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abstract: Weuse integral projectionmodels (IPMs) and individual-
based simulations to study the evolution of genetic variance in two
monocarpic plant systems. Previous approaches combining IPMswith
an adaptive dynamics–style invasion analysis predicted that genetic
variability in the size threshold for flowering will not be maintained,
which conflicts with empirical evidence. We ask whether this discrep-
ancy can be resolved by making more realistic assumptions about
the underlying genetic architecture, assuming a multilocus quantita-
tive trait in an outcrossing diploid species. To do this, we embed the
infinitesimal model of quantitative genetics into an IPM for a size-
structured cosexual plant species. The resulting IPM describes the
joint dynamics of individual size and breeding value of the evolving
trait. We apply this general framework to the monocarpic perennials
Oenothera glazioviana and Carlina vulgaris. The evolution of herita-
ble variation in threshold size is explored in both individual-based
models (IBMs) and IPMs, using a mutation rate modifier approach.
In the Oenothera model, where the environment is constant, there is
selection against producing genetically variable offspring. In the Car-
lina model, where the environment varies between years, genetically
variable offspring provide a selective advantage, allowing the main-
tenance of genetic variability. The contrasting predictions of adaptive
dynamics and quantitative genetics models for the same system sug-
gest that fluctuating selection may be more effective at maintaining ge-
netic variation than previously thought.

Keywords: genetic variance, adaptive dynamics, quantitative genetics,
flowering threshold, integral projection model.

Introduction

Many recent studies have emphasized the interplay be-
tween ecological and evolutionary processes leading to eco-
evolutionary dynamics (e.g., Hendry and Kinnison 1999;
Hairston et al. 2005; Smallegange and Coulson 2013; Thomp-
son 1998, 2013; Hendry 2017). To understand this inter-

play, a wide range of methods have been developed to predict
and understand the determinants of trait change. Integral
projection models (IPMs) are one widely used framework
for projecting trait dynamics (Easterling et al. 2000; Ellner
and Rees 2006; Rees and Ellner 2009). These models project
a continuous trait distribution from one census to the next
by allowing the processes that determine an individual’s fate
(e.g., survival, growth) to depend on an individual’s state
(e.g., size, age, sex). However, they typically have not dealt
with the transmission of genetic quantities (e.g., alleles or
breeding values; but see Vindenes and Langangen 2015;
Childs et al. 2016; Rees and Ellner 2016; Coulson et al.
2017, 2011).
Evolution in structured populations has commonly been

studied by combining ideas from adaptive dynamics (Geritz
et al. 1997) with structured populationmodels (Caswell 2001;
de Roos and Persson 2013; Ellner et al. 2016) to predict evo-
lutionarily stable strategies (ESSs). In particular, IPMs have
often been used to study evolution of size-dependent flower-
ing inmonocarpic perennial plants (e.g., Rees and Rose 2002;
Childs et al. 2004; Rees et al. 2006; Metcalf et al. 2008; Rees
and Ellner 2016). The strength of this approach is that selec-
tion arises from the ecological interactions built into the
model rather than fromarbitrarily fixed fitnesses. Aweakness
of this approach is that it assumes mutation-limited evolu-
tion, such that adaptive evolution can be viewed as a series
of nonoverlapping trait substitutions. Consequently, the con-
dition for maintaining genetic variation in the adaptive dy-
namics framework is that no genetically monomorphic pop-
ulation can repel invasion by all rare mutants with a different
trait value. The assumption of mutation-limited evolution
is at odds with the substantial genetic variation found in
many natural populations (e.g., Geber and Griffen 2003;
Charmantier et al. 2014). In both constant and stochastic
environment models, previous studies of the relationship be-
tween the probability of flowering and plant size using adap-
tive dynamics methods predicted evolution to a single ESS
with a step function relationship, such that plants smaller
than some critical size T never flowered, whereas plants
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larger than T always flowered (Rees and Rose 2002; Childs
et al. 2003, 2004; Rees andEllner 2009, 2016). This prediction
of a single critical size for flowering (the flowering thresh-
old) implies that no genetic variation for flowering threshold
can be maintained by selection, even when the environment
fluctuates from year to year.

In a fluctuating environment, there are five processes
by which it is currently thought that selection might favor
the maintenance of adaptive genetic variability. These pro-
cesses are listed below.

Heterozygotes advantage. Temporally fluctuating selec-
tion can give heterozygotes the highest geometric mean fit-
ness, even though one or both homozygotes have higher
arithmetic mean fitness (Gillespie 1991). Wittmann et al.
(2017) recently demonstrated that thismechanismcanmain-
tain multilocus polymorphisms in a seasonal environment,
if seasonal reversal in dominance at each locus allows het-
erozygotes to track the seasonally varying optimal pheno-
type accurately enough, while each homozygote has high fit-
ness in one season and low fitness in the other.

The storage effect. If the optimal genotype varies either
spatially or temporally, then genetic variability can be main-
tained by the storage effect when the variance in the trait op-
timum is sufficiently high (Ellner andHairston 1994; Svardal
et al. 2015). The maintenance of genetic variance with purely
temporal variation requires generational overlap (see Ellner
and Hairston 1994; Sasaki and Ellner 1995; Svardal et al.
2015) so that genotype fitnesses are buffered in the way re-
quired for coexistence through the temporal storage effect
(Chesson 1994).

Tracking. When the environment changes in a predictable
manner either deterministically or with substantial temporal
autocorrelation, then genetic variance can be maintained
because this allows the population to track changes in the en-
vironment (Mather 1943; Slatkin and Lande 1976; Charles-
worth 1993). This effect cannot occur in the adaptive dynamics
analysis of conditions maintaining genetic variation because
both the resident and the invader populations are monomor-
phic, and so all offspring play the same strategy.

Disruptive selection. In the quantitative genetics frame-
work, disruptive selection occurs when the covariance be-
tween relative fitness and the squared deviations from the
trait mean is positive (Lande and Arnold 1983, eq. [13b]).
This implies that individuals in the tails of the trait distribu-
tion have higher relative fitness, which selects for increased
variance. When the trait optimum varies, a large mismatch
between the current optimum and the current genotype dis-
tribution can produce disruptive selection (Layzer 1980;
Kawecki 2000). For example, the standard nor-optimal fit-
ness function, W p exp(2(x2 vt)

2=2q2), has a positive
second derivative whenever phenotype x is more than5q

units from the optimum vt, and so large shifts in vt can gen-
erate disruptive selection. If x is Gaussian with mean �x and

variance Vx, then the population will experience disruptive
selection (quadratic selection gradient, g 1 0; Lande and
Arnold 1983, eq. [14a]) if (�x2 vt)

2
1 V x 1 q2. In the adap-

tive dynamics framework, this mode of disruptive selection
cannot contribute to the predicted conditions for main-
taining genetic variance because the adaptive dynamics anal-
ysis is local; branching from monomorphism to polymor-
phism occurs because of a concave-up fitness function at
the singular trait value. A quantitative genetics model can
also have disruptive selection because of what the fitness
function looks like at the tails of a broad trait distribution.
Bet hedging. This refers to variation among the off-

spring of an individual that reduces the between-year tem-
poral variance in fitness, thus increasing geometric mean
fitness, at the expense of not maximizing average fitness
(Seger and Brockmann 1987). As with tracking, this effect
cannot occur in an adaptive dynamics analysis of the con-
ditions for stable genetic polymorphism, as both the resi-
dent and invader populations are monomorphic and so all
offspring play the same strategy.
In addition to these mechanisms where variation is adap-

tive, nonadaptive variation can be maintained by mutation-
selection balance; for an overview, see Bulmer (1989). Roff
(1998) considers mutation-selection balance for threshold
traits, such as the flowering threshold undergoing direc-
tional selection.
The analyses of genetic variationmaintained by the storage

effect of Ellner and Hairston (1994) uses adaptive dynamics
methods to determine when alternative alleles can invade.
The conditions for maintenance of genetic variance are suf-
ficiently large generation overlap and high enough tempo-
ral variation in the optimal trait value that there is disrup-
tive selection operating on the trait at the evolutionarily
singular strategy (where there is no directional selection);
in adaptive dynamics this is called a branching point (Ge-
ritz et al. 1997). Svardal et al. (2015) recently extended this
analysis, finding conditions for adaptive branching when
selection varies spatially as well as temporally. Within the
adaptive dynamics approach, the condition for polymor-
phism to arise is derived by considering invasion of a mono-
morphic resident population by a monomorphic invader and
determining when no monomorphic resident can repel all
monomorphic invaders. Within that scenario, the first, third,
fourth, and fifth of the processes listed above cannot occur.
The conditions for maintaining genetic variation in the adap-
tive dynamics framework are thus rather restrictive. When
there is an ESS (i.e., no branching) and the population has
evolved to the ESS, the storage effect also cannot operate be-
cause there is stabilizing selection and rare alleles cannot in-
vade. The key conceptual difference between the adaptive dy-
namics and quantitative genetics analysis of the conditions
for maintaining genetic variation is that the former looks at
the conditions for a rare invading allele to spread, while the

E000 The American Naturalist

This content downloaded from 143.167.032.227 on June 28, 2019 05:25:08 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



latter asks how moments of the breeding value distribution
evolve.

The prediction that genetic variation in the flowering
threshold could not be maintained adaptively is, however,
at odds with the shallower relationships between plant size
and the probability of flowering observed in natural popu-
lations (Metcalf et al. 2003) and with the extensive genetic
variation in the threshold size for flowering found in breed-
ing experiments (Wesselingh and de Jong 1995;Wesselingh
and Klinkhamer 1996; Simons and Johnston 2000). Given
the mismatch between theory and data, it is natural to ask
whether this is a consequence of the genetic assumptions
used in adaptive dynamics theory and whether these pre-
dictions are robust to the inclusion of more realistic genet-
ics and breeding systems. In particular, quantitative genet-
ics models assume that all matings produce a range of
genotypes, and so it is possible that genetic variation could
be maintained by tracking, disruptive selection, and bet
hedging.

To test this hypothesis, we develop IPMs for cosexual
plant species and embed within them a quantitative genetic
model for evolution of the flowering threshold. Quanti-
tative genetic analysis of data from field populations has
developed rapidly in recent years (Hadfield 2010; Char-
mantier et al. 2014), and our models illustrate how this in-
formation can be merged with realistic ecological models.
We use our models to ask whether the production of genet-
ically variable offspring (as assumed by quantitative genetic
models) can be selectively advantageous by modeling the
joint evolution of flowering threshold and a mutation rate
modifier (Koren et al. 2014; Raynes and Sniegowski 2014)
affecting the loci controlling the flowering threshold.

Previous studies (reviewed inWittmann et al. 2017) have
concluded that when a trait is determined bymany loci with
additive effects within and among loci, fluctuating selec-
tion canmaintain genetic variability at only a very small num-
ber of loci. Our approach leads to the opposite conclu-
sion. There is no contradiction here; the previous studies do
not include several features of our models, including over-
lapping generations, strong selection with large between-
year variation, and selection that results from data-driven
models for the ecological interactions between competitors
differing in phenotype. Which (or how many) of these dif-
ferences are responsible for the difference in outcomes is an
important question but beyond the already broad scope of
this article.

A crucial aspect of our approach is that size per se (or size
at a given age, time, or event) is not the evolving trait in our
models, nor should it ever be when heritable trait evolution
is combined with a size-structured IPM. Please read the
preceding sentence again because it is essential for under-
standing this article, but it may be exactly opposite to what
you were expecting. In this article, the evolving heritable

trait is not size at any given time or age, and it is not the ac-
tual size at flowering. Because flowering decisions are made
only once a year, and because growth has a random com-
ponent in our models, individuals with a given flowering
threshold will flower at a range of different sizes at or above
that threshold. The evolving trait in our framework can
be something that impacts the size dynamics of individ-
uals, such as the flowering threshold or the intercept pa-
rameter in a regression equation for growth rate versus size.
But making size per se the evolving trait—using observed
parent-offspring size correlations to model inheritance—
has both conceptual and practical problems that are ex-
plained by Wilson et al. (2010), Chevin (2015), and Janeiro
et al. (2017). Instead, in our approach, size at any age or size
at an event such as flowering is an emergent consequence
of prior growth rates, which are affected by individuals’
traits and by chance variation in growth.
This article is structured as follows. We first briefly re-

view the context for this study: demographic models for
monocarpic perennial plants with size-dependent flowering
probability and adaptive dynamics predictions of flowering
strategy evolution. We then introduce models in which flow-
ering strategy is modeled as a heritable quantitative trait
using the infinitesimal model from quantitative genetics
(Bulmer 1971; Barton et al. 2017; Turelli 2017). The stand-
ing level of heritable variation in those models, as mea-
sured by the genic variance, is determined by mutation-
drift balance (genic variance is the value that the additive
genetic variance would take if all loci on all chromosomes
were independent, given the population-level allele fre-
quencies at each locus [Walsh and Lynch 2018, ch. 16]).
Therefore, to study selection on the level of heritable var-
iation, we introduce new models where the mutation rate
at flowering strategy loci is determined by a mutation rate
modifier, and we study the mechanisms whereby selection
can favor increased mutation rate and high levels of heri-
table variation.

Background

Demographic Models

Our IPMs are based on field studies of two monocarpic
plants, Oenothera glazioviana and Carlina vulgaris. Oeno-
thera demography is described by Rose et al. (2002), and
Oenothera demography was studied by Kachi and Hirose
(Kachi 1983; Kachi and Hirose 1983, 1985). The models have
been described in detail elsewhere (Rees and Rose 2002;
Ellner et al. 2016), so we will be brief here.
The general IPM equation for a size-structured popula-

tion is

n(z0, t 1 1) p

ð

(F(z0, z)1 P(z0, z))n(z, t) dz: ð1Þ

Genetic Variance in Varying Environments E000
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Here n(z, t) is a density function describing the distribution
of size z individuals at time t, F(z0, z) dz0 describes the pro-
duction by size z individuals of offspring whose size is in
the range from z0 to z0 1 dz0, and P(z0, z)dz0 describes sur-
vival and growth of size z individuals into range from z 0 to
z 0
1 dz 0.
The size measures in the field studies were log-tranformed

rosette diameter for Oenothera and log-transformed length
of the longest leaf for Carlina. The fecundity kernel F
includes both seed production and survival of seeds to be-
come new recruits of various sizes the following year. Seed
production depends on parent size and on parent genotype
in our evolutionary models. In all of our models, seed sur-
vival is the same for all seeds, regardless of any parent or
seed attributes.

The demographic functions in both models are simple
linear or generalized linear models for the effect of current
size on demographic rates, with random year effects in the
Carlina model. For example, the probability of survival (if
not flowering) is modeled by a fitted logistic regressions in
which the logit of survival probability is a linear function of
size z. Because flowering decisions are made once a year, on
the basis of size at that time, individuals with the same
flowering threshold will flower at a range of ages and sizes
because of variability in how many years it takes them to
reach a size at which flowering is likely. The Oenothera
model is deterministic (constant environment); the Carlina
model is stochastic, with environmental variation modeled
through partially correlated random effects in the regres-
sion models and random variation in the number of new
recruits each year.

Both models incorporate negative density dependence,
acting at only the recruitment stage, such that total recruit
number is independent of the number and size of the par-
ents in the previous year. The underlying biological as-
sumption is that recruitment is limited by the number of
available sites suitable for new recruits to establish success-
fully, and sufficient seeds are always produced to saturate
those sites. The Oenothera IPM can therefore be written as

n(z0, t 1 1) p Rc0(z0)1

ð

P(z0, z)n(z, t) dz, ð2Þ

whereR is the number of new recruits. The seedling contri-
bution to the subsequent year’s population is Rc0(z0), the
number of recruits multiplied by the frequency distribution
of seedling size, c0(z0). The survival kernel is P(z0, z) p (12
pb(z))s(z)G(z0, z), where pb(z) and s(z) are the probabilities
of flowering and survival (conditional on not flowering),
and the growth kernel G(z0, z) is the probability density
for survivors’ size z0 conditional on their initial size z. The
demographic rate equations and parameters (e.g., regression
coefficients) are given in table 1.
The Carlina model is very similar in structure, the key

difference being that the parameters for the demographic
functions and the total number of recruits R vary from
year to year. Rees and Ellner (2009) give a detailed de-
scription of model construction and parameter estimation,
and the parameter estimates are given in table 2.
In both cases, the predictions of the publishedmodels are

in good agreement with empirical observations (Rose et al.
2002; Rees and Ellner 2009).We therefore use the published
models here rather than considering more general nonlin-
ear alternatives (Rees et al. 2014). Except when stated oth-
erwise, all simulations and analyses in this article use the
model equations and parameter values in tables 1 and 2.
In both models the time unit is 1 year. For a description
of the IBMs, see “Testing the Approximations” in appen-
dix F (apps. A–K are available online).

Adaptive Dynamics Modeling
of Flowering Threshold Evolution

Previous studies of flowering threshold evolution in Oeno-
thera and Carlina have all reached the same conclusion:
the only evolutionarily stable state is monomorphic at a
unique flowering threshold that is an ESS (Rees and Rose
2002; Childs et al. 2003, 2004; Rees and Ellner 2009, 2016).
However, all of those studies used an adaptive dynamics

Table 1: Estimated demographic functions in the Oenothera integral projection model (Rees and Rose 2002)

Demographic process Model Parameter estimates

Recruit size c0 (z0) z0 p aR 1 q aR p 2.08, q ∼ N(0, .76)
Rosette growth G(z0, z) z0 p a0 1 bzz 1 ϵ a0 p .96, bz p .59, ϵ ∼ N(0, .67)
Survival probability s(z) logit(s(z)) p m0 1 mzz m0 p 2.65, mz p .75
Flowering probability pb(z) pb(z) p 1 if z 1 T, otherwise 0 T p 2.64, V0 p .04
Seed production b(z) b(z) p exp(A 1 Bz) A p 1, B p 2.2

Note: Here z is size (log-transformed rosette diameter) in year t, z0 is the size the following year, and N(m, j) is a normal distribution with mean m and stan-
dard deviation j. The flowering threshold T is an evolving trait in our eco-evolutionary two-dimensional integral projection models with no assumed value. For
flowering probability, the models used in this article use the sharp threshold equation given in the table, with the threshold as an evolving trait rather than a

fixed parameter. The parameter column gives the parameters of the fitted logistic model described in app. E (available online); T is the value of z at which
pb(z) p 0:5 in the fitted logistic regression model. The seed production intercept A p 1 is arbitrary and immaterial because the total number of recruits each

year is constant and allocated to parents of different types in proportion to their total seed production.
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approach (Geritz et al. 1998) rather than quantitative ge-
netic modeling of trait evolution.

The adaptive dynamics approach used in these previous
studies is illustrated in figure 1A, a pairwise invasion plot
(PIP) for this article’s Carlina model. The PIP was con-
structed by simulating pairwise competition between a res-
ident population monomorphic for the threshold size for
flowering and an invader with a different threshold and
computing the long-run stochastic growth rate lS for the
invader (for a full description of the methods, see Ellner
et al. 2016, sec. 9.5). Adaptive dynamics assumes mutation-

limited evolution, proceeding by sequential selective sweeps
as a successful invader (one with lS 1 1) replaces the resi-
dent. The Carlina PIP in figure 1A predicts that a series of
sweeps (such as those indicated by the arrows) will converge
onto the ESS (open circle), which could not be invaded. The
mutual invasion plot constructed from the PIP (fig. 1B)
shows pairs of strategies such that each can invade the other,
leading to coexistence in a protected polymorphism. How-
ever, the coexistence region’s boundary curves intersect at
less than 907, which implies that these polymorphisms are
not evolutionarily stable (Geritz et al. 1999).

Table 2: Estimated demographic functions in the Carlina stochastic integral projection model (Rees and Ellner 2009)

Demographic process Model Parameter estimates

Rosette growth G(z0, z) and
recruit size c0 (z0)

z0 p a0 1 bzz 1 ϵ, z0 p aR 1 q bz ∼ N(.74, .13); ϵ ∼ N(0, .29); q ∼ N(0, .50); a0, aR ∼ MVN(m, o);

m p (1.14, 3.16); o p

:037 :041
:041 :075

� �

Survival probability s(z) logit(s(z)) p m0 1 mzz m0 ∼ N(22.28, 1.16), mz ∼ N(.90, .41)
Flowering probability pb(z) pb(z) p 1 if z 1 T, otherwise 0 T ∼ N(4.18, .54), V0 p .12
Seed production b(z) b(z) p exp(A 1 Bz) A p 1 , B p 2

Note: Here z is size (log-transformed length of the longest leaf ) in year t, z0 is the size the following year, N(m, j) is a normal distribution with mean m and

standard deviation j, and MVN(m,o) is a multivariate normal distribution with mean vector m and variance-covariance matrix o. For flowering probability, the
models used in this article use the sharp threshold equation given in the table, with the threshold as an evolving trait rather than a fixed parameters. The pa-
rameter column gives the parameters of the fitted probit model described in app. E (available online); T is the value of z at which pb(z) p 0:5 in the fitted probit

regression model. The seed production intercept A is arbitrary; the number of recruits each year is drawn at random from the set of observed numbers in the
original field study and allocated to parents of different types in proportion to their total seed production. The seed production slope B represents the assump-

tion that seed production is proportional to (maximum leaf length)2, a measure of rosette area.
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Figure 1: A, Pairwise invasion plot (PIP) for the threshold size for flowering T in Carlina. Each square represents one stochastic simulation
of competition between a resident population with one value of T and a rare invader with a possibly different value of T (both modeled as
haploids with offspring inheriting exactly their parent’s T value). Resident and invader T values ranged from 3 to 4 in steps of size 0.01.
Stochastic growth rate lS for the invader was estimated by allowing 500 years for the resident to reach steady state and then averaging invader
low-density population growth rate over 10,000 years. The estimates of lS were smoothed slightly (using a bivariate tensor spline) before
plotting. Open circle indicates the one noninvadable (evolutionarily stable strategy [ESS]) trait value; the shape of the red region where
lS 1 1 (i.e., invasion is successful) implies that successive invasions (such as the sequence illustrated by the arrows) will converge to the
ESS, which is therefore convergence stable. B, Mutual invasion plot (red) squares are trait pairs such that each can invade the other on
the basis of the PIP. Source file: Carlina PIP Thresh.R.
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Resident and invader were both modeled as haploids for
figure 1, with offspring inheriting exactly their parent’s trait
value, but the conditions for stability of a monomorphic
ESS versus adaptive branching to a polymorphic popula-
tion are the same under diploid or multilocus additivemod-
els for the underlying genetics (Geritz and Kisdi 2000;
Spichtig and Kawecki 2004). The results in figure 1 there-
fore confirm that the previous conclusions still apply in this
article’s model, which assumes a sharp flowering threshold
rather than a gradual increase in flowering probability with
size.

Our models thus predict that heritable variation for
flowering threshold cannot be maintained through fluctu-
ating selection producing adaptive branching (in the adap-
tive dynamics sense) from a monomorphic ESS to an eco-
logically and evolutionarily stable genetic polymorphism
of alleles coexisting through the storage effect (Ellner and
Hairston 1994; Svardal et al. 2015). However, it is nonethe-
less possible that tracking, disruptive selection, or bet hedg-
ing could allow the maintenance of genetic variation, as
explained in the introduction. To see whether this is true,
we will now extend ourmodels to ask whether heritable var-
iation might be maintained when flowering threshold is
modeled as a quantitative trait with multilocus inheritance.

Quantitative Trait Evolution
in a Structured Population

In this section, we add to our demographic models evolu-
tion of a general quantitative trait, such as (but not exclu-
sively) the flowering threshold. Previous models for quan-
titative trait evolution in these systems using IPMs (Rees
and Ellner 2016) assumed haploid genetics where offspring
inherit their parent’s genotype plus a Gaussian random
deviation modeling mutation. Here we use a more realistic
evolutionary model. We consider an outcrossing, cosex-
ual species, as this is very common in plants. Childs et al.
(2016) presented a very general framework with separate
sexes (and potentially age- as well as state-dependent de-
mography); here we keep things much simpler by adding
one heritable trait to the size-structured IPMs described
above. The bookkeeping of the size# trait bivariate distri-
bution is essentially the same as in the stage-structured case
(Barfield et al. 2011) but notationally simpler because of the
IPM formalism. Besides deriving the models for our case
study systems, the main goal of this section is to clarify ex-
actly what we are and are not assuming about the genetic
basis of the trait.

Because our goal is to understand the maintenance of
heritable variation, our models assume that the trait varia-
tion is the result of genetic variation rather than nonheri-
table phenotypic variation (e.g., plasticity or a phenotypic
mixed strategy). We assume that the infinitesimal model

describes the genetic basis of the trait (Barton et al. 2017).
As Turelli (2017) notes, the infinitesimal model is really
three nested approximations. The most basic is that the
trait is determined by many loci with small additive effects
within and across loci. The Gaussian descendants approx-
imation further states that the distribution of offspring
breeding values from a mating has a Gaussian distribution
whose variance-covariance structure depends only on the
relatedness of the parents and is unaffected by whether se-
lection, mutation, or migration are occurring. Recent the-
ory has rigorously validated this approximation, proving
that its error decreases to 0 as the number of loci increases
(Barton et al. 2017). The Gaussian population approxi-
mation further states that individuals on a pedigree have
breeding values and phenotypes with a multivariate Gauss-
ian distribution whose variance-covariance matrix depends
only on the pedigree. The Gaussian population approxima-
tion is the basis for the animal model, one of the most widely
used methods for estimating genetic parameters (Hender-
son 1950, 1975; Kruuk 2004). The Gaussian population
approximation is the most questionable because trait dis-
tributions are affected by selection and so departures from
Gaussian are expected (although often small even when se-
lection is strong [Turelli and Barton 1994]).
Here we use the Gaussian descendants approximation

but not the Gaussian population assumption. We assume
that the parents of any new recruit are unrelated, so off-
spring from a mating have a Gaussian distribution of breed-
ing values, with mean equal to the midparent value and a
variance that is independent of parent breeding values and
unaffected by selection. We make no assumptions about the
population distribution of breeding values; it is a model out-
put, calculated in the process of iterating the model. Because
allele effects are additive, all genetic variance is additive ge-
netic variance, and an individual’s breeding value equals
their expected phenotype.
To iterate our model, we need to compute the distribu-

tion of breeding values among survivors and new recruits.
For survivors this is straightforward, as their breeding value
does not change over time. The distribution of breeding val-
ues in recruits results from the distribution of breeding val-
ues in pollen and ovules produced by adults, the breeding
values produced by random mating, and the additional var-
iance in offspring breeding values from allele segregation.
The total abundance of pollen from parents with breed-

ing value x is

Sp(x) p

ð

pb(z, x)bp(z, x)n(z, x, t) dz, ð3Þ

where bp(z, x) is the pollen production of plants of size z
and breeding value x, pb(z, x) is the probability of flowering,
and n(z, x, t) is a density function describing the distribu-
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tion of individuals of size z and breeding value x. Note that
we are assuming that flowering occurs before mortality; if
mortality occurs first, then there would be a survival term
in equation (3). To obtain the probability density function
(i.e., relative abundance) of pollen breeding values, we nor-
malize the abundance distribution by the total pollen abun-
dance:

fp(x) p
Sp(x)

Ð

Sp(u) du
: ð4Þ

Similarly, defining bo(z, x) as the ovule production of plants
of size z and breeding value x, we have

fo(x) p
So(x)

Ð

So(u) du
: ð5Þ

Applying the Gaussian descendants property of the infini-
tesimal model, the expected breeding value of an offspring
whose parents’ breeding values are xp (pollen parent) and
xo (ovule parent) is

xb p
xp 1 xo

2
: ð6Þ

The probability density function of expected offspring breed-
ing values, assuming random mating, is therefore

fb(x) p 2

ð

fp(xp)fo(2x2 xp) dxp ð7Þ

(for the derivation, see app. A). Actual offspring breeding
values under the infinitesimal model are the sum of expected
breeding value and the segregation variance, which describes
the variation among the offspring of any two parents. In the
infinitesimal model, the segregation variance V0 is half the
genic variance j2

a (recall that j2
a is the value that the additive

genetic variance j2
A would take if allele frequencies at all loci

on all chromosomes were independent, given the current
allele frequencies at each locus [Walsh and Lynch 2018,
chap. 16]). If xb is the parental midpoint, then offspring
breeding values (accounting for segregation) are given by

x*
p xb 1 ε, ð8Þ

where ε is a Gaussian random variable. So the probability
density function of offspring breeding values is

f *(x*) p

ð

fb(x)fS(x*
2 x) dx, ð9Þ

where fS is the probability density function of aGaussian ran-
dom variable with mean 0 and variance V0 (the segregation
variance), describing the variance produced by random al-
lele segregation (Slatkin and Lande 1976; Turelli and Barton
1994). Note that equation (9) incorporates the property of
the Gaussian descendants approximation that the segrega-
tion variance is the same for all matings, regardless of the
parents’ breeding values. An important property of the infin-

itesimal model is that the genic variance and therefore the
segregation varianceV0 are not changed by selection because
each individual locus experiences very weak selection (Bul-
mer 1971); for simulations illustrating this property, see
app. B. Extreme as this sounds, it has often been observed
over many generations of directional selection (Barton and
Keightley 2002).
The two-dimensional IPM describing the joint dynam-

ics of size and breeding values then has the form

n(z0, x, t 1 1) p Rc0(z0)f
*(x)1

ð

P(z0, z; x)n(z, x, t) dz:

ð10Þ

Note that in this equation f *(x) must be calculated each
time step as the distribution of breeding values changes.
The recruitment term in equation (10) assumes that the
evolving trait x has no impact on offspring size, so that off-
spring initial size is independent of offspring breeding value.
Throughout the text we refer to this model as the two-
dimensional (2D) IPM. The term R and the parameters of
the P kernel are constant in the Oenothera model, while
for Carlina both of those vary randomly over time.
An important benefit of the infinitesimal model is that

the 2D IPMs require only one parameter beyond those in
the demographic IPMs (eq. [2]), the segregation variance
V0. In appendix C, we explain how we derived an estimate
of V0 for our case studies on the basis of observations of
size at flowering and the predicted relationship between
V0 and trait variance. The estimate is an upper bound based
on the assumption that all individuals have a perfectly sharp
flowering threshold, but that is sufficient because we use it
only as an initial value in evolutionary simulations to ex-
plore general properties of our models. One noteworthy
conclusion from that analysis is that the equilibrium breed-
ing value variance is dominated by the generation of new
variance by segregation and is well approximated by the var-
iance dynamics for a neutral trait (see figs. C1, C2; figs. B1,
B2, C1, C2, E1, F1, F2, G1, I1, J1 are available online). This
contrasts with the situation for models with haploid inher-
itance, where analogous approximations for the mean and
variance of an evolving trait were quite inaccurate for both
IPMs and individual-based models (Rees and Ellner 2016).
The usual assumption in quantitative genetics is that

each individual’s phenotype is the sum of a genetic contri-
bution (equal to their breeding value, in our models) and
an independent environmental effect. We assume for sim-
plicity that the environment effect is small enough to ignore.
However, if the environment component is expressed inde-
pendently each year, a 2D model can be used in which fit-
ness conditional on breeding value is calculated by integrat-
ing over the distribution of environment effects (Lande
1982; Barfield et al. 2011). A permanent environment effect
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can also be incorporated through a three-dimensional IPM
where individuals are cross-classified by size, breeding value,
and environment effect (see app. G ).

Modeling Evolution of the Segregation Variance

for Flowering Threshold

As noted above, we found that the level of heritable flow-
ering threshold variation maintained in the 2D IPMs for
Oenothera and Carlina is primarily determined by the seg-
regation varianceV0 and is well approximated by the steady-
state variation that would be maintained in a neutral trait
(see figs. C1A, C2A). Therefore, to see whether high additive
genetic variance can be maintained in those systems by the
mechanisms through which parents might benefit from
producing heterogeneous offspring (i.e., tracking, disrup-
tive selection, or bet hedging), we need to consider models
where selection can alter the segregation varianceV0. In this
section, we develop those models.

First, we extend the IBMs so that each individual is char-
acterized by its size z, its threshold for flowering T, and ad-
ditionally by a mutation rate modifier trait y (Gillespie
1981) that determines how much each parent contributes
through mutation to the heritable variation in flowering
threshold among their offspring. Apart from this effect, the
modifier trait is assumed to be neutral. Koren et al. (2014)
and Raynes and Sniegowski (2014) give examples of muta-
tion rate modifiers and how they operate mechanistically.
Reduced DNA repair rate is one common mechanism for
achieving a higher overall mutation rate, with somemutator
alleles (in bacteria) producing hundred-fold rate increases
(Miller 1998; Raynes and Sniegowski 2014). Ness et al. (2015)
observed sevenfold variation in the mutation rate among
strains of Chlamydomonas and that mutator genotypes
arose, increasing the mutation rate approximately eightfold
in some replicates. They also found evidence for fine-scale
heterogeneity in the mutation rate and clusters of multiple
mutations occurring at closely linked sites. This provides
a potential mechanism for evolution to adjust relative mu-
tation rates at different loci.

Without mutation to counterbalance drift (and possibly
selection), the genic variance j2

a will eventually fall to 0,
while large mutation rates will increase j2

a . Evolution of y
thus provides a mechanism for natural selection to deter-
mine whether the segregation variance becomes large or
small and thus for the genetic variance of the trait to increase
or decrease over time. This is an indirectmechanism:ydirectly
affects mutational variance, and this eventually changes the
genic variance and segregation variance in the population.
Similar approaches were used, for example, by Kondrashov
(1995) to study selection on mutation rate when mutations
are unconditionally deleterious and by Kawecki (2000) to
study evolution of genetic canalization under constant and

fluctuating selection resulting from its effects on trait distribu-
tions.
To develop the model, consider first the dynamics of the

genic variance j2
a for a fixed mutation rate. The mutational

input to j2
a is

j2
m p 2

X

i

mij
2
i (a), ð11Þ

where the sum runs over the loci controlling the trait, mi is
the mutation rate at locus i, and j2

i (a) is the variance of
increments in allele effect due to mutation at locus i (Walsh
and Lynch 2018, ch. 26). For the reasons explained above,
we assume that the dominant forces affecting the genic
variance j2

a are drift and mutation. Then under the infini-
tesimal model with nonoverlapping generations, the ex-
pected variance in the next generation is

j2
a(t 1 1) p 12

1

2N e

� �

j2
a(t)1 j2

m, ð12Þ

where Ne is the effective population size (Walsh and Lynch
2018, ch. 24), the number of parents contributing to the
next generation. The first term on the right-hand side is
the reduction in variance due to drift, and the second is
the injection of variance by mutation. The mechanism pro-
ducing the factor 12 1=2N e in equation (12) is inbreeding,
causing identity by descent of a recruit’s two alleles at a lo-
cus affecting the trait (Walsh and Lynch 2018, ch. 2). Equa-
tion (12) is the simplest possible model for the dynamics of
j2
a , and factors absent from the infinitesimal model (e.g.,

inbreeding depression, epistasis) require more complicated
models (Walsh and Lynch 2018, ch. 24).
Both terms in equation (12) must be modified when

generations overlap, because new mutations and new in-
stances of identity by descent occur only in new recruits.
Let p(t) be the fraction of recruits in the total population
at time t 1 1; we then have

j2
a(t 1 1) p 12

p(t)

2N e

� �

j2
a(t)1 p(t)j2

m: ð13Þ

Second, we add a heritable trait y that modifies the mu-
tation rates mi in equation (11), such that an individual
with trait value y has mutation rate ymi at locus i. We as-
sume that y is also a multilocus quantitative trait whose
dynamics follow the Gaussian descendents approximation
of the infinitesimal model. Evolution of y provides a means
for selection to alter the segregation variance on flowering
threshold T and therefore to alter the level of heritable var-
iation for T in the population.
The input to the genetic variance from mutations in new

recruits will reflect the average value of y in their parents, a
weighted average in which parents are weighted in propor-
tion to the number of recruits they produce. Because re-
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cruits inherit the midparent value of y under the infinitesi-
mal model (plus segregation variance that does not affect
their mean breeding value), the weighted average value in
parents equals the average breeding value for y in recruits.
Letting ỹ (t) denote this value in the new recruits that join
the population at time t 1 1, we then have

j2
a(t 1 1) p 12

p(t)

2N e

� �

j2
a(t)1 ~y (t)p(t)j2

m: ð14Þ

Each of the parental y values (yp and yo) multiplies the
mutation rate at half of each offspring genome, and the
mutational input to an offspring’s trait variance is propor-
tional to the average mutation rate. The segregation vari-
ance for flowering threshold T in their offspring will there-
fore be

V0 p
j2
a(t)

2
1

yp 1 yo

2

� �

j2
m: ð15Þ

We studied evolution of y using IBMs incorporating
equations (14) and (15) and also through an invasion anal-
ysis using the 2D IPMs in which the parameter j2

m is re-
placed by yj2

m. To generate a resident environment (with
any value of y), we iterate the 2D IPM and record from
a long simulation information on the following: the num-
ber of recruits R(t) each year, as this determines how the
resident and an invading mutant interact; parameter values
(table 2), which for Carlina vary from year to year; and the

distribution of threshold breeding values T in pollen, as all
mutant ovules are fertilized by resident pollen. We then cal-
culatel (stablepopulation growth rate; Ellner et al. 2016) orlS

(stochastic population growth rate; Ellner et al. 2016) for a
rare mutant with mutation modifier value ~y. In order to do
this we need to know how ~y changes the genic variance as a
consequence of breeding with the resident. This calculation
(app. H) shows that on average, the genic variance of the mu-
tant lineage, ~j2

a(t), is

~j
2
a(t) ≈ j2

a(t)1
�pj2

m

11 �p=2N e

(~y 2 y), ð16Þ

where j2
a(t) is the genic variance in the resident lineage.

Evolution of Segregation Variance

For Oenothera we have a constant environment model,
with stabilizing selection about an optimum. The expecta-
tion therefore is for selection against producing genetically
variable offspring (Slatkin and Lande 1976), and indeed
this is the case (fig. 2). In Carlina we have a stochastic en-
vironment model, and so it is possible that the production
of genetically variable offspring could be advantageous as
a result of tracking, disruptive selection, or bet hedging; we
know from the PIP that the storage effect does not operate.
Both the IBM and invasion analysis suggest that this is in-
deed the case (fig. 3). Note that in both cases the strength
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Figure 2: A, Evolution of the mutation modifier y for Oenothera. Green line is the initial value. Gray lines are from individual-based sim-
ulations, and black line is the overall mean. The segregation variance for y was 0.0025 in the individual-based simulations. B, Fitness land-
scape from the integral projection model for an invading strategy with different y; l is the stable population growth rate. Green line is the
resident y, and red line is l p 1. Source file: Variance Dynamics Thresh Modifier.R.
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of selection on the mutation modifier is very small and so
the evolutionary trajectories are highly variable, even in a
constant environment (fig. 2A).

To explore whether these results are simply artifacts of
our specific speculative model in which evolution of a mu-
tation rate modifier is the driving force in the dynamics of
segregation variance, we also constructed and simulated
models in which segregation variance V0 or mutation var-
iance j2

m were themselves heritable quantitative traits on
which selection could act directly (see app. I). We make
no attempt to justify these models biologically; their only
purpose is to ask whether our conclusions are robust to
radical change in the mechanism whereby selection could
affect heritable variation in flowering threshold. The mod-
els are both IBMs with Carlina demography.

The first is diploid, identical to the IPM with a mutation
rate modifier except that the second heritable trait is the
segregation variance V0 itself, modeled as a multilocus trait
evolving according to the infinitesimal model. Successful
offspring inherit a segregation variance with mean equal to
the average V0 values of their two parents, with small var-
iance lognormal variation. The secondmodel is haploid, with
individuals characterized by size, flowering threshold, and
mutational variance j2

m. Offspring inherit their parent’s
flowering threshold with Gaussian noise having variance
equal to the parent’s mutational variance and their parent’s
mutational variance plus a small error. Simulation results

for these model (fig. I1) agree exactly with our previous
conclusions. In the first model, where selection can alter
the magnitude of segregation variance, there is selection
for increased segregation variance, resulting in high herita-
ble trait variation in the population. In the second model,
where all offspring closely resemble their parent (as in the
adaptive dynamics analysis), there is a collapse of genetic
diversity, as predicted from the PIP for the adaptive dy-
namics analysis of the Carlina model (fig. 1).

What Processes Maintain Heritable Trait Variance?

We have seen that fluctuating selection can maintain ge-
netic variation for flowering threshold in the Carlina sys-
tem when flowering threshold is modeled as a multilocus
quantitative trait, opposite to what occurs in an adaptive
dynamics analysis of flowering threshold evolution under
the same selective regime. Here we ask which of the pro-
cesses listed in the introduction is responsible for main-
taining genetic variation. The three possibilities are track-
ing, disruptive selection, and bet hedging, as the adaptive
dynamics analysis rules out storage effect as a possible mech-
anism, and our models do not include any heterozygote
advantage.
Tracking seems unlikely, as successive environments are

not correlated because parameters are drawn independently
each year. As a consequence, successive changes in Dx are
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Figure 3: A, Evolution of the mutation modifier y for Carlina. Green line is the initial value. Gray lines are from individual-based simula-
tions, and black line is the overall mean. The segregation variance for y was 0.0025 in the individual-based simulations. B, Fitness landscape
from the integral projection model for an invading strategy with different y; lS is the stochastic population growth rate. Green line is the
resident y, and red line is lS p 1. Source file: Carlina Evol Demog Dynamics Thresh Modifier 1.3.R.
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negatively autocorrelated (partial autocorrelations ≈ 20:05
for lags 1–5), exactly the opposite of what we would expect if
tracking were important.

Understanding the relative roles of disruptive selection
and bet hedging is complicated because the two processes
can overlap. In some situations, they are alternative de-
scriptions of the same phenomenon because production
of highly variable offspring is a mechanism for bet hedg-
ing (i.e., a means to increase geometric mean fitness at
the expense of arithmetic mean fitness [averaged over off-
spring and year-to-year environmental variability]; for one
example, see app. J). We therefore focus on disruptive se-
lection on the variance, as it can be quantified using well-
established methods.

In order to characterize selection operating on the var-
iance, we calculated the quadratic selection differential, us-
ing results from Lande and Arnold (1983). Specifically,
Lande and Arnold (1983, eq. [13]) showed that the change
in trait variance as a result of selection can be written as

V*
2 V p cov(w, (x2 �x)2)2 S2, ð17Þ

where * indicates a quantity after selection, w is relative fit-
ness, and S p �x*

2 �x. This holds for arbitrary selection on
an arbitrary trait distribution, so it applies to our models
despite their complications (different selection on survi-
vors and new recruits, and fitness resulting from demo-
graphic rates rather than a fitness function w(x)). The term
cov(w, (x2 �x)2) is the quadratic selection differential, de-
noted C. Variables V, V*, and S are all quantities that
our 2D IPMs can calculate at each time step (as we explain
below), so we can calculate C as

C p V*
2 V 1 S2: ð18Þ

In a stochastic environment the expected change in the var-
iance as a result of selection is (by rearranging eq. [18], tak-
ing expectations, and using the definition of S)

Ee(V*
2 V) p Ee(C)2 Ee(D�x2), ð19Þ

where the expectation is with respect to the joint distribu-
tion of demographic parameters and the size/genotype dis-
tribution. The second term on the right-hand side of equa-
tion (19) is the change in variance resulting from selection
on the mean. Therefore, the selection on the variance in a
stochastic environment is characterized by the arithmetic
mean quadratic selection differential Ee(C).

In these equations and the calculations that follow, it is im-
portant to remember that selection occurs within a year, and
so the selection response does not include the reduction in
variance from averaging of parental breeding values or the
increase in variance due to allele segregation (eq. [C1]). To
calculate Ee(C), we first calculate the means and variances
of the trait (flowering threshold) distributions in survivors

and gametes from the 2D IPM (eq. [10]; table 2), using the
methods explained by Ellner et al. (2016, sec. 2.5.5). The
mean trait after selection is then the weighted average of
the means in gametes and surviving individuals, with weights
equal to proportions of new recruits and survivors in the pop-
ulation. The variance after selection is calculated by combin-
ing the variances in survivors and gametes in simulations, us-
ing equation (D1). We then calculate C using equation (18).
The corresponding quadratic selection gradient, g, is g p

C=V2. For a constant environment model, C or g are equiv-
alent for quantifying equilibrium selection on the variance
because V converges to a constant value once the trait mean
has equilibrated. However, in a stochastic environment, this
is no longer true because the variance continues to fluctuate
from year to year. We therefore present Ee(C) for Carlina
and also give the distribution of gt to allow comparison with
literature compilations of g (Kingsolver et al. 2001; Stinch
combe et al. 2008).
For Oenothera, g ≈21 at equilibrium, indicating stabi-

lizing selection on the variance. For Carlina, the mean5
SE of the distribution of year-specific C and g values are
0:0250:0005 and 0:3550:01, respectively, and ≈53% of
the values are positive, which is consistent with disruptive
within-year selection. The disruptive selection in Carlina
occurs as a result of fluctuation in the environment, which
results in a mismatch between the current breeding value
distribution and the optimal flowering threshold in that
year. If Cr is the quadratic selection coefficient operating
on gametes and CS is another operating on survivors, then
the overall quadratic selection differential is

C p pCr 1 (12 p)Cs ð20Þ

(see app. K). The mean values are 0:00350:0006, 0:035
0:0009, and 0:0250:0005 for survival, gamete production,
and total C, respectively. The distributions of gr, gS, and
the overall g are shown in figure 4. The distributions of all
three g’s are very similar, with negative modes and a long
tail of positive values. This suggests that stabilizing selec-
tion frequently occurs (70% are negative for survival, 56%
negative for gamete production, and 47% for total g).
Some further insight in the selection operating on the var-

iance can be obtained using the approximate equations for
the variance dynamics (eqq. [F4], [F6]). Matching terms be-
tween the approximate variance equations and equation (20),
we find

C ≈ V 2 p
W 00

r (xj�x)

2 �Wr

1 (12 p)
W 00

s (xj�x)
�Ws

� �

, ð21Þ

and so for small variance (V ≈ 0), C ≈ 0 as it is of order V 2.
The change inmean due to selection is alsoO(V), so S2 is also
O(V 2). The actual year-to-year variance changes (in the 2D
IPM or corresponding IBM) result from selection, mating
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(averaging of parent breeding values), and segregation var-
iance. The latter two processes both have effects of magni-
tude O(V) p O(V0) and therefore dominate the effect of
selection when V is small, which explains the accuracy of
the neutral trait approximation for the steady state value
of V (fig. C1).

The positive mean of C for flowering threshold pro-
vides a mechanism for the initial upward evolution of
the mutation rate modifier y (fig. 3). A mutant with higher
y has higher segregation variance for flowering threshold
(app. H), so mutant individuals will be overrepresented at
the tails of the flowering threshold distribution, more or less
symetrically when segregation variance is the dominant term
in the variance dynamics. If y mutants have the same mean
flowering threshold as residents but higher variance, then
whenever C is positive the mutants will have higher mean
fitness, and the population mean y would evolve upward.
Upward selection on y would cease when the variance in
flowering threshold becomes high enough that individuals
in the tails are less fit on average than those near the mean.

Discussion

Our key biological finding is that fluctuating selection can
select for genetic variation in the threshold size for flow-
ering when it is modeled as a multilocus quantitative trait.
In contrast to Wittmann et al. (2017), our conclusion is
not a consequence of mechanisms giving an intrinisic ben-
efit to heterozygosity per se. Previous work using adaptive
dynamics and IPMs to model the evolution of the relation-
ship between plant size and flowering probability in Car-
lina showed that without constraints the ESS is a step
function (Childs et al. 2003, 2004; Rees and Ellner 2009,

2016), a single threshold without any genetic variation. In-
terestingly, there is a similar discrepancy between theory
and data with regard to seed dormancy. Simple adaptive dy-
namics models predict an ESS germination fraction (Ellner
1985), whereas many populations harbor a wide range of
germination fractions that have a genetic basis (e.g., Weh-
ner 1984; Koornneef et al. 2002; Saeidi 2008; Alonso-Blanco
et al. 2009). As with flowering threshold, the trait mean is
predicted well (Gremer and Venable 2014) but not the trait
variance.
The mismatch between the adaptive dynamics and quan-

titative genetics models’ predictions is a consequence of
how disruptive selection arises in our quantitative genetics
models: individuals in the tails of a highly variable offspring
distribution have higher fitness on average than those in the
middle. Such effects cannot occur in the adaptive dynamics
analysis because the conditions for maintaining an evolu-
tionarily stable polymorphism are derived under a scenario
where the resident and invader populations both consist of
a single genotype and are similar in trait values. The breeding
system also turns out to be important. In a haploid system,
where offspring inherit their parent’s genotype plus some
small mutational error, the fact that genetic variance would
grow without limit in the absence of selection means that
any positive amount of mutation leads to a situation where
trait variance is stabilized by the mutation-selection balance.
Hence there is a genetic load due to the constant removal of
low-fitness individuals from the tails of the trait distribution,
which selects for reducedmutation rates (fig. I1). In contrast,
in a diploid outcrossing species (as is assumed in our quan-
titative genetics models) there is a very rapid approach to an
equilibrium variance largely determined by the loss of varia-
tion through averaging of parental breeding values and gen-
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Figure 4: Distribution of within-year g values for Carlina for survivors (A), gametes (B), and in total (C), combining the effects of selection
through both routes. In each case, g is calculated after survival and gamete production but before mating occurs and the segregation variance
is added to the distribution of offspring breeding values. Source file: Carlina Evol Demog Dynamics Thresh.R.
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eration of variance through allele segregation in offspring.
This means that an optimal level of trait variation (if there
is one) could be achieved by evolution of the mutation rate,
without producing overly extreme individuals that are culled
by selection.

The quadratic selection gradient depends on the entire
distribution of breeding values within a population. The qua-
dratic selection differential is C p cov(w, (x2 �x)2), and so
if we Taylor expand relative fitness, w, we find (using the
formula cov(X,Y) p E(XY)2 E(X)E(Y))

C ≈ cov(w0 1 w1(x2 �x)1
w2

2
(x2 �x)2 1

w3

6
(x2 �x)3

1
w4

24
(x2 �x)4 1 :::, (x2 �x)2)

ð22Þ

p w1m3 1
w2

2
(m4 2m2

2)1
w3

6
(m5 2m2m3)

1
w4

24
(m6 2m2m4)1 :::, ð23Þ

wherewk p ∂
kw=∂xk evaluated at �x andmk is the kth central

moment of x. For a quadratic fitness function and Gaussian
distribution of x, we then have C p w2m

2
2, and so we would

expect quantitative genetic and adaptive dynamics models
to be in agreement because the condition for evolutionary
stability is w2 ! 0, which implies stabilizing selection on
the variance. Turelli and Barton (1994) demonstrate that
for the infinitesimal model even with fairly extreme trunca-
tion selection the deviations from a Gaussian distribution
of breeding values will be small. However, all the models
considered by Turelli and Barton (1994) assume nonover-
lapping generations. With overlapping generations, the dis-
tribution of breeding values at the next time step is amixture
of the distribution in survivors and the distribution in new
recruits. In general, this will not be Gaussian if selection is
different in survivors and recruits, and it can be bimodal
and skewed. For example, selection may be in opposite di-
rections in survivors and recruits; in the present case, there
is selection for small flowering thresholds in recruits and
large ones in survivors (Rees and Ellner 2016). An IPM is
useful in such systems because it projects the complete dis-
tribution of breeding values without any prior assumptions
about the shape of the distribution. It is also worth empha-
sizing that with overlapping generations, where individuals
experience multiple bouts of selection, the combined effects
of multiple bouts of selection can be counterintuitive (Mc-
Glothlin 2010). For example, if there is only directional se-
lection and it is always in the same direction, then there will
nonetheless be disruptive selection affecting the variance.

The accuracy of the neutral approximations for the var-
iance in both species—despite substantial selection on the

variance—is surprising. This suggests that neutral variance
models may often be a good approximation for quantitative
traits in diploid outcrossing species. The neutral model
works so well because large changes in the variance occur
as a result of random breeding (halving the variance) and
the generation of new variance from segregation. For Car-
lina, the within-year quadratic selection gradients, g, are
positive ≈50% of the time with a mode of ≈0. Interestingly,
this pattern in g is similar to that recorded in compilations
of g from the literature (Kingsolver et al. 2001; Stinchcombe
et al. 2008), suggesting that the pattern of selection observed
in Carlina is not unusual.
Whether the 2D IPM or various approximations pro-

vide a reasonable description of the eco-evolutionary dy-
namics depends on how robust and appropriate the infin-
itesimal model is as an approximation of the underlying
genetic system. Barton et al. (2017) suggest that the infin-
itesimal model will hold under general conditions; for the
additive case these include arbitrary selection and popula-
tion structure, provided that the segregation variance is
not too small or the traits too extreme (i.e., close to the
maximum or minimum possible values of the trait). Their
mathematical analysis suggests that the model’s error is at
most of order 1=(M)1=2, where M is the number of loci.
The responses observed in long-term selection experi-
ments are also often in good agreement with the infinites-
imal model (Weber and Diggins 1990; Johnson and Bar-
ton 2005), suggesting that the model is a good starting
point. However, the actual underlying mechanisms may
be different, in particular for the genic variance remaining
constant under directional selection. It occurs in the infin-
itesimal model because, with infinitely many loci determin-
ing the trait, changes in trait variance are entirely due to
changes in linkage disequilibrium, while allele frequencies
at each locus are unchanged (Bulmer 1971). Hill (1982) ar-
gued that new mutations are an important factor, and Bar-
ton and de Vladar (2009) suggested that genic variance re-
mains roughly constant under directional selection because
increased variance due to rare alleles becoming more com-
mon is balanced by the decrease due to common alleles ap-
proaching fixation.
The infinitesimal model is also challenged by the many

empirical examples of heritable trait change within a few
generations that involve substantial allele frequency change
at a few loci (Hanski 2012; Thompson 2013). This has been
observed in artificial selection in the laboratory and also
in natural populations (Messer et al. 2016); for example,
Bergland et al. (2014) observed consistent seasonal fre-
quency oscillations in hundreds of SNPs in a natural or-
chard population of Drosophila. However, it is not clear
how representative these examples are or to what extent
the infinitesimal model’s key predictions are compromised
as a result.

ð22Þ
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When genetic variability is maintained by the storage ef-
fect, the theoretically predicted form of polymorphism is ei-
ther a small number of diallelic or triallelic loci with alleles
of large effect or an abrupt shift from zero to many poly-
morphic loci, with a small number of alleles at each locus
when the environmental variance becomes sufficient to
maintain genetic variability, depending on the distribution
of environmental fluctuations (Ellner and Sasaki 1996).
The latter situation would be consistent with the infinites-
imal model, but the former would be inconsistent with any
multivariate Gaussian or near-Gaussian model, including the
infinitesimal model. Ellner and Sasaki (1996) emphasized
that testing their models is “complicated by factors which
are difficult to measure, such as the distribution of environ-
mental fluctuations and the shape of the selection func-
tion.” For IPMs there is now a well-developed set of statis-
tical tools for estimating the distribution of environmental
effects on demography (Metcalf et al. 2015), and once this
has been done, the shape of the selection function is an
emergent feature of the fitted model.

We have emphasized that size per se should not be
treated as the evolving heritable trait in a size-structured
IPM. Apart from this restriction, any heritable trait can
be modeled using the approach we present here (e.g., seed
size, seed dormancy, size-dependent sex allocation), so long
as it is possible to model demographic rates as joint func-
tions of an individual’s size and their breeding value for
the evolving trait, and we have described how extensions
of our approach can be used when demographic rates de-
pend on the actual trait value. We consider here a single
heritable trait, interacting with size as a dynamic but non-
heritable trait, but in principle the approach can be used
with multiple traits using quantitative genetic theory for
multivariate trait evolution (as in Barfield et al. 2011).

The methods we used to estimate segregation variance
in both field populations are rather crude and are based
on an upper bound on the additive genetic variance pres-
ent. However, in an animal population with a known ped-
igree, more accurate estimates of the additive genetic var-
iance are possible (e.g., Childs et al. 2016), and then IPMs
can be used to refine the resulting neutral estimate of the
segregation variance by accounting for the effects of selec-
tion on the relationship between the segregation variance
and the additive genetic variance. Breeding experiments
can also be used to estimate the additive genetic variance
(Wesselingh and de Jong 1995; Wesselingh and Klinkha-
mer 1996; Zas and Sampedro 2015). In a selection exper-
iment on Cynoglossum officinale, another monocarpic pe-
rennial, Wesselingh and de Jong (1995) were able to create
populations with nonoverlapping flowering threshold dis-
tributions after one generation of selection, demonstrating
that flowering thresholds have a genetic basis and that nat-
ural populations harbor extensive genetic variation. The re-

sults presented here suggest that temporal variation in the
environment may well be important in maintaining the
high levels of genetic variation observed in these systems.
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Typical Carlina vulgaris that, having waited to flower for several years, is about to flower and then die. Photo credit: Mark Rees.
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