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Abstract:

Thermal management plays a critical role in battery operations to vengafety and prolong battery life,
especiallyin high power applications such as electric vehicles. Alumped parahBiebattery thermal model
(BTM) is usually preferred for real-time thermal management dudéstsimple structure and ease of
implementation. Considering the time-varying model parameters {lgegvarying convecte heat dissipation
coefficient under different cooling conditiongn online parameter estimation scheme is needed to improve
modelling accuracy. In this paper, a new formulation of adapfv8TM is proposed. Unlike the conventional
LP BTMs that only consider convection heat transfer, the radiativeraester is also considered in the proposed
model to better approximate the physical heat dissipation process, lehithito an improved modelling
accuracyOn the other hand, the radiative heat transfer introduces nonlineatieyBIMandposes challenge
to online parameter estimation. To tackle this problem, the simplifiecedeiivstrumental variable approach is
proposed for real-time parameter estimation by reformulating tHsnean model equations into a linea-the-
parameter manneFinally, test data are collected using a Li ion battery. The experimental tesuttverified
the accuracy of the proposed BTM and the effectiveness of the proposedparameter estimation algorithm.
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1 Introduction

Lithium ion batteries (LIBs) are the technology of choice in applications rarfgiim consumer electronic
devices to electric vehicles (EVdue to their relatively high energy and power densities. The mosficagn
shortcoming of LIBs, however, is the changing performanceefficdency under different operation conditions
[1]. Knowing and understanding varying battery properties are crucial irirctethre operational capability of the
battery. One of the significant factors impacting battery performantsadety is temperature [2, 3] and therefore,
observing and tracking the battery temperature is one of the key funofitins battery management system
(BMS) [4]. Model-based methods are typically employed for battery teatyerprediction and control.

There are different types of battery thermal models (B)Tanid each model is designed to fulfill requirements for
a specific application. Models with high complexity are typically usedfftine system analys[5] while simpler
models are preferred for real-time control, prediction and diagnostic appig#i8]. Models are often classified
aswhite, grey or blaclkox The distinction is based on how much prior knowledfjéhe physical system is
required to generate the model. The wiite-model is typically derived using the first principle laws and its
parameters are mostly obtained from experiments and physical propéttiesystem [9]. The one, two or three
dimensional electrochemical-thermal models of the battery presented 1d]afeknown as white-box models
These models have already included the radiation heat transfer, for ingtgi&g, This class of models offers
significant knowledge for analysing the batteries but requires high compatatiost. On the other hand, the
black-box modelling approach requires little physical principles of the battery and relézgtavariven statistical
estimation theory [9]There are different approaches within this class such as artificial newakrke{16, 17].
These black-box models can give accurate temperature prediction providedftb@ns data are available for
model training, but at the cost of losing physical relevance of modehptees such as the thermal capacity and
thermal conductivity. Grepox model is a compromise of white-box model and data-driven blackvuaiel.
One such ‘grey approach is the reduced-order thermal model derived from the parfeaédifal equations used
in the electrochemical-thermal models. The order reduction occursdapée in the discretisation stage where
each control volume or element is considered to be a first-order sid-nho other approaches such as the
frequency-based method in [18], the transcendental transfer functiotaisezband then reduced a&selected-



order rational transfer function. The challenge when using reduced-orddels is that although the
computational time is relatively less than the time required by the electrocheraballit is still not sufficiently
efficient for online control applications [18, 19]

Another type of greysox modelsis lumped-parameter (LP) model, which can be considered to be the most
efficient approach in real-time thermal management applications [7, 8] dine simplicity of parametrization

and ease of implementatiomhe model structure is derived based on physical knowledge, while the model
parameters are estimated using test data. Different types of LP BTMbdav@roposed in the literatyge 9]
[20-22] [6]. For example, [2@2] [6] proposed a lumped equivalent circuit-based thermal model (LEGGiM)
batteries. The model can be used not only for capturing the evolutiba sfirface temperature, but also for the
battery internal temperature prediction and estimation. The LECTM is suitable-fmand thermal management
applications due to the simple model structure, low computational complegig, of parametrization, and
acceptable accuracy. One limitation of the LECTM is that only the ctimedteat dissipation is considered in
the heat transfer sub-model, while the heat radiation is normally neglétedonvective transfer is governed

by the ambient temperature surrounding the battery while the radiativéetramgoverned by the surface
geometry and depends on the material, colour, and texture of the surfiaaity, this heat radiatiaczanaccount

for a large percentage in the overall battery heat dissipation when the ambieertateme is close to the cell
temperature [6, 7, 235]. The contribution of the radiative heat transfer can be significant andbeoames
dominant with respect to convective heat transfer as the operatipgregnre becomes higher [28] study on

heat dissipation [27] showed that radiative heat from cells can constitit&0%o of total heat dissipation during
oven exposure testing herefore, the radiative heat transfer needs to be considered in the LECh&tter
approximate the physical heat dissipation process and to improve the madatgd-urthermore, by including

the radiative heat transfer in the BTM, the estimated convective term better represeatsutth physical
phenomenon, as will be explained by the experimental results in thegletiens

Another key issue in the LECTM is that the model parameters depehé environment temperature which is
influenced by the ambient temperature or the flow rate of the cooling liftwen a control aspect, the thermal
management is requested, on one hand, to drive the battery withirtithal eporking temperature range and, on
the other, to maximise the energy saving through thermal coptralimising the forced convection so that the
use of the natural convection is maximised [28]. In the caseaddaonvection, the convective coefficient varies
with the coolant mass and flow rate and is a key factor for desigiingooling system. Therefore, an online
parameter estimation scheme is needed to track varying parameterbatteing model in order to improve the

model accuracy for control applications.

Once the model structure is determined, the next step is to estimate thetpesaifhe simplified refined
instrumental variable method in continuous-time domain (SRIVChaas employed to estimate the parameters
[29]. The SRIVC is the direct parameter estimation approach employiltgrahd instrumental variables (IVs)

to providean optimal statistical solution of parameter estimation for the selected thermal mtidabises. To

deal with the problem of time-varying model parameters of the INE(he adaptive SRIVC method is adopted
which can in iterative manneroptimise the filter parameters and generates estimates that are asymptotically
efficient (minimum variance) and consistent. The resulted optimal filteeisfttre more adaptable compared to

the user-defined ones in the traditional approaches, such as the state variabtgyéheralised Poisson moment
functional methods. Moreover, the SRIVC method offarsapid convergence, providing consistent and
asymptotically unbiased parameter estimates even facing with non-uniform wisis [80, 31].

The noveltesand contributions are summarised as follows. First, to imphevmbdelling accuracy, the radiative
heat transfer term is integrated in the proposed BTM. Conseguéstistimated model parameters become more
representative of the physical thermal phenomena of the bhaeygnd, to deal with the parameter estimation
problem with model nonlinearity introduced by the radiative heat tlrfenSRIVC is adopted to estimate the
model parameters directly from observable data such as the current, \aithdmattery surface temperature
Third, an online parameter estimation scheme is proposed to keep trackvafyhey parameters based on the
nonlinear model. This is achieved by reformulating the original neatimodel equations to a multi-input single-
output linearin-the-parameter structure. This adaptability improves the prediction acafrtheymodel. Finally,
experimental test data are collected using a 10Ah 3.2V prismatic Q#eBll, under two different heat
dissipation conditions, i.e., natural and forced air convectibms effectiveness of the proposed model and the
online parameter estimation algorithm is validated by the experimental results.



This paper is organised as follows, Sections 2 addresses the thermateraddion from first principle while
Section 3 shows the reformulation for descripting the model in a lingdhe-parameter way. The simplified
refined instrumental variable methods for off-line and online parameteratistinare addressed in Section 4 and
5, respectively. The experimental dasapresentedn Section 6 and this data is used for model parameter
estimation using the method given in Sections 3 and 4. The resuffliofe model comparison andnline
parameter estimation are discussed in Section 7. Finally, conclusions &ed fotk are presented in Secti#n

2 Lumped Parameter Simplified Heat Transfer Model Description

Conservation of energy for a Li-ion cell with lumped thermal capdwEtances accumulation, heat dissipation,
and heat generation terms as:

RO

dt = Qgen(t) - Qloss( t) (l)

which describes the evolution of cell temperat@irewith time.In (1),c= pC, is the battery thermal capagity
wherep is the bulk cell densitykg-m™], C_ the bulk specific heat capacifiy-J- kg™ - K], Q. (1) is the heat

generation rate in the battefW] and Q_.(t) the heat exchanged with the surrounding environment, which is

given by the sum of the convective and radiative heat transfer terms.Meetiee heat transfer term is expressed
throughNewton’s law as:

Q.() =N (T() - T(1) )

where T, ,(t) is the ambient temperature afg=hA, where h is the convective transfer coefficient

[W-m?.-K7 and A the thermal area [fh The radiative heat transfer follows the Stefan-Boltzmann law,
expressed as follows:

QM =h(T*()-Turs(V) (3)

whereh =¢o A, where¢ is the emissivity coefficient which defines how efficiently the surfanéseenergy
relative to a blackbody and the Stefan-Boltzmann constar{.67x 10° [W n?- K*]) .

There are four sources of heat generation in a lithium ion batteey ahdrging/discharging operatioimgluding:
heat generated from resistive dissipation (Joule heating), the entropy ofl tleacton, side reactions and the
heat of mixing [32]. As shown by Uddin et al. [33], in opinat Joule heating dominates heat generation.
Physically, this contribution to heat generation represents the irreversfiftivie dissipation caused by the
deviation of the surface over-potential, which is the difference betteesolid phase potenti&), (t) and
electrolyte phase potenti&),(t) , from the volume averaged open circuit voltage (OCV) due to a resistétiee

passage of current)(and is expressed as:
Qqen(t) = i(®) (V(t) ~OCV(1)) (4)

wherei(t) andv(t) are the measurable current and terminal voltage respect®ely(t) is the battery OCV

that can be obtained from Galvanostatic Intermittent Titration Tests [34] anchigtiafuof state of charge (SaC)
It is assumed that the battery SOC (and thus OCV) is obtained through coulaniimg®r other existing
techniques such as those presented in [1, 35, 36]

This paper considers two scenarios for heat dissipafign(t) . The first model only considers the convective
heat dissipation, i.eQ(t)=Q.(1) in (1) and is termed convection-based thermal model (CTM) while the

second model considers both radiation and convection in heat dissipatio, &) = Q.(t) + Q,(?) in (1) and
is known as convection and radiation-based thermal model (CRTM).



3 Problem Refor mulation

The CRTM is the nonlinear model with respect to cell temperature, due fouttile order temperature terms
arising from the radiative heat transfer defined in (3). This may lepbtdems with commutitive properties of
the filter with the nonlinear ordinary differential equations, see. [B@]deal with this problem, the CRTM
reformulated to be a lineam-the-parameters modédence, the CRTM in (1) can be described by the multi-input
single-output ordinary differential equation, expresseapolynomial form as:

Quen(t) = i(V(t) —~OC V(1))
K ) =T*(t) o

AD)T (t) =b,Quen() ~b. K, + & T,
T, (1) =T(t)+e(t)

(5)

mb

whereT_(t) is the measured temperatue€t) represents the measuring noise which is assumed to be white (zero
mean) noise, the ambient temperatdrg, is assumed constant and the nonlinear tarht) can be
approximated a3 *(t) ~ T, (t) [37] (because the signal to noise ratio is large in the case df,{tg). A(D) is

the output polynomial obtained from (1) and (2), and expressed as:

A(D)=D+a, ®)

h h

whereg, =— , b, =}, b, =— and the differential operatdp is defined such that):%. It can be noted
c c c

that the derivative term of the ambient temperatufd,(, ) is neglected because the ambient temperature is

assumed to be constant.

The CTM is a special case of the CRTM whenr= K. =0. This leads to the removal of all the radiative terms in

(5).
4 SRIVC Method for Thermal Model

In this section, the SRIVC method is adopted for the model paraestieration. The minimised error function
is given by:

bg

Dy e B
m Qgen(t) -——K r(t) + Tamt (7)

& 0=T, 1)~ Aoy K0 2

where the ambient temperatufe,, is assumed to be constant. Considering zero initial conditions, the Laplace
transform of (7) is given as:

% (3P k(3BT p (8)
A(s) ™7 As) As) ™

& (8) =T (9~

whereT, . (s) = }Tamb and the Laplace transform of the output polynomial is expressed as:
S

A(s)=s+4, 9)
To approximate the derivative terms, while retainings) on the left-hand side of (8) without filtering filter
1
—— is introduced in the first term on the right-hand side of (8)s Teads to the introduction of an output

A(s)

polynomial A(s) in the first term of (8) as follows:



& (8) = T.(9- el $- b— KB+ @ L) (10)
A3y W9~ g ¥ P MO oy
Equation (0) can then be transformed back to the time-domain as:
1
& (t)=AD) ﬁTm(t) bg A(D) Qgen() b A(D) K () aoA(D) amk 1D
Equation (1) can be expressed in the filtered form as:
£(t) = ADJT, ¢ (1) +by(D)Qqer (1) =bAD) K Lt) + 8T, KD 12
where
m F (t) = A(D) —T, (t)
gen F(t) A(D) gen( )
13
K el)= A(D)K )
amn F( ) A(,D) amb

Subsequently, the expressidt?) is re-arranged into a pseudo-regression form, which can be sodireglthe
least squares (LS) solution:

DTm,lr(tk) = §0|I t)o+s(t,) (14

where the indexk’ indicates the sample number and fys(t,) is the sampled forrof T_ . (t), the &(t,) is

the modelling error, angy! and & are in turn the regression and parameter vectors given as:
T T
PE ) = Tam et —Trelt) Quer(t) —K £(t))] (15

0=[a, b (16
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Figure 1: State variable filter implementation. Filtering T, is considered.

The block diagram of the filter irl8) which can be mapped into Simulink is givep in FigugEigure 1 shows
how the filter can generate tfig, . (t, ) signal and their derivatives from(t, ) .

The SRIVC method is implemented as a two-stage algorithm provided below:

Stage 1: The initial model parameters of the output polynomial need to be olitaittesl purpose of deducing
the time derivatives of the output signals, which are subsequenthinustade 2Several existing techniques such
as state variable filtering can be applied for this purpose. The obtained initiakpersaiare used by the stable
filter, whose the denominator has the same order as the output polyAgijali.e.,

1
D+1

17

The parameters in (16) can be initiatias 59 6, =1, Br (6,) =0, and &,(6,) =1, where hatted symbols represent
the estimated values.

Stage 2: Iteratively repeat steps (1) to (1V), defined below, until the suheafquare difference betweénand

~ A A 2
6,_,is satisfactorily small, for exampE(é?I —6}71) <10° where the subscrigt indicates the current iteration

step and -1 indicates the previous iteration step.

I Generate the simulated output to be instrumental variable:

. b(4.) ICH 29,
T(t) - A(’D,alil) Qgen(t) A(D,Hlil) Kr(t)+AA(’D,Q71)Tamt (18)

Il. Pre-filterT,,, T, Quens K, @and T, using A(D,Hi) in (13) and Figure [L.

Il. Extract the parameters using an instrumental variable LS procedure:

g {ﬁ > . (1) (tkﬂ Y6 (6) DT (1) 9



where the regression vectgf is obtained by5) and the regression vector of instrumental variables,

& (1), is defined as follows:

@F (tk)=|:TamhF_-|:F(tk) ngn,F(t) _Rr,F(t):| (20)

IV.  Updatey, (), 6(4).AD.4) and4,(4,).

The above procedure identifies offline the model parameters, whichuvttlef be usedsinitialization of
the online parameter estimation procedure in the next section.

5 Online Parameter Estimation and Updating

This section presents how the convective coefficient camliee tracked, as this convective coefficient depends
on the heat dissipation condition, i.e., natural or forced air conve@orithe other hand, both the thermal
capacitance and the radiative coefficient are assumed to be constant [3#jtainéd from off-line model
estimation using the experimental data

The regression vector i14) is reformulated and expressed as:
y(t) = (/’(;n, F(t)0o,+ ety (1)

where the subscrif@n refers to online and,,, = a,, @}, - (t,) = Tame — Tur (t) @nd the outputy(t,) is
calculated using heat generations and the estimated radiative heat transfer as:

y(t,) = DT, (6) —B,Que Lt + b.K, DT, 22

Following the classical derivation of the recursiv& (RLS) algorithm with an inherent mechanism for tracking
time-varying parameters, the general form of the RLS is expressetias [3

-1

L(tk) = P(tk )@On,F(tk) (1+ (Dgn (Y P( tk)é’On F(tk))
Oon(t) = Oont) + Lt (Y (1) = 0, 0 000r(t 1)) 23

P(1) =7 (P(1)- L(3) A5 (8 P( 1)

where P is the parameter covariance matrix. The initial valuéX@f are selected aB(0)= x| where >0
and | is an identity matrix while1 is the forgetting factor. In this paper, these parameters are selecteassuch
A=0.9999 to avoid parameter fluctuation [31] aR0)=10"x 1. This is becausé,,(0) is the estimated

vector, 6, (tk)‘tk:0 =0,,,(0), derived from the off-line SRIVC estimatiom ¢epresents the iteration number

and| =1 in the case of the initial value). This means there is no need for largetmmns.

The iterative online estimation process at each times summarised as follows:

I Setl =1, G5,,(t) = Oon(tes) -
I Update A(D,6y,,(t)) in (13).
M. Filter T,,, Qe K, and T, using A(D,éoh',fl(tk)) as given in13).

IV.  Obtain the estimated paramet%’l(tk) using RLS given inZ3).
V. Updatel , I =1 +1.



VI. Steps Il to V are repeated for four iterations where convergence of Hragdar is very rapid. It requires
two or three iterations, for convergence analysis, see [39].

VI Setdy, (t) = Oona(ty) -

6 Experimental Setup

In this work, commercially availablei-ion prismatic cells with a LiFeP{QLFP) cathode and Li(graphite)
anode were used. An electronic charger and an electronic load were used to dyattetheThe test procedure
was controlled by a NI Compact-RIO system, which also logged the tesindétdjng the voltage, current and
temperature measurements. The rated capacity and nominal voltage of theecBllsAh and 3.2V, respectively.
The battery casing is made of Aluminium with dimension® £%.8 x 1.8 cm. Two thermocouples were attached
to the battery shell surface, as illustrated in Figurén2order to isolate the effect of fluctuating ambient
temperatures, all the tests were carried o254t within an environmental chamber. The battery was cycled using
a programmable charger and an electronic load (with associated monitoringhtnoti smitware) to generate the
DC load profile. The difference between the two temperature measusewantvithin 2C and therefore, either
one could be selected as the approximate overall cell temperature. The maximmanrate is 3C, i.e., 30A, and
the limit voltage for charging and discharging are 3.65V and 2.5V, respectively

The experiments were conducted at the EV and Smart Grid Lab, Queen’s University Belfast and experimental
data under two different heat dissipation scenarios were collectednipadson. Each test dataset consisted of
asequence of charging/discharging at different rates, and two self-heastagt3C pulsed charging-discharging
were also applied to raise the cell temperature to a higher level. The sampling iatérgdk] for the current,
voltage and temperature measurements.

The test data are collected under two different heat dissipation conditionetBatasd 2, illustrated e
were collected under natural air convection. One data set was used for mddsehing processes and the
other one was used for validation. While forced air convection usengads employed when collecting test data
set 3, as shown [in Figur¢ 4. Due to the different heat dissipation congditierisermal model parameters will be
different. This data set was then used for investigating the online paraestiteation scheme presented in
Section 5

Thermal Chamber

R =

Figure 2: A schematic diagram of the battery cell.
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Figure 3: Two natural convection data sets, one for modelling anathtler for validation, are presented in black solid and
grey solid lines, respectively where (A) shows current profile, (B) shows megasitage (C) gives approximated SoC
using coulomb counting approach given in [36] and (D) shows leeatragtion profile corresponding to (4) and self-heat test
part is from 7.8-8.4 [hr] in (A, B and D) and zoomed in under &gahe.
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7 Resultsand Discussion
The model evaluation process can be divitéa different phases as summarised below:
i. Experimental phasehis phase is to collect a set of data including the battery current, voitdge a
temperature for natural and forcing convection scenarios (Section 6)
ii. Offline modelling and validation: the collected data under the natural convection (dataset®)
is used for the offline parameter estimation of CTM and CRTM and madielation using the
algorithm in Section 4.
iii. Online modelling: The test data under the forced convection (dataseti€)d for validating the
online parameter estimation scheme. Here, the offline estimated CRTM parmaretarsed as
parameter initialization for the online estimation.

iv. The results obtagd from ii and iii are then discussed.

7.1  Offline model parameter estimation results

This section presents a comparison of the modelling accuracy betweghithand CRTM. The parameters of
CTM and CRTM have been estimated offline using the first dataset under thed aataonvectiorasshown in
[Figure 3by the SRIVC method presented in SectioriTe resulted parameters of both models are given as
follows,

€¢=399.7922

CTM = 4 .
h=13.0121

¢=418.1638
CRTM= h=8.0887
h =9.9136<10%

The total exposed battery surface aisad~0.0248 nf. Therefore, the estimated radiative coefficient (
9.9136x10°W.K* ) gives rise to the battery surface emissivity, an amount of

g_i_ 9.91% x10™"
Ao 0.028x5.67x10°
surface of lithium ion batteries [27nother critical result is the convective coefficignt According to physical

=0.7G® , which is in line with the range of reported emissivity valuestlier

analysis [38, 40, 41], typical values for natural convection coefficientsaiitie betweer{l—lo W.nv .k’lj

Therefore, compared to the traditional CTM, the CRTM gitise to the modelling accuracy in term of
representing the physical thermal convective process. To sum up, thatedtparameters of the CRTM model
are more in accordance with the physical interpretation, which can be theefflectively support the online
thermal estimation using the proposed approach.

The training results of both the models are then plotted in Fidure 5eStltsrshow the good performance of
both models. The peak errors were observed during the fast tempetanges, whictvasprobably caused by
the model order reduction from the physical process. However, thellmgaerrors of the CTM and CRTM were

in turn less than 1.2 ant’C, which were acceptable for battery applications.

In terms of the modelling accuracy, the CRTM shdihe better performance compared to that of the CTM, as
analysed i5 (B). The mean square error (MSE) generatee @ ih was0.2452° G while it was more
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than three times lower for the CRTN,0724° C . This was expected since the latter was the higher fidelity
model accounting for the radiation factor

Next, the models with the trained parameter sets were validated using the secoat{&gare 3). The similar

performance were then obtained as shoure 6. The correspbBEs were0.3434° € and0.1889° C
for the CTM and CRTM, respectively.

It also can be observed frm Figure 5 an@séindicated by the ‘red” boxes) that the CRTM could fit the heat
dissipation nonlinearity during the temperature relaxation process momatatcithan the CTM model. This
implies the effectiveness of considering the radiative heat generation inidggige thermal model.
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Figure 5 Modelling performance of CTM and CRTM for temperature prediatibare (A) shows the actual temperature
predicted temperature using CTM and predicted temperature using CRTM, présetuited-black line, solid grey and

solid black lines, respectively; and (B) presents the difference betheaatual and predicted temperature using CTM in
grey solid line and using CIRV in black solid line.
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Figure 6: : Model validation results of the CTM and CRTM where (Awshthe actual temperature, predicted temperature
using CTM and predicted temperature usBiRTM, presented in dotted-black line, solid grey and solid black line
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respectively; and (B) presents the difference between the actual aictqutéemperature using CTM in grey solid line and
using CRTM in black solid line.
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7.2  Onlineestimation of the convective coefficient

The test dataset 3 under forced air convection is used here to validate the adapihatqy estimation scheme
presented in Section 6. The CRTM model parameters offline estimated using datadet Aatural convection,

(6=418.1638h= 8.0887,h = 9.96310° as presented in Section 7.1), were used to initialise the parameter

estimation The heat conductivity under forced air convectiorwill become higher compared with natural
convection. The online estimation scheme for the convective coefficient iwgsaited such that the evolution of

h:% of the thermal model in (2) can be well forecasted in order to improvacth@acy of the thermal

prediction. The goal is to achieve a smooth parameter convergence midil arsor rather than fast convergence
with a lot of fluctuationsThe battery temperature prediction was carried out using both the CTMRind C
models and the results were plotted in Figyre 7 (A)

As seen in this figure, the prediction performance using the CTM@&rggpoor with more than 2G modelling
error (black dashed line 7 (A)). The main reason wa€Thé model with its fixed parameters was
derived from the different cooling condition. Hence to improve the thgurediction accuracy, it is necessary to
update the model parameters online to adapt to the condition changes. Tdhibecowell addressed using the
developed online parameter estimation approach

For the CRTM model, the convective coefficient was online one-step-abgaldted based on the predicti
error. As the result, the prediction performance was significantlyowepr compared to that of the constant-
parameter CTM. The maximum prediction error in this case was onlpciio&C [Figure J(C) shows how the
convective coefficient behaved under the forced cooling scenario. Thevaltial of the convection coefficient,

ﬁ(t =O)= h/ A=8.09W- nf- K'], was derived under the nature convection condition. It can be seen from
(D) that there was a large convergenda(tftoward52 [W- m? - K*]in the first10 minutes which then
settledto h(t) ~ 48[W -m2-K . The increase in the convective coefficient is due to the increase in the air fluid

velocity and this matches the forced convictive description given inTh2]peak value oh was att ~ 0.2 [hr]
and the rapid convergence was due to the large error at the initiation (B), which represents the

transient stage. When the modelling error occurs as shown in FigBjethere is a corresponding correction of
the model parameter from RLS as illustrated [in Figue 7 (D). This canndied at around

t=~ 0.15 [hr], 1.3 [hr], 2.3 [hr], 5.8 [h and6.2 [hr].
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Figure 7 The results of online estimation of the convective coefficiedttamperature prediction of thermal model using
test data set 3, shown in Figure 4 where (A) shows the actual temperafilesin black solid line, predictive using the
offline model in black dashed line and predicted using onlinesingith using the online estimated convection coefficient
presented in (D); (B) gives the error between the actual and online estterapeetature; (C) presents the error between the
actual and offline estimated temperature and (D) presents the cstlimatén of the estimated convection coefficient.

17



7.3  Radiation and convection heat transfer analysis

To show the necessity of including the radiative term in the therrodeinthe quantities of the radiation and
convection heat transfer were compa (A,B show that the radiative heat transfer was relatively
significant compared with the convective heat transfer in case of the natwattion. Values for the estimated
radiative coefficient 9.9136x10"°W.K™ ) give rise to a calculated battery surface emissivity value of 0.702
which is in line with the range of reported emissivity values ferdtlrface of lithium ion batteries [27]. Under
forced air convection, the conductivity coefficientreased noticeably, leading to a reduced portion of the
radiation transfer in the overall heat dissipation, as shon in Figure 8 (C).

The rise in the estimated convective coefficient, shown in Figure 7 (C) iirgshédlf an hour, causes a large
decrease in the importance of the radiative heat transfer relative to the doraexttion. Nevertheless, as the

estimated convective coefficient converged to approximately 0.9 duringrtia@ning simulation time, as shown
infFigure § (C) the radiative heat transfer term becomes more significant.

Therefore, this proposed model can be significant for prediction anidaring applications in the case of natural
convection, low forced convection or natural-forced convection, whereattiiative heat dissipation plays a
significant part. Furthermore, the online estimation of the convective coeffioflars a better modelling
performance for the control and management applications when dtigalways under a constant forced
convection.
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Figure 8: Estimated convection and radiation heat transfer, givenand4), are presented in black-sold and grey-slid lines,
respectively, where (A) shows the estimated convection and radiaabiransfer with natural convection for modelling data,

(B) shows the estimated convection and radiation heat transfer with natwatton for validation data and (C) presents the
estimated convection and radiation heat transfer of the online estimatio
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8 Conclusionsand further work
8.1 Conclusions

In this paper, a novel algorithm is proposed that directly estimates tiel parameters of a nonlinear lumped
BTM from observed cell-level dataThe parameter estimation algorithm extends the simplified refined
instrumental variable method to estimate the parameters by reformulatinggihal@quations to be described
as a multi-input/single-output linear model. The recursive form SRI\(Gad for online parameter estimation of
the proposed model. The online estimation is used to track the variatiencoitbective coefficient due to forced
convection, leading to more accurate temperature estimations.

The suitability of the models presented in this papepplication and environment dependérite proposed
radiation coupled model is shown to be more accurate in the case of oatwedtion, low forced convection or
naural-forced convection. The online estimation of the convective coefficient afteetter performance for the
control and management applications when it is not always under a constatticon

8.2  Further work

The models developed did not consider the non-uniform temperatuikeudistr and the conduction heat transfer
inside the battery. Further work thus will focus on improving theogsed modeto take these factors into
considerationby simplification of the classical thermal governing equations. There is atjpbtEnuse the
fractional order transfer function to approximate the transcedual trawnsfetioh of the thermal system by
assuming the conductive coefficient to be constant.
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