. However, since such kernels are implemented and

comprehensively analysed in [13], they are not pursued herein.

For test problem (62), BCs were enforced both directly (see §4.3) and indirectly (see §4.3), and the

choice of these alternatives was examined. In all numerical experiments, only the Lobatto nodal distribu-

tion, for which ν = 2, was used; this includes both end-points and in theory [12, Table 1], though not

always in practice, yields the largest error bound of all distributions introduced immediately after (7).

Figure 1: Effect of BC implementation on numerical error of problem (62). Plots show case-1 (solid lines, red online) and case-2

(dashed lines, blue online) absolute errors eN (x) ≡ |u(x)− uN (x)| using Lobatto nodes with (a,b) N = 20 and (c,d) N = 21, for

which error profiles are qualitatively similar to those for other values of N even and N odd respectively. Disparate vertical scalings

in (a,b) and (c,d) indicate spectral decay of eN with N . In expanded plots (b) and (d) of the “BC-zones” in (a) and (c) respectively,

black circles on solid lines show a non-zero error at the BC location ξ = −1, confirming prediction (A.7) that case-1 interpolation

fails to recover the true BC; black squares on dashed lines confirm prediction (A.12) that case-2 interpolation recovers the exact BC.

The case-2 results are for k = 1 in interpolation formula (A.11); the effect of varying k is considered in Figure 2.

Figure 1 demonstrates the effect on the absolute-error distribution in [−1, 1] of implementing the BC as

13



Figure 2: Effect of varying k in case-2 BC interpolation (A.11) for problem (62). Logarithmic plots show error norms
∣∣∣∣eN

∣∣∣∣
∞

(solid

lines, red online) and, purely for comparison,
∣∣∣∣eN

∣∣∣∣
2

(dashed lines, blue online) using Lobatto nodes with (a,b) N = 20 and (c,d)

N = 21 and BC applied at (a,c) ξ = −1 and (b,d) ξ = −1/π; BC locations are annotated by black squares. Curves link nodal

data generated by varying k from 1 to N in (A.11). Comparison (see vertical scales) of (a) with (c) and (b) with (d) reveals that the

disparity between the maximum and minimum values of
∣∣∣∣eN

∣∣∣∣
∞

is a spectrally decreasing functions of N .

either case 1 or case 2 in problem (62). BC abscissa ξ = −1 was chosen so that a Lobatto grid would admit

a direct comparison between case 1 and case 2, the latter using k = 1. Results confirm predictions (A.7)

and (A.12) regarding which case recovers the true BC in the final Nyström interpolation (A.11). Note in

Figures 1(a,b) the Runge phenomenon in the case-1 error in the region nearest to the BC abscissa.

Figure 2 demonstrates the effect of varying 1 ≤ k ≤ N , the arbitrary node number assigned in (A.8),

on both the infinity- and 2-norms of the absolute error. BC abscissae ξ = −1 and ξ = −1/π were used

in experiments, the latter irrational number enforcing a case-2 BC implementation. For N even/odd, the

norms were minimised/maximised for values of k near to N/2, though the absolute variation with k is a

spectrally decreasing function ofN and is due to rounding errors in the inversion of (A.10). Corresponding
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results for other BCs, e.g. at ξ = 1 and ξ = 1/π, show similar behaviour.

Figure 3 depicts clear evidence of spectrally accurate agreement between the actual computational

error norm EN defined in (40) and the new theoretical bound BN computed in terms of only the numerical

solution uN using (38)–(40). This level of agreement moreover validates the argument used to obtain the

function gN(x) via (45)–(47). Note that, as required, the bound exceeds the error, though experiments

revealed that this was not necessarily the case if
∣∣∣∣(Ī − ĀN)

−1
∣∣∣∣ in (39) was computed other than as

∣∣∣∣(Ī −
ĀN)

−1(1̄)
∣∣∣∣ [4, Eqns. (4.1.13)–(4.1.17)].

Case-2 BC results in Figure 3 were computed using k = 1 in (A.11): in experiments in which k was

varied, minor perturbations in the displayed results were observed (as expected from the results in Figure

2), though perturbed errors and bounds either increased or decreased together so that the bound always

exceeded the error. Computations performed on the Legendre and Radau nodal distributions, for which

ν = 0 and ν = 1 respectively, showed only minor quantitative perturbations from those discussed. Further,

more detailed, observations on test problem (62) are discussed in the caption of Figure 3.

Figure 3: Logarithmic plot of the actual computational error EN for test problem (62) (small symbols, here annotated as eN ) and

predicted bound BN in (40) (large symbols, here annotated as bN ), solved using Lobatto nodes with BC at ξ = −1. Circles (red

online) and squares (blue online) respectively denote results of case 1 and case 2, the latter with k = 1 in (A.11). The agreement

between EN and BN is impressive, and the prediction BN captures well the rate of convergence to zero. The undulating (coincident

on this scale) dashed lines show the predicted asymptotic error-convergence rate (59), and the smooth dashed line shows the same rate

but with
∣∣∣∣u(N)

N

∣∣∣∣ replaced by
∣∣∣∣u(N)

∣∣∣∣. The undulation in, and greater magnitude of, the former rates results from the ill-conditioning

[6] of the N -fold discrete differentiation of the inversion formula (12). Indeed, the undulation with the parity of N is even more

pronounced in the numerical results themselves.
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4.2. Test-problem 2: Euler-Bernoulli beam-deflection problem with varying flexural rigidity

Having validated the error-prediction approach in §4.1, consider now the problem of determining the

deflectionw(x) under loading q(x) of a static, horizontal, prismatic beam spanning the (scaled) interval x ∈
[−1, 1] at whose ends BCs are enforced. When the cross-sectional area of the beam is uniform, the solution

of the fourth-order ubiquitous Euler-Bernoulli differential equation satisfied by w(x) is straightforward,

and explicit solutions w(x) for various BCs abound in a plethora of sources.

When, however, the cross-sectional area of the beam is a function of x, so is the resulting second

moment of area I(x) and, therefore, also the flexural rigidity, i.e. the product of I(x) and the elastic

modulus E(x) of the beam. In this case, the Euler-Bernoulli BVP demands numerical solution.

To fix a specific problem, consider the case of a circular cylindrical beam of radius R(x) with simply-

supported beam ends, so that the BCs are w(−1) = w(1) = w′′(−1) = w′′(1) = 0. Additionally, both the

elastic modulus and loading will be taken as constant along the beam, i.e. E(X) = E and Q(X) = Q0 in

(B.1): note that these assumptions are not restrictions per se.

Transformation of the resulting fourth-order, two-point BVP is algebraically complex but readily achieved

using an algebraic manipulator. A novel (to the authors’ knowledge) derivation of the scaling and transfor-

mation is, for reasons of clarity, deferred to Appendix B, in which appears the next equation, repeated here

to facilitate discussion. It can be shown (see (B.23)) that the beam deflection w(x) satisfies a first-order

Fredholm IDE of the form

w′(x)− σa(x)w′(−1)− σb(x)w′(1) +A(x)w(x)−
∫

1

−1

W (x, x̃)w(x̃) = Φ(x) , (63)

in whichA(x) is given by (B.3), the source function Φ(x) (which incorporates the beam loading) by (B.24)

and the coefficient and kernel functions σa(x), σb(x), andW (x, x̃) by (B.28)–(B.30). First note that, unlike

problem (62), the kernel W (x, x̃) in (63) has, by (B.30), a finite discontinuity along the line x = x̃ that is

expected, upon replacing K by W in (53), to erode the accuracy of the error bounds; this expectation is

borne out in the results in §4. Second, (63) contains not the expected (see (1)) single BC w(−1) but rather

two BCs w′(±1) that were not given a priori: this is a direct result of the specified BCs occurring in two

pairs, one each at second and zeroth order. However, this is readily accommodated at the implementation

stage because, when (63) is discretised on nodes {x1, . . . , xN}, the unknown w′(±1) can be eliminated

using the zeroth-order BCs w1 = 0 and wN = 0 in (8) as

w′(−1) ≈ w′
1 =

N∑

j=1

D1jwj and w′(1) ≈ w′
N
=

N∑

j=1

DNjwj . (64)

Since here E(x) = E, a constant, the function A(x) defined in (B.3) reduces to

A(x) =
2I ′(x)

I(x)
. (65)

Assume that variations, e.g. due to manufacturing defects, in R(x) relative to a mean value R0 along the
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cylindrical beam length are small in comparison to the radius, i.e.

R(x) = R0(1 + ǫτ(x)) (66)

where, since the scaled beam length is 2, we require |ǫ| ≪ R0 ≪ 2 and
∣∣∣∣τ

∣∣∣∣ = O(1) on [−1, 1]. Using as

a datum the second moment of area of such a cylindrical beam,

I0 = 1
4πR

4
0 , (67)

the second moment corresponding to (66) is

I(x) = I0
(
1 + ǫτ(x)

)4
. (68)

In the present example the test perturbation

τ(x) = x(1 + x2) (69)

is used whence, via (65)–(69), the “Euler-Bernoulli IDE” (63) has no exact solution since the integral term

in the source function Φ(x) cannot be determined analytically for a general loading q(x). However, for the

constant loading Q(X) = Q0, equations (68), (69), (B.3) and (B.37) yield

q(x) =
q0

(1 + ǫx+ ǫx3)4
, (70)

so that, because |ǫ| ≪ 2, an approximate theoretical solution w̃(x; ǫ) of (63) can be sought as a series

expansion in ǫ, resulting in, to second order,

w̃(x; ǫ) ∼ q0
504

(x− 1)(x+ 1)
(
21(x2 − 5)− 24x(x2 − 2)(x2 + 3)ǫ

+ (28x8 + 73x6 − 11x4 − 221x2 − 221)ǫ2
)
, ǫ→ 0 . (71)

The derivation of (71), which offers a rudimentary means of checking approximate numerical solutions of

(63), is omitted since it is mechanical and readily automated using an algebraic manipulator.

A comparison of numerical solutions of the Euler-Bernoulli problem (63) and the asymptotic series

solution (71) is portrayed in Figure 4, which confirms excellent agreement, to visual accuracy, between the

numerical and asymptotic solutions. A more detailed consideration of errors, along with predicted bounds,

is depicted in Figure (5) in which, in the absence of an exact solution of (63), errors are computed relative

to a “converged” numerical solution computed with N = 90 Lobatto nodes.

Although broadly following the error trends observed in Figure 3 for test problem (62), Figure 5 con-

firms relatively larger errors and deceleration of their convergence to zero in (63), which is due to a com-

bination of the discontinuity along x = x̃ of the kernel W (x, x̃) defined in (B.30) and the unavoidable

approximation of w′(±1) in (63) using the numerical differentiation in (64). An additional concomitant ef-

fect of this treatment ofw′(±1) is that the bounds (but not the errors) in Figure 5 are barely dependent5 on ǫ,

5Closer inspection reveals marginally greater bounds for ǫ = 0.1 than for ǫ = 0.01.
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because approximation (64) removes the terms involving σa(x) and σb(x) from the amended error theory.

Nonetheless, the errors and predicted bounds for the Euler-Bernoulli test problem (63) are of a magnitude

comparable to those of the “steep” and “oscillatory” test problems considered in [13, Figure 5(c,d)].

Finally, note that, for this problem, the inversion formula (based on (12) and (63)) for wN(x) utilises

the discontinuous kernel (B.30), thereby introducing a saw-tooth behaviour in wN(x) between the nodes.

This is presently averted by replacing the inversion formula with Lagrange interpolation through the N

Legendre-nodal values, so that the resulting (N − 1)st-order polynomial has a vanishing N th derivative:

thus, an asymptotic error-convergence estimate (59) cannot be derived.

4.3. Limitations of the Theory

Problems (62) and (63) respectively have smooth and finitely-discontinuous kernels: as the results

depicted in Figures 3 and 5 show, the new IDE error-prediction method works well in both cases and

particularly so in the former. However, in the presence of more challenging kernels, this may not be

so. Typical examples are: (a) K(x, x̃) = e−ω(x−x̃)2 (ω ∈ R
+), representing an isolated peak along the

diagonal; such kernels arise in the consideration of non-local Eringen stress models (see, e.g., [11, 1, 17, 14,

25, 26]) in solid mechanics; (b) K(x, x̃) = x̃2/(1 + 25x2), for which the solution is plagued by the Runge

phenomenon; (c) K(x, x̃) = x2 e20x̃, which kernel is locally “steep”, and; (d) K(x, x̃) = x2 cos 20x̃,

which is “highly oscillatory”. Though the actual computation errors converge with increasing N for all

of the challenging-kernel problems, the bound theory does not do so for problems (a) and (c), though

for different reasons. In (a), the failure occurs at the level of implementation because, when evaluating

Figure 4: Cylindrical-beam profiles computed using N = 60 Lobatto nodes in the discretisation of approximate IDE (63) for a

“beam-radius-defect” function given by (66) and (69). Nodal values for ǫ = 0, 0.05 and 0.1 are respectively shown as circles (black

online), squares (blue online) and crosses (red online), and the smooth curves joining them are the second-order series approximation

w̃(x; ǫ) given by (71) with q0 = −1 in (70); note that w̃(x; 0) recovers the well-known supported-uniform-beam solution (B.38).
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Ā K̄(1) in (50), it is generally not possible to perform the double integration as a closed-form function of

x, as required in the denominator of the bound (39). In (c), the bound predictions become negative because

the denominator in (39) is negative: that is, condition [4, Eq. (4.1.22)], required for (39) to hold, is violated.

Although in (a) it is possible to bound the uncomputable term in (50) by a modified (54), this also yields

negative error predictions as the second condition in (61) is violated. In (b), although the error bound is

computable because
∣∣∣∣(Ā− ĀN) Ā

∣∣∣∣ can be computed exactly (cf. comment immediately below (50)), the

kernel yields a value of κ(x) as

κ(x) =
2

3(1 + 25x2)
⇒

∣∣∣∣κ(N)
∣∣∣∣ = O(NN) , (72)

which violates the first condition in (61).

In conclusion, a novel and readily implementable approach has been presented for the a priori com-

putation of error bounds inherent in the application of general Nyström methods for approximating the

solutions of one-dimensional Fredholm IDEs. Bounds are computed explicitly, to spectral accuracy, and

in terms of only the available numerical solution. The method has been exemplified on a novel practical

problem in Euler-Bernouilli beam-deflection theory, and it is hoped that this flexible and widely applicable

approach will serve as a useful tool for future research on other applications of the ubiquitous IDE (1).
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Appendix A. Implementation of BCs

To clarify description of the BC implementation, it is useful to amend the notation in (17) to

AN u
∗
N
(x) ≡

N∑

j=1

αj,N(x)u
∗
N
(x̃j,N) , (A.1)

in which the notation u∗
N
(x̃j,N) indicates a nodal value of uN(x) determined by collocation in the first

stage of the Nyström process, rather than by interpolation in the second stage. Hence there are two cases

to consider, depending on whether collocation or interpolation is used to implement the BC.
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Case 1: direct enforcement of the BC through collocation

This case requires the BC abscissa ξ to coincide with a node6, i.e. ξ = yk,N for some 1 ≤ k ≤ N .

Renaming uN as ũN in this case, BC (2) is incorporated directly as

ũ∗
N
(yk,N)← ζ̃ ≡ ζ , (A.2)

which notation is to be interpreted as assignment of ζ̃, whose value has been set equal to ζ, to the single

nodal value ũ∗
N
(yk,N) for the purposes of collocation. Assigning the kth nodal value as per (A.2) and

omitting the now-redundant collocation at x = yk,N , (18) becomes

N∑

j=1
j 6=k

(
δij − αj,N(x̃i,N)

)
ũ∗

N
(x̃j,N) = f(x̃i,N) + ζ̃ αk,N(x̃i,N) , i = 1(1)N, i 6= k , (A.3)

so that the reduced (N − 1)× (N − 1) system is given by

(̃IN − ÃN) ũ
∗
N
= f̃N , (A.4)

in which tilded quantities follow by removing the kth rows (and, for the matrices, kth columns) of their

counterparts in (19), and by augmenting the right-hand side of (19) in accordance with that of (A.3).

Solution of (A.4) yields the (N − 1) components ũ∗
N
(x̃j,N) of the nodal solution vector ũ∗

N
which, when

augmented with (A.2), give the Nyström interpolation formula (cf. (16))

ũN(x) = f(x) + ζ̃ αk,N(x) +

N∑

j=1
j 6=k

αj,N(x) ũ
∗
N
(x̃j,N) , x ∈ [−1, 1] . (A.5)

Setting x = x̃i,N with i 6= k, comparison of (A.3) and the right-hand side of (A.5) gives the latter equal

to ũ∗
N
(x̃i,N), i.e. ũN(x̃i,N) = ũ∗

N
(x̃i,N) for i 6= k. However, when i = k – equivalently, x = x̃k,N – the

right-hand side of (A.5) cannot be deduced from (A.3) and so, in general, and by (A.2),

ũN(x̃k,N) 6= ũ∗
N
(x̃k,N)← ζ̃ . (A.6)

Equivalently, since x̃k,N = ξ, (A.6) gives

ũN(ξ) 6= ζ̃ = ζ ; (A.7)

that is, despite direct assignment (A.2) of the BC at the collocation stage, it is not recovered exactly as per

(2) at the interpolation stage (A.5). A numerical demonstration of the non-recovery of the BC in case 1 is

given in §4.

6 This can happen when, e.g., ξ = ±1 is chosen for the BC location and any of Lobatto, Left-Radau or Right-Radau quadrature

are used, all of which contain abscissae with |x̃j,N | = 1.
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Case 2: indirect enforcement of the BC through interpolation

This implementation works for any BC location, whether or not it coincides with a node. Renaming

uN as ûN in this case, an arbitrary value of 1 ≤ k ≤ N is chosen; substituting (2) into (16) and eliminating

the nodal value û∗
N
(yk,N) yields the pseudo-BC (cf. (A.2)) nodal assignment

û∗
N
(yk,N)← ζ̂ ≡ 1

αk,N(ξ)

(
ζ − f(ξ)−

N∑

j=1
j 6=k

αj,N(ξ) û
∗
N
(x̃j,N)

)
, (A.8)

in which it is noted that, for arbitrary k, ξ, N , ν and K(x, x̃), the value of αk,N(ξ) computed using (15)

will be non-zero with probability arbitrarily close to one. Substitution of (A.8) into (18) gives, after some

manipulation, the (N − 1)× (N − 1) system

N∑

j=1
j 6=k

(
δij − αj,N(x̃i,N) +

αk,N(x̃i,N)

αk,N(ξ)
αj,N(ξ)

)
û∗

N
(x̃j,N)

= f(x̃i,N) +
αk,N(x̃i,N)

αk,N(ξ)

(
ζ − f(ξ)

)
, i = 1(1)N , i 6= k . (A.9)

In (reduced) matrix format, this is (cf. (A.4))

(̂IN − ÂN) û
∗
N
= f̂N , (A.10)

in which ÎN = ĨN , û∗
N
= ũ∗

N
, and the elements of ÂN and f̂N are readily computed from the information in

(A.9). Solution of (A.10) yields the (N − 1) components û∗
N
(x̃j,N) of the nodal solution vector û∗

N
. Then

(A.8) gives û∗
N
(yk,N), i.e. ζ̂, using which the Nyström interpolation formula is (cf. (16))

ûN(x) = f(x) + ζ̂ αk,N(x) +
N∑

j=1
j 6=k

αj,N(x) û
∗
N
(x̃j,N) , x ∈ [−1, 1] . (A.11)

In this case, setting x = ξ in (A.11) and then eliminating the resulting term ζ̂ αk,N(ξ) on the right-hand

side using pseudo-BC (A.8) gives (cf. (A.7))

ûN(ξ) = ζ ; (A.12)

that is, in case 2, the Nyström interpolation (A.11) recovers the exact BC (2). Additionally, by an argument

analogous to the one following (A.5), the omission of x = x̃k,N from the collocation (A.9) means that

(A.11) yields (cf. (A.6))

ûN(x̃k,N) 6= û∗
N
(x̃k,N)← ζ̂ . (A.13)

Appendix B. Transformation of Euler-Bernoulli beam equation into IDE (1)

Appendix B.1. Variable flexural rigidity

Consider the ubiquitous fourth-order two-point BVP comprising the Euler-Bernoulli static-beam equa-

tion for the deflection W (X) of a loaded beam of undeformed length L,

(EIW ′′)′′ = Q , X ∈ [0, L], (B.1)

23



in which a prime denotes differentiation with respect to X , I(X) is the second moment of area about the

centroid of the beam’s cross-section, Q(X) is the distributed load per unit length and E(X) is the elastic

modulus of the beam, which in the numerical experiments in §4.2 is taken as the constant Young’s modulus

of mild steel, E ≈ 2 × 1011Pa. Additionally, (B.1) is augmented by four boundary conditions (BCs),

at X = 0 and X = L, on W (X) and/or its derivatives. In the general case that the flexural rigidity

F (X) ≡ E(X)I(X) of the beam is a varying function of X , the deflection is non-dimensionalised using

W (X) = Lw(X) then (B.1) is scaled from the interval [0, L] onto [−1, 1] using X = 1
2L(1 + x) and

rewritten as the second-order differential equation in canonical form

w′′′′(x) +A(x)w′′′(x) +B(x)w′′(x) = q(x) , x ∈ [−1, 1], (B.2)

in which

A(x) =
2F ′(x)

F (x)
, B(x) =

F ′′(x)

F (x)
and q(x) =

L3Q(x)

16F (x)
, (B.3)

wherein now all primes now refer to differentiation with respect to x. Subsequent analysis is facilitated by

defining C(x) as

C(x) ≡ A′(x)−B(x) , (B.4)

whence direct integration of (B.2) using

w′′′(x) = w′′′(−1) +
∫ x

−1

w′′′′(x̃) dx̃ (B.5)

yields, after employing triple and double integration by parts on respectively the second and third terms in

(B.2), the third-order Volterra IDE for w(x),

w′′′(x) =

∫ x

−1

K3(x, x̃)w(x̃) dx̃+ λ3(x) + µ3(x) , (B.6)

in which

K3(x, x̃) = C ′′(x̃) , (B.7)

λ3(x) = C ′(−1)w(−1)− C(−1)w′(−1) +A(−1)w′′(−1) + w′′′(−1) , (B.8)

µ3(x) =

∫ x

−1

q(x̃) dx̃− C ′(x)w(x) + C(x)w′(x)−A(x)w′′(x) . (B.9)

Integration of (B.6)–(B.9) using

w′′(x) = w′′(−1) +
∫ x

−1

w′′′(s) ds , (B.10)

requires reversed-variable double integration of the integrand of K3(x, x̃), which yields

∫ x

−1

∫ s

−1

C ′′(x̃)w(x̃) dx̃ ds =

∫ x

−1

∫ x

x̃

C ′′(x̃)w(x̃) ds dx̃ =

∫ x

−1

(x− x̃)C ′′(x̃)w(x̃) dx̃ ; (B.11)

this, along with repeated integration by parts of µ3(x), leads to the second-order Volterra IDE for w(x),

w′′(x) =

∫ x

−1

K2(x, x̃)w(x̃) dx̃+ λ2(x) + µ2(x) , (B.12)
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in which

K2(x, x̃) = (x− x̃)C ′′(x̃)−A′′(x̃)− 2C ′(x̃) , (B.13)

λ2(x) = (1 + x)λ3(x)−
(
A′(−1) + C(−1)

)
w(−1) +A(−1)w′(−1) + w′′(−1) , (B.14)

µ2(x) =

∫ x

−1

(x− x̃) q(x̃) dx̃+
(
A′(x) + C(x)

)
w(x)−A(x)w′(x) . (B.15)

Proceeding similarly,

w′(x) = w′(−1) +
∫ x

−1

w′′(s) ds (B.16)

now yields the first-order Volterra IDE for w(x),

w′(x) =

∫ x

−1

K1(x, x̃)w(x̃) dx̃+ λ1(x) + µ1(x) , (B.17)

in which

K1(x, x̃) = 1
2 (x− x̃)2 C ′′(x̃)− (x− x̃)

(
A′′(x̃) + 2C ′(x̃)

)
+ 2A′(x̃) + C(x̃) , (B.18)

λ1(x) = − 1
2 (1 + x)2 λ3(x) + (1 + x)λ2(x) +A(−1)w(−1) + w′(−1) , (B.19)

µ1(x) = 1
2

∫ x

−1

(x− x̃)2 q(x̃) dx̃−A(x)w(x) . (B.20)

Further progress is specific to the imposed BCs: for illustrative purposes, simply-supported beam ends are

assumed, whence

w(−1) = α , w(1) = β and w′′(−1) = w′′(1) = 0 , (B.21)

for some real, possibly non-zero, constants α and β. The unknown w′′′(−1) enters w′′′(x) in (B.6) through

λ3(x), and hence by (B.14) and (B.12) it enters w′′(x), and by (B.19) and (B.17) it enters w′(x). Setting

x = 1 in both (B.6) and (B.12) and employing the BCs w′′(−1) = w′′(1) = 0 generates two equations for

determining w′′′(−1) and w′′′(1), only the former of which is required to proceed: there results

w′′′(−1) =
1

2

{ ∫
1

−1

(
A′′(x̃) + 2C ′(x̃)− (1− x̃)C ′′(x̃)

)
w(x̃) dx̃−

∫
1

−1

(1− x̃) q(x̃) dx̃

+
(
A′(−1) + C(−1)− 2C ′(−1)

)
α−

(
A′(1) + C(1)

)
β

+
(
2C(−1)−A(−1)

)
w′(−1) +A(1)w′(1)

}
, (B.22)

in which w′(−1) and w′(1) are still unknown. After splitting the integral in (B.22) at x̃ = x, back-

substitution into (B.8), (B.14), (B.19) and (B.17) yields a first-order Fredholm IDE for w(x) in the form

w′(x)− σa(x)w′(−1)− σb(x)w′(1) +A(x)w(x)−
∫

1

−1

W (x, x̃)w(x̃) = Φ(x) , (B.23)

in which the source term is given by

Φ(x) = σα(x)α+ σβ(x)β +

∫
1

−1

Q(x, x̃) q(x̃) dx̃ , (B.24)
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wherein

σα(x) = A(−1)− 1
4 (1 + x)(3− x)

(
A′(−1) + C(−1)

)
, (B.25)

σβ(x) = − 1
4 (1 + x)2

(
A′(1) + C(1)

)
, (B.26)

Q(x, x̃) =





1
4 (1 + x̃)

(
x2 − 2(x− x̃)− 1

)
x̃ ∈ (−1, x)

1
4 (x̃− 1)(1 + x)2 x̃ ∈ (x, 1)

. (B.27)

The remaining, as-yet-undefined, terms in (B.23) are

σa(x) = 1 + 1
4 (1 + x)(3− x)A(−1) , (B.28)

σb(x) = 1
4 (1 + x)2A(1) , (B.29)

W (x, x̃) =





2A′(x̃) + C(x̃) + 1
4 (1 + x̃)

(
x2 − 2(x− x̃)− 1

)
C ′′(x̃)

+
(
x̃+ 1

4 (1− x)2
)(
A′′(x̃) + 2C ′(x̃)

)
x̃ ∈ (−1, x)

1
4 (1 + x)2

(
A′′(x̃) + 2C ′(x̃)− (1− x̃)C ′′(x̃)

)
x̃ ∈ (x, 1)

. (B.30)

Finally, division of equations (B.23) and (B.24) by A(x) completes the transformation of the original

fourth-order Euler-Bernoulli two-point BVP into a first-order Fredholm IDE of the second kind of the form

(1) provided A(x) 6= 0 for x ∈ [−1, 1]. Although it is possible in principle to use IDE (B.23) to eliminate

w′(1) in terms of an integral over [−1, 1] and then to determine w(x) by further integration, the resulting

expressions are so cumbersome and unwieldy that, for a general non-uniform-cross-sectional beam under

general loading q(x) in the Euler-Bernoulli equation (B.2), numerical integration of the kernel functions

will invariably be required and so the extra algebraic step constitutes a Pyrrhic victory, particularly when

noting that all of the analysis following (B.21) is BC-specific.

Appendix B.2. Constant flexural rigidity

A natural segue of the above offers a method for rapid recovery and extension of standard beam-

deflection formulae which can be used to gauge numerical results when variations in flexural rigidity lead

to only a perturbation of the main deflection. When the flexural rigidity F (x) of the beam is constant, (B.3)

and (B.4) yield A(x) = B(x) = C(x) = 0 and also

q(x) =
L3Q(x)

16EI0
, (B.31)

in which I0 is the easily calculated constant second moment of area of the uniform cross-section of the

prismatic beam. Then (B.17)–(B.20) degenerate to

w′(x) = w′(−1) + 1
4

∫ x

−1

(1 + x̃)
(
x2 − 2(x− x̃)− 1

)
q(x̃) dx̃

− 1
4

∫
1

x

(1 + x)2(1− x̃) q(x̃) dx̃ , (B.32)
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integration of which demands not only (B.11) but also the additional variable-reversal rule

∫ x

−1

∫
1

s

f(x̃) dx̃ ds =

∫ x

−1

∫ x̃

−1

f(x̃) ds dx̃+

∫
1

x

∫ x

−1

f(x̃) ds dx̃ (B.33)

=

∫ x

−1

(x̃+ 1) f(x̃) dx̃+

∫
1

x

(x+ 1) f(x̃) dx̃ , (B.34)

for all suitably integrable functions f(x) on [−1, 1]. This yields w(x) in terms of w′(−1), which can now

be eliminated using the BC w(1) = β: the omitted cumbersome algebra is readily automated using an

algebraic manipulator.

Accordingly, the non-dimensionalised deflection ws(x) of a simply-supported beam can be succinctly

represented explicitly in terms of the (scaled) distributed load q(x) per unit length as

ws(x) = α+ 1
2 (β − α)(x+ 1) +

∫
1

−1

Qs(x, x̃) q(x̃) dx̃ , (B.35)

in which

Qs(x, x̃) =





1
12 (x− 1)(1 + x̃)

(
x2 + x̃2 + 2(x̃− x− 1)

)
x̃ ∈ (−1, x)

1
12 (x̃− 1)(1 + x)

(
x̃2 + x2 + 2(x− x̃− 1)

)
x̃ ∈ (x, 1)

. (B.36)

Formula (B.35) readily admits direct computation of simply-supported beam profiles for general load dis-

tributions q(x) because all BCs are included a priori by construction. This appendix concludes with some

common examples, in all of which both α and β are taken as zero in (B.35): viewed alternatively, the

deflection computed is that from the straight line joining (−1, α) to (1, β).

Define the parameter q0 by

q0 ≡
L3Q0

16EI0
, (B.37)

where Q0 is a constant (negative in the case of loading in the direction of gravity) and I0 is defined in (67).

When in (B.35) and (B.31) q(x) = q0, one may readily obtain the non-dimensional deflection

w(c)
s (x) = 1

24q0(x− 1)(x+ 1)(x2 − 5) (B.38)

and, for the loading q(x) = 1
2 (x+1)q0 in (B.35) that changes linearly from zero at x = −1 to q0 at x = 1,

there immediately follows

W (ℓ)
s (x) = 1

720q0(x− 1)(x+ 1)(x+ 3)(3x2 + 6x− 25) . (B.39)

Finally, a point load of magnitude q0 at x = c ∈ (−1, 1) is accommodated using the Dirac-delta loading

q(x) = q0 δ(x− c) in (B.35) to obtain

W (p)
s (x) = 1

12q0

{
(1 + x)(1− c)

(
x2 + c2 + 2(x− c− 1)

)
− 2(x− c)3H(x− c)

}
, (B.40)

in which H(x) is the Heaviside function. All of (B.38)–(B.40) can be rescaled onto [0, L] using x =

2X/L − 1 to recover results in more familiar notation. Additionally, it is possible to accommodate other

scenarios, e.g. cantilever-beam deformation, simply by changing the BCs at stage (B.21).
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