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Charging Pattern Optimization for Lithium-Ion
Batteries with An Electrothermal-Aging Model

Kailong Liu, Member, IEEE, Changfu Zou, Member, IEEE, Kang Li, Senior member, IEEE, Torsten Wik

Abstract—This paper applies advanced battery model-
ing and multi-objective constrained nonlinear optimization
techniques to derive suitable charging patterns for lithium-
ion batteries. Three important yet competing charging ob-
jectives, including battery health, charging time, and en-
ergy conversion efficiency, are taken into account simul-
taneously. These optimization objectives are first subject
to a high-fidelity battery model that is synthesized from
recently developed individual electrical, thermal, and aging
models. The coupling relationship and multiple timescales
among different model dynamics are identified. Further-
more, constraints are considered explicitly on the current,
voltage, state-of-charge, and temperature. Such a complex
charging problem is solved by using an ensemble multi-
objective biogeography-based optimization (EM-BBO) ap-
proach. As a result, two charging patterns, namely the
constant current-constant voltage (CC-CV) and multistage
constant current-constant voltage (MCC-CV), are optimized
to balance various combinations of charging objectives.
Different trade-offs and sensitive elements are compared
and analyzed based on the Pareto frontiers. Illustrative
results demonstrate that the proposed strategy can effec-
tively offer feasible health-conscious charging with desir-
able trade-offs among charging speed and energy conver-
sion efficiency under different demand priorities.

Index Terms—Electric vehicles, lithium-ion batteries, fast
charging, battery charging optimization, electrothermal-
aging model.

I. INTRODUCTION

L Ithium-ion (Li-ion) batteries have been preferably ex-

ploited as energy and power sources to drive electric

vehicles (EVs) due to their performance, financial, and envi-

ronmental superiorities over other candidates, like fuel cells,

supercapacitor, lead-acid batteries, and nickel-metal-hydride

batteries [?], [1]. However, if compared to internal combustion

engines associated with fossil fuels, Li-ion batteries are still

inferior in the upfront cost, “refueling” time, driving range, and

service life [?]. Although innovations in battery technologies

in materials and chemistry may solve the problems in the long
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TABLE I
GLOBAL NOMENCLATURE.

Ah Accumulated current throughput in ampere-hours
C1, C2 Capacity of the first and second RC networks
Cc, Cs Internal and surface heat capacity
Cn Nominal capacity in ampere-seconds

Cnloss Relative capacity loss of the battery in percentage
Ea Activation energy
I Charging current

OCV Open circuit voltage
Q Heat generation
R0 Internal resistance

R1, R2 Resistance of the first and second RC networks
Rc, Ru Heat conduction and convection resistance
Rg Universal gas constant

Tamb Ambient temperature
Tc, Ts Core and surface temperature
V Terminal voltage

V1, V2 Voltage of the first and second RC networks

run, mass deployment of EVs into the current market requires

an immediate solution [2], [3]. This intuitively motivates

the development of intelligent battery management systems,

aiming to extract the full potential of batteries.

In addition to the matter of time, charging strategies are

influential to energy efficiency and battery aging [4]–[6].

Meanwhile, fast charging can be an effective way to alleviate

vehicle range anxiety. Therefore, designing proper charging

strategies is one of the most important tasks in battery manage-

ment systems. This is, however, technically challenging due to

three major factors. First, design objectives, including time, en-

ergy efficiency, and battery state-of-health, are simultaneously

involved, interrelated, and potentially competing with each

other. Second, these objectives are subject to a complex battery

system, consisting of coupled nonlinear electrical, thermal,

and aging dynamics over disperse timescales [7]. Additionally,

constraints must be imposed, e.g., on current, voltage, and

temperature, to protect the battery from overcharging and over-

heating along with premature degradation and safety issues.

To address the above challenges, some attempts have been

made on the development of charging strategies based on

different types of models that monitor and predict in-situ

battery states. Physics-based models developed from first

principles are gaining increased interest in advanced battery

charging management. On the basis of electrochemical models,

nonlinear optimization problems were formulated to minimize

the charging duration in [8]. Linear-time-varying and nonlin-

ear model predictive control algorithms have recently been

proposed for battery charging in [9], [10], where minimum
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time problems subject to health-related constraints and electro-

chemical models were considered. Although attractive charg-

ing performance has been demonstrated in the simulation-

based environment, this class of strategies is still far from

wide practical deployment. This is because that identification

and observability studies for first-principle battery models

that capture all the coupled nonlinear dynamics are non-

trivial tasks. Formal technique tools with provable convergence

have not been well established. Furthermore, physics-based

battery models that are initially described by nonlinear partial

differential equations (see [11] for details) require intensive

computational resources and can therefore be overly expensive

to implement in real-time.

To overcome the above technical and economic issues,

charging strategies based on the equivalent circuit models

have been designed. For example, by using a simplified

model constituted by an ideal voltage source and an internal

resistor, Abdollahi et al. [12] derived an analytical solution

to a linear optimization problem for battery charging. Built

upon a nonlinear electrothermal-aging model, Perez et al.

[13] developed an open-loop optimal controller to balance

battery degradation and the charging speed. Based on an

electrothermal battery model, Zou et al. [14] formulated a

constrained predictive control problem to reduce charging time

and suppress temperature increase. Besides, multi-objective

optimization techniques have also been applied in battery

charging management. Hu et al. [15] formulated a dual-

objective optimization problem for battery charging based on a

first-order resistor-capacitor model, where the pseudo-spectral

technique was employed to minimize the charging time and

energy loss. In [16], a specific optimization problem consid-

ering charging time and battery temperature was formulated

based on an enhanced thermal behavior model, then the genetic

algorithm was used to optimize charging current. Liu et al.

[17] formulated a multi-objective function to consider both

surface and internal temperature rises during charging, then a

heuristic method named Teaching-learning-based-optimization

along with a coupled thermoelectric model was applied to

search the optimal charging profile. By designing a modified

isolated buck converter based on a Rint battery model, a

two-layer charging approach was developed to schedule the

charging current profile by considering user demand, cell

equalization and temperature effects in [18]. These referred

works appear to be promising for scheduling battery charging.

However, they partially addressed the charging problem by

accounting for a subset of the objectives and battery dynamics,

potentially leading to sub-optimal solutions.

Charging approaches with predefined profiles are adopted

widely in the battery industry due to their reliability, simplicity,

and cost-effectiveness. The most well-known charging pattern

is constant current-constant voltage (CC-CV) [19]. In this ap-

proach, a battery is charged by a constant current (CC) first un-

til its terminal voltage rises up to a predefined threshold. Then,

the battery starts to be charged with a constant voltage (CV),

entailing the continuous step-down of the charging current.

Another popular charging pattern, named multistage constant

current-constant voltage (MCC-CV), consists of several CC

phases with decreased current rates and a CV phase in the

end [19]. For these approaches, tuning the parameters, such as

current rates and voltage thresholds, can influence the charging

performance significantly [20]. Trial-and-error methods for

different charging protocols have been performed in [19].

With the maximum charging capacity as the main objective,

the Fuzzy-control approach [21] and Taguchi method [22]

were used to search optimal charging patterns. However, these

algorithms have not explicitly considered battery internal real-

time information especially aging state and consequently, the

obtained solutions are heuristic.

In this regard, model-based optimization algorithms are

exploited to find the optimal tuning parameters for CC-CV and

MCC-CV charging patterns. Biogeography-based optimization

(BBO) is a powerful specialized technique tool proposed by

Simon et al. [23] for handling complex optimization problems.

Many variants of BBO have been applied successfully in

industrial applications, thanks to their fast convergence perfor-

mance and being free of parameter tunning [24]. Therefore,

for battery management, BBO may be a good candidate to

search for proper charging.

Based on the above discussions, this paper applies advanced

battery modeling and multi-objective optimization technolo-

gies to derive the suitable CC-CV and MCC-CV patterns,

enabling satisfactory trade-offs among key but contradictory

charging objectives of Li-ion batteries under different de-

mand priorities. Specifically, three key original contributions

are made in this paper. First, crucial charging objectives in

terms of charging time, battery aging, and energy loss are

sequentially formulated for battery charging operation. These

objectives are subject to a high-fidelity electrothermal-aging

model and hard constraints imposed on the system’s physical

variables. Next, as the battery charging optimization involving

coupled highly nonlinear dynamics over different timescales is

a very complex process, a framework based on the EM-BBO

approach is developed to efficiently search charging patterns

that can optimally trade-off these conflicting objectives. Fi-

nally, due to the fact that the Pareto frontier provides a set of

optimal solutions that can be presented graphically to demon-

strate the conditions where one situation cannot be improved

without making another situation worse, any resultant CC-CV

and MCC-CV patterns can be compared graphically by using

the Pareto frontiers. The effects of sensitive elements on the

optimization results are also analyzed. It is worth noting that

the proposed algorithm is readily extendable to other battery

types with suitable models.

The remainder of this paper is structured as follows. Sec-

tion II presents the electrothermal-aging battery model. Based

on this model, different charging patterns and optimization

objectives are formulated in Section III. The model-based

optimization procedure for charging patterns is proposed in

Section IV and then implemented in Section V, followed by

concluding summaries of this work in Section VI.

II. BATTERY ELECTROTHERMAL-AGING MODEL

Various mathematical models have been developed to cap-

ture battery behaviors. For instance, comprehensive studies

have been performed in [25] for different electrical models



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

-

+

Coolant Flow

Temperature

dependent

parameters

Heat

generation

R0

V0 V1 V2

V

C1 C2

R2R1

Tf

OCV (SOC)

(a)

(b)

Fig. 1. An electrothermal model for a lithium-ion battery [14]. (a) The
equivalent circuit electrical model. (b) A lumped thermal model.

and in [26] for battery aging models. This study considers

a complete battery model synthesized from a second-order

resistor-capacitor (RC) electrical model, a two-state lumped

thermal model [27], and a capacity loss model [28].

1) Battery electrothermal model. The diagram of coupled

electrothermal battery model is shown in Fig 1. By using the

notations defined in Table I, this electrothermal model can be

mathematically given by:

dSOC(t)

dt
=

I(t)

Cn
(1a)

dV1(t)

dt
=

V1(t)

R1(t)C1(t)
+

I(t)

C1(t)
(1b)

dV2(t)

dt
=

V2(t)

R2(t)C2(t)
+

I(t)

C2(t)
(1c)

dTs(t)

dt
=

Tamb − Ts(t)

RuCs
−

Ts(t)− Tc(t)

RcCs
(1d)

dTc(t)

dt
=

Ts(t)− Tc(t)

RcCc
+

Q(t)

Cc
(1e)

where V1 describes the voltage due to the charging transfer

process, and V2 is the voltage to reproduce battery diffusion

process. In (1e), the heat generation Q(t) is governed by:

Q(t) = I(t)Tc(t)
dOCV (t)

dTc(t)
+ I(t) (V (t)−OCV (t)) (2)

The first term on the right-hand side of (2) is the heat generated

by the entropy change, and the second term stands for the

Joule’s heating. The open circuit voltage OCV (t) have a

nonlinear relation with the SOC level. The terminal voltage

V (t) is defined as:

V (t) = OCV (SOC(t)) +R0(t)I(t) + V1(t) + V2(t) (3)

It is worth noting that battery electrical and thermal char-

acteristics in the model (1)-(3) are strongly coupled. To be

specific, parameters in RC pairs (e.g., R1, C1, R2, and C2)

are time-varying and dependent on SOC(t) and Tc(t). Mean-

while, the resistance R0(t) will be appreciably influenced by

the battery core temperature Tc(t). It is evident from (2) that

the heat generation Q(t) is also affected by the electrical

dynamics.

In this study, cylindrical 26650 lithium iron phosphate

(LiFePO4) cells are adopted, and each of them has a 3.3 V

nominal voltage. These battery cells are capable of offering

long cycle life with a small impedance increase. For example,

at 25oC, more than 5000 full depth of discharge (DOD) cycles

can be delivered before the battery’s capacity reduces to its end

of life (EOL). The calibration technique and corresponding

parameters of the battery electrothermal model can be found

in [27].

2) Battery aging model. For Li-ion battery charging oper-

ation, the cycle life rather than calendar life is focused on.

In this study, the accumulation effects of ampere-hour (Ah)

throughput on the battery capacity degradation are captured

by a cycle-life model based on the Arrhenius equation in the

form [28]:

Cnloss(f,Ah) = δfunc(f)×Ahz (4)

where f stands for the set of charging stress factors to cause

battery aging, z is a power law parameter, and δfunc(f) is a

nonlinear function to capture the effects of charging factors on

battery aging phenomena. Here the Ah throughput represents

the amount of charge delivered by both charging and dis-

charging during battery cycling operation. This Ah throughput

model has been shown to have a powerful capability to capture

the effects of charging behavior on the battery capacity loss

[29]. The factors influencing battery degradation are multiple

and complex, and their characterization and quantification are

an actively ongoing research topic for Li-ion batteries. For

charging operation where voltage bounds are often imposed,

the charging current rate, SOC, and average temperature

are the three key factors accelerating a battery’s aging. For

the validation of this aging model, according to Suri and

Onori [28], data can be specified in terms of average current

rate, average SOC, and average battery temperature for three

different cycle cases. By these authors, δfunc(f) in such a

model has been further expressed as:

δfunc(f) =
(

α · ¯SOC + β
)

·

[

−Ea + η · Īc
Rg · (273.15 + T̄b)

]

(5)

where α and β are the parameters to reflect the effects of

battery SOC, and η defines the current dependence. ¯SOC, Īc
and T̄b are specified in terms of average battery SOC, average

current rate and average battery temperature during one cycle.

Parameters of this battery aging model should be identified

using experimental cycling data. A detailed identification pro-

cess is referred to [28] and not provided here for brevity. This

validated aging model presents a satisfactory result to describe

the battery capacity degradation during cycling operation. The

values of α and β at different SOC levels are given in Table II.

Battery degradation also has a strong coupling relationship

with the electrothermal dynamics. The degraded capacity will

be predicted by this aging model, based on which the specific

aging objective can be formulated.

3) Coupled electrothermal-aging model. The complete bat-

tery model describing the electrothermal-aging phenomena has

been presented. All the variables are divided into two parts

with different timescales. In the fast timescale associated with

electrothermal dynamics and a time index t, the corresponding

variables are defined as the input vector u(t) := I(t), the

output vector y(t) := [V (t), R0(t), R1(t), R2(t)]
T , and the
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TABLE II
VALUES OF α AND β AT DIFFERENT SOC LEVELS [28].

Parameters SOC < 0.45 SOC ≥ 0.45
α 2897.8 2694.3
β 7413.1 6025.6

state vector x(t) := [SOC(t), V1(t), V2(t), Tc(t), Ts(t)]
T

. In

the slow timescale, the time index τ is used to indicate the τ -th

charging cycle. After obtaining the average SOC level, average

C-rate, average battery temperature, and Ah throughput over

the τ -th charging cycle as ¯SOC(τ), Īc(τ), T̄b(τ), and Ah(τ),
respectively, the battery’s capacity loss can be predicted based

on (4)-(5). The corresponding variables are ua(τ) and ya(τ)
that stand for the input and output vectors of the aging model,

respectively. Based on these definitions, the obtained battery

model (1)-(5) can be re-written in a compact form:

ẋ(t) =A(t)x(t) +B(t)u(t) (6a)

y(t) = h(x(t), u(t)) (6b)

ua(τ) = [ ¯SOC(τ), Īc(τ), T̄b(τ), Ah(τ)]T (6c)

ya(τ) = Cnloss

(

¯SOC(τ), Īc(τ), T̄b(τ), Ah(τ)
)

(6d)

where both A(t) and B(t) are time-varying matrices. For a

given charging pattern and initial battery states, the transient

terminal voltage, SOC, and surface/core temperatures during

the charging process can be predicted recursively according to

(6). Based on the obtained fast state x(t), ua can be calculated

and is further selected as the input for the aging model to

predict the battery capacity loss ya caused by this specific

charging pattern.

III. CHARGING PATTERNS AND OBJECTIVES DESIGN

Based on the battery model obtained in the previous section,

model-based algorithms can be developed to optimize charging

patterns regarding various charging objectives.

1) Charging patterns. The first charging pattern to be

optimized for Li-ion batteries is CC-CV, as shown in Fig. 2(a).

The key factors in such a CC-CV charging pattern are the

current rate Icc in a CC stage and the voltage value Vcv in a

CV stage. For the most extensively used Li-ion batteries, Vcv

is generally set as the maximum cut-off voltage to improve

battery capacity utilization. For Icc, on the one hand, the

battery’s charging time can be shortened by using a large Icc,

but this may lead to serious lithium plating, low efficiency of

energy conversion, and overheating. All these phenomena have

significant effects on the battery service life. Namely, the saved

time may be achieved at the sacrifice of battery state-of-health.

Therefore, it is imperative to carry out appropriate current rates

in the CC-CV pattern to not only speed up the battery charging

process but also suppress the battery’s degradation.

The second type of charging patterns is MCC-CV shown

in Fig. 2(b). The open problem for using MCC-CV charging

patterns is to set the appropriate values of various currents

(IC1 > IC2 > · · · > ICN ) and voltages (Vboost and Vch). The

charging speed of MCC-CV patterns is mainly determined by

the number of CC stages and their corresponding current rates.

It should be noted that IC1 needs to be large enough to achieve

Fig. 2. Current and voltage profiles for CC-CV and MCC-CV patterns.

quick charging throughput within the boost interval. This stage

is ended when the terminal voltage reaches Vboost. A large cut-

off voltage Vch is generally adopted to guarantee utilization

of battery capacity. The similar rules for adjusting the battery

degradation and energy conversion efficiency as for CC-CV

patterns can also be applied to optimize MCC-CV charging

patterns.

2) Charging objectives. To charge the batteries fast, energy-

efficiently, and healthily, the charging speed, energy conver-

sion efficiency, and battery aging are explicitly considered as

the optimization objectives.

For the battery charging speed, a faster charging pattern

intuitively means that less time is required in the total charging

process. The cost function JCT for battery charging time (CT)

is easily expressed as:

JCT = ∆t · tCT (7)

where ∆t signifies the sampling time for digital system imple-

mentation, and tCT is the aggregated sampling number when

the battery is charged from an initial SOC to its target value.

∆t relates to t according to k∆t = t and k = 1, · · · , tCT .

For the battery energy conversion, higher efficiency of

energy conversion means less energy loss occurred in the total

charging process. The cost function JEL for energy loss (EL)

is described as:

JEL = ∆t

tCT
∑

t=0

[

R0(t)I
2(t) +

V 2

1
(t)

R1(t)
+

V 2

2
(t)

R2(t)

]

(8)

where all the elements such as resistances and voltages in this

function can be obtained from the battery model (6).

In EV applications, the EOL of Li-ion batteries is generally

set as the cycle number or throughput when the capacity loss

reaches 20% of its nominal capacity. Assuming the battery

is charged by the same pattern to finish the same task in

each cycle, the maximum battery life by using this specified

charging pattern can be calculated through:

Ahtotal =
[

20/δfunc
(

¯SOC, Īc, T̄b

)]1/z
(9)

where Ahtotal represents the maximum battery life, i.e. the

corresponding total charging throughput in Ah, which is af-

fected by the ¯SOC, Īc, and T̄b of the selected charging pattern.

For the battery aging objective, the charging throughput in

each charging cycle is an accumulated value and can be

expressed as:

Aheach =
1

3600

∫ tCT

0

I(t)dt ≈
∆t

3600

tCT
∑

t=0

I(t). (10)
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Then, the cost function JBA for battery aging (BA) is

formulated in the following form as:

JBA = Aheach/Ahtotal (11)

where JBA represents the reciprocal of the charging cycle

number by using the specified charging pattern. It is easy to

know that a smaller value of JBA gives the battery a longer

service life.

Once the charging pattern is optimized by an appropriate

approach built on the battery electrothermal-aging model, all

the elements of the three objective functions in (7)-(11) can be

obtained. As the input to the dynamic system, the current plays

a vital role in optimizing charging patterns and therefore is

selected as the decision variable to be optimized for achieving

health-conscious charging.

IV. OPTIMAL BATTERY CHARGING STRATEGY

In this section, a novel model-based optimization algorithm,

subject to the model in Section II and the objectives in

Section III, is formulated to derive optimized charging patterns

for Li-ion batteries.

For the MCC-CV pattern, the current ICV (t) at the CV

stage can be expressed as:

ICV (t) = [Vch − V1(t)− V2(t)−OCV (t)] /R0(t). (12)

The voltage Vboost in the boost interval is generally equal to

or slightly larger than the cut-off voltage Vch [19]. When the

input current profile is determined, all the battery electrical and

thermal behaviors can be reproduced by the electrothermal

model. Then, the associated aging dynamics can also be

predicted from (6c)-(6d).

The goal to search suitable MCC-CV charging patterns

can be formulated as the following nonlinear constrained

optimization problem:

Minimize and equilibrate charging objectives: JCT , JEL,

and JBA,

Subject to: The battery model (6) and operation constraints:

SOC0 ≤ SOC(t) ≤SOCtCT (13a)

Imin ≤ I(t) ≤Imax (13b)

Vmin ≤ V (t) ≤Vmax (13c)

Vmin ≤ Vch ≤Vboost ≤ Vmax (13d)

Ts,min ≤ Ts(t) ≤Ts,max (13e)

where SOC0 and SOCtCT are the battery’s initial and target

SOC levels, Imin and Imax are the minimum and maximum

charging currents, Vmin and Vmax stand for the thresholds of

battery terminal voltage, Ts,min and Ts,max are the highest and

lowest permissible temperatures for battery effective cycling

operation and safety. By (13d), both Vboost and Vch are

bounded within the range of allowable voltages.

The CC-CV charging pattern can be regarded as a special

case of MCC-CV, where only one CC stage and one CV

stage are incorporated. The optimization of CC-CV/MCC-CV

charging patterns is a complex task due to at least the fol-

lowing four facets: 1) many elements, such as resistances and

Fig. 3. The procedure to optimize CC-CV/MCC-CV charging patterns
based on EM-BBO.

capacitances in the battery’s electrothermal model, are time-

varying parameters dependent on the SOC and temperature;

2) the relations of capacity loss and battery electrothermal

dynamics exist in a highly nonlinear form; 3) hard constraints

need to be carefully considered in the optimization process;

and 4) proper trade-offs between various objectives during

battery charging need to be manipulated meticulously. These

bring significant challenges for optimization tools and call

for effective optimization approaches to search for charging

patterns with the ability to optimally equilibrate conflicting

objectives.

As reviewed in the introduction, EM-BBO can be a good

candidate to solve the battery charging optimization problem.

In the following, an ensemble multi-objective BBO (EM-BBO)

approach adopted from [24] is used for battery charging pat-

tern optimization. Rather than a sole BBO approach, four latest

improved BBO variants are combined in parallel population to

derive this EM-BBO approach. In particular, the individuals

of EM-BBO are always updated by the more appropriate BBO

approach, resulting in better optimization performance than the

sole BBO approach. The detailed calculation process of this

method is elaborated in [24]. Here, the emphasis is placed

on the EM-BBO implementation procedure for optimization

of CC-CV and MCC-CV patterns, as illustrated in Fig. 3.

This procedure is further explained in a four-step process as

follows:

Step 1: Set the parameters for battery charging. The detailed

parameters are the initial and terminal SOC levels: SOC0 and
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SOCtCT ; hard constraints: Imin, Imax, Vmin, Vmax, Ts,min,

and Ts,max; and the number of CC stages, where CC-CV has

one CC stage.

Step 2: Set the charging objectives. Various user demands

will lead to a different emphasis on the charging objectives.

Select the suitable combination of the key but conflicting

objectives based on the user requirements.

Step 3: Set design parameters for the EM-BBO approach:

the generation number and initial parallel population sizes. Set

the parameters for the battery electrothermal-aging model.

Step 4: For j = 1 to jmax do

1) Calculate the objective functions for CC stages until the

number of CC stages is reached. One CC stage will transfer to

another CC stage as the terminal voltage rises to the voltage

threshold.

2) Calculate the same objective functions for the CV stage

until the battery SOC reaches its target SOCtCT .

3) Evaluate the objective functions JCT , JEL, and JBA for

the total charging process by combining each function terms

in all the CC stages and CV stage. Then, the corresponding

Pareto frontier for the optimized charging pattern can be

formulated.

4) Optimize the CC-CV/MCC-CV pattern by the EM-

BBO approach. When the stop criterion jmax is reached, the

optimization process will be stopped.

By using this procedure, both the CC-CV and MCC-CV

patterns can be optimized to achieve battery health-conscious

charging. Meanwhile, other crucial but probably conflicting

charging objectives will also be minimized and equilibrated.

V. RESULTS AND DISCUSSIONS

In this section, comparisons of different optimization ap-

proaches are conducted first to examine the performance of

EM-BBO. Then, the optimization results of CC-CV patterns

are presented, followed by four tests to quantify the effects of

several key parameters on the optimization results of MCC-

CV patterns. A comparison between the CC-CV and MCC-CV

charging is also carried out to investigate their efficacies for

battery fast health-conscious charging. In these tests, ∆t is

set as 1s. The Li-ion battery is charged from an initial state

SOC0 = 0.1 to the target SOCtCT = 0.95. Both the ambient

temperature and initial battery temperature are set to be 25oC.

The constraints in (13b)-(13e) are specified as: Imin = 0A,

Imax = 15A, Vmin = 3.0V, Vmax = 3.6V, Ts,min = 5oC, and

Ts,max = 45oC.

A. Comparisons of optimization approaches

To evaluate the EM-BBO performance, four popular op-

timization approaches used in the battery domain, includ-

ing vector evaluated BBO (VE-BBO), non-dominated sorting

BBO (NS-BBO) [24], non-dominated sorting genetic algo-

rithm II (NSGA-II) [30], and multi-objective particle swarm

optimization (MOPSO) [31], are compared first for different

combinations of two charging objectives. All optimization

approaches are programmed in Matlab with a 2.40 GHz Intel

Pentium 4 CPU. The loop-based, scalar-oriented codes have
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Fig. 4. Optimization results of EM-BBO, VE-BBO, NS-BBO, NSGA-II,
and MOPSO for dual objectives.

been revised by using Matlab matrix and vector operations dur-

ing programming. Besides, multiple parallel subpopulations

have also been applied to reduce the computational effort.

More details on improvements of computation efficiency are

furnished in [24]. Here, the initial parallel population sizes of

EM-BBO are all set to the same number Np. The values of Np

and the generation number Gm are 300 and 50, respectively,

for all optimization approaches. For BBO, parameters are self-

adaptive adjusted based on the fitness value [24]. For NSGA-

II, the mating pool size is set as 0.5 of the whole population,

the mutation probability and crossover probability are selected

as 1/3 and 0.9, respectively. For MOPSO, the weighting

parameter is decreased linearly from 0.4 to 0.2, while the

velocity limit parameter is set as 0.5. All the above parameter

settings are suggested by the existing publications [30], [31].

The optimization results derived from the five approaches are

compared in Fig. 4 in terms of different combinations of two

objectives.

It is evident that both the objectives of battery aging and

energy loss are contradictory with the charging speed. In

Fig. 4(a)-(b), the Pareto frontiers obtained from EM-BBO

are much closer to the origin of the rectangular coordinates,

indicating that smaller objective values can be achieved. Be-

sides, for NSGA-II and MOPSO, the optimal solution sets

are far away from the origin. The corresponding particles are

distributed in the narrow regions, which implies that enough

information can hardly be presented to the decision makers.

Therefore, these two approaches are not suitable for solving

the charging optimization problem. For NS-BBO and VE-

BBO, the optimal solution sets move towards the left-down,

but the particles still converge into relatively small areas. This

means that the whole Pareto frontier cannot be reached in
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TABLE III
THE RESULTS OF DIFFERENT OPTIMIZATION ALGORITHMS REGARDING

THE MINIMUM VALUES OF JCT , JEL , JBA , ALONG WITH M-IGD,
V-IGD AND Tm .

Methods JCT
JEL JBA M-IGD V-IGD

Tm[103] [10−4] [10−3] [10−6]
True 732 1.294 1.223 – – –

EM-BBO 732 1.294 1.224 2.65 3.91 168.26

VE-BBO 749 1.296 1.225 3.14 6.82 273.48
NS-BBO 762 1.297 1.226 3.88 6.72 319.39
NSGA-II 781 1.299 1.227 5.79 7.46 191.62
MOPSO 783 1.301 1.229 5.91 7.38 224.38

NS-BBO and VE-BBO. In contrast, the Pareto frontiers of

EM-BBO stretch so long that a variety of optimal solutions

are achieved.

In order to give quantitative assessments for the converging

performance of implemented optimization approaches, the

inverted generational distance (IGD) defined in (14) and the

time metric Tm representing the average running time, have

been utilized as performance indicators in this study.

IGD =

∑

i∈Pa
∗d(i, Pa)

|P ∗
a |

(14)

where Pa stands for the obtained Pareto frontier. P ∗

a is the

solution set of the best distributed Pareto frontier. d(i, Pa)
means the minimum Euclidean distance between i and Pa.

|P ∗

a | represents the cardinality of P ∗

a . IGD has been justified

as an effective metric to evaluate the convergence and spread

performance in many real-world multi-objective optimization

applications [32] and is hence adopted in this work. A smaller

value of IGD implies better converging performance of a

multi-objective optimization algorithm.

Table III shows comparative results for the minimum values

of the three objective functions, along with the mean values

of IGD (M-IGD), variance values of IGD (V-IGD) and Tm,

corresponding to five multi-objective optimization methods. 20

independent runs are performed for each optimization prob-

lem. The average fitness values by using the single-objective

BBO are set as the true criteria to judge the optimization

results. Clearly, the minimum values of JCT , JEL, and JBA

calculated from EM-BBO are all closer to the true criteria than

other optimization methods. It is also evident that all listed

BBO approaches achieve lower values of IGD in Table III,

which means that they can easily converge to the uniformly

distributed Pareto frontier. The M-IGD and V-IGD for EM-

BBO are just 2.65 × 10−3 and 3.91 × 10−6 respectively,

which are significantly better than other counterparts. Besides,

EM-BBO also presents a competitive performance in terms

of running time Tm. This is mainly due to the distinctive

migration behavior and ensemble learning ability of EM-

BBO. Accordingly, it can be concluded that EM-BBO presents

more efficient convergence performance in optimizing the

charging patterns whilst equilibrating these different charging

objectives.

Interestingly, from Fig. 4(c), all the optimal solutions are

just single points. Physically, this phenomenon means that

the energy conversion efficiency and battery aging have no

conflicts with each other.
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Fig. 6. Charging profiles for the selected CC-CV cases.

B. CC-CV Optimization

We first investigate results by using the EM-BBO approach

to optimize the CC-CV charging pattern. The upper voltage

threshold for the CV stage is set as Vcv = 3.6V according to

specifications provided by the battery’s manufacturer.

Considering JCT , JEL, and JBA as the optimization ob-

jectives simultaneously, the corresponding Pareto frontier is

shown in Fig. 5. Six cases from the optimal CC-CV set

are selected randomly, and their charging dynamic profiles in

terms of current, terminal voltage, and SOC are compared in

Fig. 6. It can be readily found that the constant current in

CCCV1 is the largest one, i.e. 14.98A. This has caused the

terminal voltage to rapidly reach the upper voltage threshold,

followed by a long CV stage with the gradually reduced

charging current. As a result, the CCCV1 has the shortest

charging time, i.e. JCT = 728, but the highest energy loss

(JEL = 1.778×103) and battery aging (JBA = 1.562×10−4).

On the contrary, as the ICC decreases down till the minimum

value in CCCV6, the JCT will become larger together with

the lower JEL and JBA. Quantitatively, as compared to the

conditions of CCCV1, the charging time increases to 976s

(34.1% increase) whereas the energy conversion efficiency and
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Fig. 7. Pareto frontiers for the MCC-CV with different cut-off voltages.

battery aging achieve JEL = 1.303 × 103 (26.7% decrease)

and JBA = 1.228 × 10−4 (21.4% decrease) in the case of

CCCV6 with the smallest constant current 7.52A. It should

be noted that different user demands in EV applications will

lead to different emphases on the charging objectives. These

Pareto frontiers can guide EV users to adjust CC-CV patterns

for satisfying specific demands in various applications.

C. MCC-CV Optimization

Next, we explore optimal MCC-CV charging patterns by

again implementing the EM-BBO algorithm. Relative to the

optimization problem for CC-CV, more decision variables,

including voltage thresholds, current decrements in different

CC stages, and temperature, are involved and required to be

analyzed. The increased problem size makes the MCC-CV

optimization more complicated.

1) Effects of voltage thresholds. Voltage thresholds of bat-

tery operation play a crucial role in determining the charge

capacity stored within a charging task. In this study, Vboost is

set to equal to Vch, with the purpose of improving the capacity

utilization. The candidate pool of the initial current IC1 is

from 7.5A to 15A. Other parameters of MCC-CV pattern

are specified as: the number of CC stages is 4, the current

decrement after the boost interval is ∆BI = 2A, current

decrements in other CC stages are all set as ∆I = 1.5A.

Five values of Vch, i.e. 3.60V, 3.57V, 3.54V, 3.51V, and 3.48V,

are chosen to investigate the effect of voltage thresholds on

optimization results.

At least three salient observations can be obtained from

Fig. 7 and are given as follows: 1) a larger Vch results in

a better solution set in the sense of Pareto frontier. 2) When

Vch reduces, the Pareto frontiers move to the right, implying

that the charging time in the solution set becomes larger.

Therefore, a small voltage threshold has an adverse effect on

the charging speed. 3) Both the battery’s aging and energy loss

can be cut down when Vch decreases. This is because that low

voltage thresholds are able to limit the current magnitude in

the average sense and suppress temperature increase. These

eventually lead to high efficiency of energy conversion and

reduced battery capacity loss.

2) Effects of the number of CC stages. Fig. 8 shows the

Pareto frontiers of MCC-CV charging patterns with different

CC stages. In this optimization, the bounds of IC1 and the

values of ∆BI and ∆I are specified as before. The cut-off

voltage is defined as Vch = 3.6V. The number of CC stages
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vary from 2 to 5. According to the obtained solution sets, the

Pareto frontiers move towards the upper-right direction when

the stage number increases. For the MCC-CV patterns with

the same initial charging current, it is evident that a smaller

number of CC stages lead to a larger average charging current,

associated with shortened charging time. On the contrary, the

battery temperature rise will be restrained by adding more CC

stages. At the same time, the energy loss and aged capacity

can be reduced. In addition, it is reflected that the difference

between charging strategies with 4 and 5 CC stages are not

significant. By further increasing the number of CC stages, it

will not bring noticeable effects on the optimization results.

3) Effects of current decrement. The impacts of current

decrements are also studied. In this optimization, parameters

are specified as: IC1 = 10A, Vch = 3.6V, and the number

of CC stages is 4. The candidate pools of initial current

decrements are set as: ∆BI is within 1.5A to 2A, and ∆I

is within 1A to 1.5A. After optimization, the corresponding

Pareto frontier is depicted in Fig. 9. It is found that even

for the same initial current rate, different combinations of

current decrements would lead to different optimization results

among these charging objectives. From the Pareto frontier,

increasing current decrements will improve energy conversion

efficiency and restrain battery capacity loss, but also sacrifice

the charging speed.

Five cases from the solution set are selected and their

parameters are detailed in Table IV. Case 1 is characterized

by the smallest current decrements, namely ∆BI = 1.505A

and ∆I = 1.004A. Quantitatively, it gives the fastest charging

speed with JCT = 829s but the largest battery aging (JBA =
1.383 × 10−4) and energy loss (JEL = 1.539 × 103). The

battery charging time will become larger with the gradually

increased current decrements. For Case 5 with the largest

current decrements, i.e. ∆BI = 1.999A and ∆I = 1.499A,



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE IV
DETAILED PARAMETERS FOR THE SELECTED MCC-CV CASES WITH

VARIOUS CURRENT DECREMENTS.

Cases ∆BI ∆I JCT JBA[10−4] JEL[10
3]

Case1 1.505 1.004 829 1.383 1.539
Case2 1.640 1.141 834 1.379 1.531
Case3 1.842 1.020 839 1.376 1.525
Case4 1.964 1.162 844 1.371 1.517
Case5 1.999 1.499 850 1.368 1.511
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Fig. 10. Pareto frontier for the MCC-CV with different ambient tempera-
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the smallest battery aging (JBA = 1.368× 10−4) and energy

loss (JEL = 1.511×103) can be achieved at the expense of the

largest charging time (JCT = 850s). Based on these results, it

can be concluded that by using small current decrements, the

charging speed can be enhanced whereas the energy loss and

battery degradation would be aggravated.

4) Effects of ambient temperature. The ambient temperature

Tamb also plays an important role in the charging process

through heat convection governed by (1d). To quantitatively

investigate its impact, the MCC-CV optimization problems

are performed under four different values of Tamb, i.e. 15oC,

22oC, 29oC, and 36oC.

The optimization results relating to different ambient tem-

peratures are illustrated in Fig. 10. Clearly, a larger ambient

temperature results in the Pareto frontier moving to the up-

per, namely more battery capacity degradation occurs. The

ranges of Pareto frontiers become wider by increasing ambient

temperatures. Quantitatively, compared to the case with the

lowest temperature Tamb = 15oC, the minimum charging time

of the charging pattern calculated at Tamb = 36oC reduces

to 553s, corresponding to a 24.9% decrease; whereas the

energy loss and battery aging are JEL = 1.655 × 103 and

JBA = 5.023×10−4, which are 31.9% and 225.3% more than

its lowest temperature counterpart. Not surprisingly, increasing

Tamb will lead to reduced charging time but aggravated energy

loss and capacity degradation.

D. Comparisons of CC-CV and MCC-CV Patterns

The analysis in Subsections V-B and V-C has justified that

the electrothermal characteristics have significant impacts on

optimization results of charging patterns. To further evaluate

the efficacies of CC-CV and MCC-CV patterns, comparisons

of their optimized solutions for battery health-conscious fast

charging are carried out. In the MCC-CV optimization prob-

lem, the number of CC stages is specified as 4 and candidate
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pools of initial current increments are set as ∆BI ∈ [1.5, 2]A
and ∆I ∈ [1, 1.5]A. Other parameters are the same for both

of them, namely, Vch is fixed as 3.6V, and the candidate pool

for initial current is set within 7.5A and 15A.

By executing the EM-BBO algorithm with two optimization

objectives at each time, the obtained Pareto frontiers are

depicted in Fig. 11. From Fig. 11(a)-(b), it is seen that the

Pareto frontier for the CC-CV pattern is closer to the origin

for both the trade-offs between charging time and aging, and

the trade-offs between charging time and energy loss. Three

cases corresponding to charging times of 750s, 850s, and 950s

in the Pareto frontiers are selected for further analysis. For

these cases, their dynamic charging profiles and the associated

characteristic parameters are provided in Fig. 12 and Table V,

respectively. Quantitatively, the initial constant currents in the

cases of MCC-CV1, MCC-CV2, and MCC-CV3 are 13.571A,

9.684A, and 7.895A, respectively, which are over 8%, 7%,

and 1% more than their corresponding CC-CV counterparts.

The additional time required by MCC-CV patterns mainly

compensates for stepwise decreased currents along the CC

stages. When the charging time is the same for MCC-CV and

CC-CV patterns, the battery aging JBA in the optimization

solution set for the former pattern is always slightly larger

than that of the later. With the same SOC change, namely the

same ¯SOC, such a difference is mainly due to a large average

current Īc used in the MCC-CV pattern associated with a high

average battery temperature T̄b. Meanwhile, because more

electric energy has been transformed into heat, MCC-CV

suffers from relatively low energy efficiency.

The Pareto frontiers, originated from a dual-objective opti-

mization problem concerning energy loss and battery aging,
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Fig. 12. Charging profiles for the optimized CC-CV and MCC-CV cases
focus on speed and battery aging.

TABLE V
CHARACTERISTIC PARAMETERS OF THE SELECTED CC-CV AND

MCC-CV CASES.

Cases
ICC ∆BI ∆I JCT

JBA JEL

(IC1) [10−4] [103]
CC-CV1 12.531 – – 750 1.509 1.704
CC-CV2 9.085 – – 850 1.346 1.491
CC-CV3 7.798 – – 950 1.251 1.342

MCC-CV1 13.571 1.655 1.405 750 1.517 1.718
MCC-CV2 9.684 1.646 1.146 850 1.359 1.504
MCC-CV3 7.895 1.526 1.026 950 1.255 1.348

are presented in Fig. 11(c). These Pareto curves become single

points for both CC-CV and MCC-CV patterns, as observed in

Fig. 4. For the case of CC-CV(A) with an initial constant

current of 7.504A, the best trade-off point is achieved as

JEL = 1.300 × 103 and JBA = 1.226 × 10−4. For the

case of MCC-CV(B) with IC1 = 7.503A, ∆BI = 1.998A,

and ∆I = 1.497A, the best trade-off point becomes JEL =
1.294× 103 and JBA = 1.224× 10−4, which are 0.47% and

0.23% less than those in CC-CV(A). The maximum current

decrements are specified for MCC-CV(B), causing the current

profile to reduce dramatically at the end of every CC stage.

This optimized MCC-CV(B) favors the energy conversion

efficiency and battery health but slow down the charging

speed; the charging time is 998s, which is 1.7% more than

the optimized CC-CV(A).

The evolution profiles of battery capacity loss over charging

cycles for the optimized CC-CV(A) and MCC-CV(B) are

shown in Fig. 13. For CC-CV(A), the capacity loss increases to

6.29% after 1000 charging cycles, while MCC-CV(B) achieves

5.25% capacity loss, which is 16.5% less than the optimized

CC-CV pattern. In summary, relative to CC-CV with the

same initial constant current, the MCC-CV pattern is able

to slow down the battery degradation but sacrifices some

charging speed. This decreased capacity loss rate is mainly
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Fig. 13. Evolution of battery capacity loss over charging cycles for CC-
CV(A) and MCC-CV(B) charging patterns.

caused by some large stepwise current decrements occurring

at the time when the battery terminal voltage reaches its

thresholds during the MCC-CV pattern, which will slow down

the Li ionic intercalation/de-intercalation process and further

reduce unfavorable electrochemical side reactions inside Li-

ion battery.

In practice, various charging applications would result in

different demand priorities. For home charging, sufficient

charging time can be assumed (usually 6-8h) so the priorities

in this case become the high energy conversion efficiency and

low battery capacity loss. For station charging with the demand

of charging batteries within a short period, the priority here

would be the fast charging speed. Hence, we can select suitable

CC-CV/MCC-CV patterns for different priorities based on the

corresponding Pareto frontiers.

E. Further Discussions

This article focuses on the development of a charging pat-

tern optimization framework for Li-ion batteries. The key idea

is to search for an optimal balance of different charging pref-

erences by explicitly taking the electrothermal-aging dynamics

and health-related constraints into account. Indeed, developing

a sufficiently accurate and general battery model including the

aging behavior is an open research problem. However, the

optimization objectives, constraints, and battery models can

be extended or replaced by other proper ones for the same

battery or other cell chemistries. Future research work includes

experimental validation of the obtained charging patterns and

their implementation as a part of battery management systems.

VI. CONCLUSIONS

An innovative model-based strategy has been proposed

to enable health-conscious, energy-efficient, fast charging of

Li-ion batteries. This is achieved by initially modeling the

battery’s electrothermal and aging dynamics in two timescales

as well as their nonlinear coupling relationships. Then, the

objectives in battery aging, charging speed, and energy con-

version efficiency are formulated, subject to current, volt-

age, SOC, and temperature constraints. The highly nonlinear

constrained optimization problem is solved by an EM-BBO

approach, resulting in suitable CC-CV and MCC-CV patterns

for different priorities. With different combinations of charging

objectives and sensitive elements, the trade-offs in the sense of

Pareto frontier are comprehensively compared and analyzed.
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As compared to the health-oriented CC-CV pattern, the cor-

responding MCC-CV pattern can restrain the capacity loss

by over 16% after 1000 charging cycles, while its charging

speed for each cycle is sacrificed by nearly 2% accordingly.

The proposed charging strategy with Pareto frontiers intends

to guide designers to adjust charging patterns for their specific

applications.
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