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Abstract

Due to the variability and stochastic nature of wind power, accurate wind power

forecasting plays an important role in developing reliable and economic power

system operation and control strategies. As wind variability is stochastic, Gaus-

sian Process regression has recently been introduced to capture the randomness

of wind energy. However, the disadvantages of Gaussian Process regression

include its computation complexity and incapability to adapt to time varying

time-series systems. A variant Gaussian Process for time series forecasting is

introduced in this study to address these issues. This new method is shown

to be capable of reducing computational complexity and increasing prediction

accuracy. It is further proved that the forecasting result converges as the num-

ber of available data approaches infinite. Further, a teaching learning based

optimization (TLBO) method is used to train the model and to accelerate the

learning rate. The proposed modelling and optimization method is applied to

forecast both the wind power generation in Ireland and that from a single wind

farm to demonstrate the effectiveness of the proposed method.
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1. Introduction

As power systems in many countries and regions are penetrated with in-

creasing wind power, it is imperative to forecast wind power generation accu-

rately in advance for reliable and effective power system operation and control.

Currently, wind energy time series forecasting has shown to be an effective tech-5

nique for short term forecasting [1]. Unlike the numerical weather prediction

(NWP) methods, which employ weather information such as temperature, wind

speed, wind direction etc, time series models employ historical measurement

data solely, to make short term predictions from several minutes to several

hours ahead, which could be very useful for short term load balancing and en-10

ergy storage decisions [2]. Although such forecasting horizon is relatively short

in comparison with NWP, time series methods have demonstrated their great

advantage in saving computation resources. Existing time series forecasting

techniques include traditional methods such as ARMA [3], Persistence, Neural

Network [4][5][6], Neural-fuzzy [7] etc. Besides, methods such as Kalman filters15

[8] and Gaussian Process (GP) [9][10][11] have also been recently introduced.

Although the GP approach was first used in the statistics community in 1964

[12] and applied to curve fitting in 1978 [13], this stochastic process did not at-

tract much attention until a comparison between GP and other well known

methods was carried out by Ramsmussen in 1996 [14]. Since then, the im-20

plementing and application of GP have been further researched and extended.

Initially the GP learning process was studied and simplified [15], then GP was

applied to system regression [16, 17], and classification [18, 19] etc. GP is a

global non-parametric method that assumes that all the variables follow one

joint Gaussian distribution and all the available data are employed in the pre-25

diction procedure. It is a special case of Bayesian inference, where all the priori

are assigned to be Gaussian. Moreover, GP is viewed as similar to kernel es-

timators, because a covariance function is used to describe the correspondence

between two outputs. The main difference between GP and kernel estimators

lies in that the sum of the weights does not have to be unity. Alternatively,30
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GP can be viewed as a form of basis function approach, differing from those

normal ones due to the flexible coefficients [20]. One significant advantage of

GP is that besides giving the most probable estimation, GP describes the distri-

bution of the new prediction which can be quite beneficial in developing model

based control strategies in industry. Secondly, the global property of GP guar-35

antees robust estimation even when the number of available data is limited or

imbalanced. Moreover, its covariance function contains less hyperparameters

in comparison with other advanced machine learning methods such as Neural

Network, and Fuzzy logic etc., and thus avoids the curse of dimensionality as

the dimension of input increases.40

Due to these advantages, GP regression began to be applied in a variety

of fields, from multi sensor networks [21, 22] to image processing [23, 24, 25],

from semiconductor industrial process [26] to medical health [27] and biological

observation [28]. However, drawbacks still exist. First, in GP all available data is

assumed to follow one joint Gaussian distribution and employed further to make45

new predictions. Such mechanisms generate expensive computational demand

caused by the matrix inversion in GP modelling. Especially less relevant data

being used a good prediction while causing unnecessary computational burden.

Secondly, its ability to reflect the local property of a system remains to be an

issue. To tackle these problems, sparse approximation techniques for full GP50

[29, 30] and methods of local GP mixtures [31] have been proposed recently.

Further, GP methods have been applied in wind power forecasting by Yan et al

[32].

In this paper, a variant GP for time series system is developed and the

model consistency is proved using a test theory. In comparison with other ex-55

isting variant GP models, the method proposed in this paper emphasizes on the

underlying temporally local property of acquired data from the time-varying

wind power systems and shows great accuracy in the real application to both

the all-island wind generation and a small farm output. Moreover, the optimiza-

tion techniques are investigated and a new optimization technique, namely the60

teaching-learning based optimization (TLBO) is used, to overcome the limita-
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tions of some conventional optimization techniques such as linear programming

and quadratic programming. TLBO is a new member of meta-heuristic opti-

mization family proposed in 2011 [33] and it has been adopted to solve a number

of real-world problems [34, 35, 36, 37] due to its fast convergence speed and ex-65

cellent exploitation ability. Therefore, TLBO is used to optimize the proposed

GP variant model and compared to other heuristic methods.

This paper is organized as follows. First, the standard GP for time series

wind power forecasting is presented in Section II. In Section III, the variant

efficient GP is presented in detail, together with the computational analysis70

and the model convergence proof. Following the model description, the learning

and teaching procedure of TLBO is introduced in Section IV. In Section V, the

wind power generation for the whole island of Ireland and from a small farm on

it are used as case studies to confirm the effectiveness of the proposed method.

Finally, Section VI concludes the paper.75

2. Gaussian Process for time series forecasting

2.1. Standard Gaussian Process

For a multiple-input-single-output (MISO) nonlinear system, let (X,Y ) de-

note a set of input-output data D, and suppose the kth (k ∈ [1, N ]) sample

(x(k), y(k)) satisfies equation (1) , where v is an i.i.d random sequence of white80

noise with zero mean and finite variance σ2
v , which in the case of wind power

forecasting refers to wind power measurement noise. Here x ∈ RD, which is the

input vector.

y(k) = f(x(k)) + v(k) (1)

GP is a stochastic process where an indexed collection of random variables

follow joint Gaussian distribution [38]. Generally, the mean function could be85

assumed to be zero if the data are properly scaled and de-trended [39] as shown
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in equation (2).

P (Y |CY , X) = N(0, CY ) (2)

For a given new output y0 = f(x0), if it follows joint Gaussian distribution

with the available data Y in (2), then the joint distribution could be written as

(3) in a partitioned form where A,B,C is shown in (4). Here, cov(a, b) denotes90

the covariance between two variables a and b, and its value is decided by the so

called covariance function.





y0

Y



 ∼ N(0,





A B

B⊤ CY



) (3)

A = cov(y0, y0)

B(i) = cov(y0, y(i)) y(i) ∈ Y and i ∈ (1, N)

CY (i, j) = cov(y(i), y(j)) y(i), y(j) ∈ Y i, j ∈ (1, N)

(4)

There exist many forms of covariance functions [14]. The square exponen-

tial function shown in (5) is one of the most popular ones due to its infinite

differentiability.95

cov(y(i), y(j)) = Φ(x(i),x(j))

= s · exp[−
1

2

D
∑

d=1

ωd(xd(i)− xd(j))
2] + v · δij

(5)

Here, D refers to the dimension of model input x and δij refers to the Kronecker

delta representing the observation noise for each sample ,and Φ represents the

covariance function. The hyperparameters involved could be denoted as θ =

[s, v, ω1, . . . , ωD].

lnP (Y |X, θ∗) = ln

[

1

(2π)
N

2 |CY |
1

2

exp(−
1

2
Y ⊤C−1

Y Y )

]

= −
1

2
Y ⊤C−1

Y Y −
1

2
ln |CY | −

N

2
ln 2π

(6)
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Standard GP employs the gradient based methods to optimize the marginal100

likelihood function, due to its fast convergence rate and satisfactory accuracy.

The gradient form of the log marginal density is shown in (7), where θ∗j repre-

sents the jth element of the hyperparmeter vector.

∂P (Y |X, θ∗)

∂θ∗j
=

1

2
Y ⊤C−1

Y

∂CY

∂θ∗j
C−1

Y Y −
1

2
Tr

[

C−1
Y

∂CY

∂θ∗j

]

(7)

2.2. Time series wind power forecasting

Time series prediction is an effective way for short term wind power forecast-105

ing. It employs only the historical measurement data and neglects the potential

exogenous inputs, thus a time series system could be expressed in (8) where L

represents the time lag.

y(t) = f(y(t− 1), y(t− 2), . . . , y(t− L)) + v(t) (8)

Denote x(t) = [y(t− 1), y(t− 2), . . . , y(t− L)]⊤, which represents the state

vector at time t. In this case, L in equivalent to D in the previous section. Given110

a sequence of data Y as training data, for time instant t, the output could be

predicted with (9) where B(t) describes the covariance between y(t) and Y , and

CY denotes the self covariance of data sequence Y .

ŷ(t) = B(t)C−1
Y Y (9)

B(t) = (Φ(x(t),x(1)),Φ(x(t),x(2)), . . . ,Φ(x(t),x(N))) (10)

CY (i, j) = Φ(x(i),x(j)) i, j ∈ [1, N ] (11)

Here N represents the dimension of Y . As Y describes a sequence of data in time

series, the elements of Y could be sampled long while ago. When training the115

model to identify the hyper-parameters using (6) and making new predictions

using (9), it can be seen that the computation complexity is O(N3). So it could

be quite computationally expensive when large training data is used.

6



3. A variant of Gaussian Process

As the time series model ignores the exogenous inputs of weather infor-120

mation, the wind power output can be viewed as a system with time varying

characteristic. The distribution of the newly sampled data may differ from that

of the former one. Thus it is not reasonable to assume all the historical power

data follow one joint Gaussian distribution. Besides, the computation complex-

ity is unbearable when the number of available data increases. Under such a125

circumstance, a variant GP is proposed aiming at solving these two issues.

3.1. Method description

While the standard GP assumes that all the historical data Y follow one joint

Gaussian distribution with the new one to predict y(t), the proposed method

considers the system to be stable only within a short period M ∗∆T where ∆T is130

the sampling interval, and M is a positive integer. Denote Y (t) = (y(t−1, y(t−

2), . . . , y(t − M))⊤ describing the effective data window, then Y (t) instead of

Y (Y (t) ⊂ Y ) is employed for the output prediction as shown in (12) and (13).

As the number of used data is reduced in each prediction, the computation

complexity will consequently be saved. Moreover, the prediction accuracy could135

still be satisfactory because only the highly correlated data are employed and

potential extra error introduced by data sampled long while ago is removed.

ŷ(t) = Bθ(t)C
−1
θ (t)Y (t) = Bθ(t)C

−1
θ (t)

















y(t− 1)

y(t− 2)
...

y(t−M)

















(12)

σ2
yt

= A(t)−Bθ(t)C
−1
θ (t)B⊤

θ (t) (13)

x(t− i) = (y(t− i− 1), y(t− i− 2), . . . , y(t− i− L)) (14)

(12) and (13) show the inference procedure of the proposed GP. Here every

intermediate variable such as Bθ(t), C
−1
θ (t) and Y (t) changes according to time
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instants in the following mechanisms. The point to predict at time t decides140

the local data within effective window dY (t). Consequently, C−1
θ (t), the self-

covariance matrix of Y (t), and Bθ(t), the cross covariance vector between new

prediction ŷ(t) and the available data Y (t), are time dependant accordingly.

These variables are quite different from the static covariance matrix CY and

contribution data Y in (9) and could be expressed in (15) and (16). Here Φ()145

refers to the covariance function as illustrated in Section 2.

Bθ(t) = (Φ(x(t),x(t− 1)), . . . ,Φ(x(t),x(t−M)) (15)

Cθ(t) =











Φ(x(t− 1),x(t− 1)), . . . Φ(x(t− 1),x(t−M))
...

. . .
...

Φ(x(t−M),x(t− 1)) . . . Φ(x(t−M),x(t−M))











(16)

Similarly, the learning procedure of proposed GP differs from the standard

one as well. In the learning procedure of a standard GP as shown in (6), the like-

lihood of the available data following joint Gaussian distribution is maximized,

thus the optimal hyperparameters are obtained. In this proposed method, the150

same number of data are employed. After the hyperparameters are initialized,

each of the training dataset is predicted with its individual local data using

(12), then the sum of square errors is calculated and minimized with nonlinear

optimization techniques. For N samples of training data, the objective function

could be expressed as (17) where J refers to the cost function and M defines155

the length of effective window.

θ∗ = arg min
θ

J = arg min
θ

N
∑

k=M+1

(ŷk − yk)
2

= arg min
θ

N
∑

k=M+1

(Bθ(k)Cθ(k)
−1Y (k)− yk)

2

(17)

The proposed prediction method works like a moving window for a sequence

of consecutive data. The data points are estimated one by one with a window of
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Table 1: The computation time and complexity of standard GP and the proposed method

(m ≪ N)

Computation complexity Learning Inference Uncertainty

Standard GP O(N3) O(N3) O(N3)

Proposed GP O(N ∗M3) O(M3) O(M3)

corresponding local data. As time moves forward, the effective window scrolls

with time as well. In such circumstances, the ‘moving window’ technique is160

employed in the proposed method.

3.2. Computation complexity analysis

From the description illustrated in the above section, it can be seen that the

proposed GP regression method is a compromise between a global method and

a local method. It shows a global property when it employs all the data to train165

the model and find the optimal hyperparameters which guarantees the accuracy

of the proposed method. On the other hand, it utilizes only local data in the

inference procedure which removes the unnecessary effect brought by irrelevant

data sampled long while ago and also reduces the computation complexity at

the same time.170

Table 1 shows the computation complexity comparison of the standard method

and the proposed method. The complexity of the inference and the marginal

likelihood function is determined by the size of covariance matrix because of the

inversion operation. In the proposed method, the matrix dimension is reduced

from N to M , so the computation complexity of the point inference equation175

(12), and the variance uncertainty estimation (13), is reduced from O(N3) to

O(M3). In minimizing SSE (17), the point inference is implemented (N −M)

times in the learning process, so the complexity involved is O(N ∗ M3) which

is still much smaller than that of standard GP O(N3), due to the fact that

m ≪ N .180
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3.3. Model Consistency

Consistency is a desirable property for supervised learning techniques. As

more and more data are obtained, it would be expected that the predictions

could converge to the true underlying predictive distribution. Hence, if the

proposed method is consistent, the estimation f̂(xt) should converge to the real185

value f(xt) as shown in (18) when the number of training data approaches

infinite.

ŷt = f̂(xt) → f(xt) (18)

To predict output yt at time t with the proposed method, suppose there are

N data between t − T and t for model training, and M data in the local data

window between t − TW and t for new prediction (N ≫ M , and T ≫ TW ).190

Thus TW could be translated as the width of the effective data window. Under

these circumstances, the consistency of the proposed model could be described

in Theorem 1.

Theorem 1. Consider the proposed variant GP described in equations (12)-

(17). Suppose as the total data points N → ∞ and the effective window width195

TW → 0, the number M(N,TW ) of data points in the local window goes to infi-

nite. Further assume that the unknown f(·) is continuous in the neighbourhood

of xt and thus has a bounded first derivative, then in probability, the estimation

ŷt = f̂(xt) by the proposed method converges to the underlying function output

f(xt).200

Proof. First, consider two matrices

(1, 1, . . . , 1) ∈ R1×n,

















1 + 1
n

1 . . . 1

1 1 + 1
n

. . . 1
...

...
. . .

...

1 1 . . . 1 + 1
n

















∈ Rn×n (19)

Then the product of the first and the inversion of the second converges to a
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special vector as shown in (20).

(1, 1, . . . , 1)

















1 + 1
n

1 . . . 1

1 1 + 1
n

. . . 1
...

...
. . .

...

1 1 . . . 1 + 1
n

















−1

→
1

n
(1, 1, . . . , 1)

(20)

Give θ an initial value as θ̄ = (1, 1
M
, 0, 0, . . . , 0, 0, ) indicating that the coef-

ficients of each dimension of state vector (xd(i) − xd(j))|
D
d=1 is set to be zero205

in the covariance function (5). Let Cθ̄ and Bθ̄ denote the covariance matrix Cθ

and Bθ respectively when θ = θ̄ and y denote the measured value of the output.

By substituting θ̄ into the proposed method (12), it follows that

ŷt|θ̄ = Bθ̄C
−1
θ̄

Yt = (1, 1, . . . , 1)×

















1 + 1
M

1 . . . 1

1 1 + 1
M

. . . 1
...

...
. . .

...

1 1 . . . 1 + 1
M

















−1 















y(t− 1)

y(t− 2)
...

y(t−M))

















→
1

M

M
∑

i=1

y(t− i)

→
1

M
(
M
∑

i=1

f(xt−i) +
M
∑

i=1

vt−i)

(21)

The second term refers to the sum of measurement noise therefore it con-

verges to zero by the law of large numbers (M → ∞). For the first term, note210

f(xt−i) = f(xt) +
∂f(x)

∂x
(xt − xt−i) (22)

where xt−i is a sample within the effective window and x is some point between

xt−i and xt. As f(.) is continuous in the neighbourhood of xt, the absolute

value of the differential is finite which can be described as |∂f(x)
∂x

| ≤ α. It could

be derived from (22) that215

|f(xt−i)− f(xt)| ≤ α|xt − xt−i| (23)

11



Within the effective time window WT → 0, we have |xt − xt−i| → 0, so

f(xt−i) → f(xt). Consequently, the convergence result shown in (24) can be

derived based on (21).

ŷt|θ̄ → f(xt) (24)

Now, consider the training data yk (k ∈ [M + 1, N ]) in learning process, let

t in equation (24) is substituted with k, then220

J(θ̄) =

N
∑

k=M+1

(ŷk − yk)
2|θ̄ =

N
∑

k=M+1

(ŷk − f(xk))
2|θ̄

+

N
∑

M+1

2v(k)(ŷk − f(xk)|θ̄ +

N
∑

M+1

v(k)2

(25)

The last term is independent of the hyper-parameters θ and the second term

converges to zero because of i.i.d noise of zero mean. Combined with the above

equation and the fact that J(θ∗) ≤ J(θ̄), then as N → ∞, we have

N
∑

k=M+1

(ŷk − f(xk))
2|θ∗ ≤

N
∑

k=M+1

(ŷk − f(xk))
2|θ̄ (26)

Considering (24), the above equation implies225

(ŷk − f(xk))
2|θ∗ → 0 (27)

This shows ŷk → f(xk) for each k = M + 1, . . . , N . The convergence property

at the testing data can be given following a similar approach.

3.4. Multi-step prediction

In wind power forecasting, wind power generation data are normally sampled230

with an interval of 10 or 15 minutes. In order to achieve several hours ahead

prediction, multi step prediction is required. For iterative multi step prediction,

y(t+1) is first estimated with the proposed method illustrated above and then

the new estimation is used to construct the new state vector x(t+2) and predict

y(t+2) with (12) again. And similarly, the prediction propagates from y(t+1) to235

y(t+Q) step by step where Q is an positive integer number. In such a manner,

12



the future output forecasting employs the same model at every step with fixed

hyperparameters θ and covariance matrix CY , so there is no need to train the

model separately to adapt to different steps prediction. Iterative multi step

forecasting is a computationally efficient way in comparison with those direct240

ones [40].

4. Nonlinear optimization technique

In the above Section, the proposed model is shown to have simpler compu-

tation complexity and learning consistency. As can be seen, the nonlinear opti-

mization problem in developing the proposed model can be completely different245

from the standard GP: the former one uses minimizing least square method,

while the later one utilizes maximizing marginal likelihood method. Consider-

ing that the optimization problem has multiple local minima and conventional

optimization methods may be less effective, in this section, the meta-heuristic

methods for optimizing the nonlinear fitness function in (17) will be investigated.250

There are many meta-heuristic optimization methods such as Genetic Algo-

rithm (GA) and Particle Swarm optimization (PSO), etc. which are inspired

by nature. Based on the Darwin’s Theory Of Evolution, the process of GA

is controlled by two parameters: crossover rate and mutation rate. Similarly,

PSO imitates the foraging behaviour of birds and uses inertia weight, social and255

cognitive to adjust the process [41]. The choice of those parameters can have a

large impact on optimization performance. Teaching-learning based optimiza-

tion, proposed by Rao et.al [33] in 2011 is a new method to remove the tedious

procedure in selecting those parameters, i.e. apart from several common param-

eters like population size and evolution generation, there is no specific algorithm260

parameters. Particles mutation depend solely on the statistics information of

the whole population and solutions interactions. The procedure of TLBO has

two phases and is illustrated as follows.
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4.1. Teaching Phase

In each iteration the best solution in the particles will be first selected and265

called a ’teacher’ after comparing all the fitness function values of the whole

population, and all the other particles are called ’students’. Hence it makes

sense for all the students to move towards the teacher to learn and improve. The

mean of all the particles is calculated to reflect the average level of the students.

In order to reflect the general studying ability of the class and differ the ability270

of different students, two kinds of random values ri and m are introduced in the

following equations to construct the moving direction of each particle in every

iteration. As i reflects the iteration number, ri stays the same in every iteration

and r2 changes for every student. These two random variables enhance the

exploitation ability of this algorithm.275

DMi = ri × (Ti − TFMeani) (28)

TF = round(1 + r2) = round(1 + rand(0, 1)) (29)

Here Meani denotes the mean of all the solutions of i-th iteration while DMi is

the moving direction to update those solutions. Ti denotes the selected teacher,

and TF is called the teaching factor. TF can be either 1 or 2. The new positions

of these students can be updated as follows280

θnewi = θoldi +DMi (30)

where θnewi and θoldi denote the old and new status of population. The fresh

learners will compete with its predecessor and replace if a better fitness value

is achieved.

4.2. Learning Phase

In a class, the interaction between students has an important impact for285

their growth. Similarly, such effect could be reflected in the learner phase of

each iteration, when each of the population learn from a random student and
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update himself or herself accordingly. The learning phase could be expressed as

follows

θnewij =











θoldij + r3(θik − θij) if f(θik) < f(θij)

θoldij + r3(θij − θik) if f(θij) < f(θik)

(31)

Here i still refers to the iteration number. The jth learner θij and kth learner290

θik are randomly selected from the population, compared with each other, and

finally updated accordingly. r3 is a random value represent the extend learners

learn from each other and it changes for different learners. It should be noted

that the new solution will have to compete with the old one. Only if the fitness

gets better, the new value will get accepted, otherwise rejected, just similar to295

that of the teaching phase.

Besides the common initialization parameters such as the population size

and the termination criteria, none other parameters has been introduced into

the optimization process. Hence, this algorithm overcomes several technical

problems. Moreover, the consistency of the algorithms has been proved as well300

with some well known benchmarks in [33] showing the efficient computation

process. Hence, TLBO is selected as the optimization technique for the proposed

variant GP regression method.

The proposed TLBO based variant Gaussian Process could be described with

Fig.1. After maximum iteration number is reached, the optimization process305

terminates.

5. Case studies and prediction results

In the Republic of Ireland and Northern Ireland, wind power has been set

as the main renewable resource due to the highly available wind resource.

Fig.2 displays the installed wind power on a county by county basis in Ire-310

land. In this section, the wind generation of the whole island and that of a small

wind farm in Donegal are both predicted representing forecasting examples of

different scales.
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Figure 1: The flow chart of variant GP based on TLBO

5.1. Whole island wind power forecasting

Power forecasting for Ireland, which includes the Republic of Ireland and315

Northern Ireland is important as the generation mix is significant in terms of

wind penetration. Currently, the governments in the British Isles and France

have focused on increased cooperation between the different regions to increase

co-operation for grid balancing, wind integration, security of energy supply and

reduce greenhouse gas emissions in order to meet European Union (EU) energy320

targets. The France, United Kingdom and Ireland is referred to as the FUI

region in the wider EU energy balancing areas. The Single wholesale Electricity

Market (SEM), which includes the Republic of Ireland and Northern Ireland

and the British Trading and Tarriff Arrangment (BETTA), which includes the

regions of England, Scotland and Wales are trying in essence to improve inter-325

nally balancing to better facilitate the planned increases in onshore and offshore

wind power [42]. Under such circumstances, the wind power forecasting of the
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Figure 2: Installed wind power by county in Ireland

whole island will not only help scheduling different domestic energy forms such

as coal and gas , but also benefit the cooperation with initially the BETTA

and France as further planned inter-connectors are built-out in the FUI region330

. Considering the dispersed wind distribution across the island, NWP becomes

out of effect for forecasting power as a whole, and thus time series model be-

comes the only one choice for short term forecasting. In this part, the proposed

time series model is applied to predict the overall wind power generation from

15 minutes to 3 hours head.335

The power generation data on 15th and 16th of April 2013 were acquired

from the SEM and averaged within every 15 minutes which were then used to

build the model. The model was then used to predict the wind power generated

on 17th and 18th of April. Thus, altogether there were 384 data points, half

of which were used for training and the other half for testing. These data were340
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first normalized so they are in a range of (-1, 1) with mean value of zero and

then the predictions were denormalized to reflect the corresponding estimations.

According to some trial-and-error experiments, the length of the state vector was

set as L=10, generating 12 parameters in all to tune, andM = 14, suggesting the

width of local window. TLBO was employed to identify those hyper-parameters345

and the global optima could be approximately approached with multi simulation

and proper setting of initial points. The validation results are shown in Fig.3

which shows that the error is below 10% of the actual power measurements,

suggesting a good forecasting performance.
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Figure 3: One step ahead prediction result of the proposed method for the whole island

In comparison with the standard GP and the well known persistence model350

in wind power forecasting, the proposed method proves its effectiveness again

with smaller normalized RMSE and MAE over multi step prediction as shown

in Fig.4 and Fig.5 respectively.

TLBO is adopted as the optimization method in comparison with standard

particle swarm optimization (PSO) [43] with c1=1, c2=1.5 and genetic algo-355

rithm (GA) [44] with Cr=0.8, Mu=0.2. To fairly compare the performances,

the well-known function evaluations (FES) criterion is employed. It should be
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Figure 4: The normalized RMSE of different models for the whole island

0 2 4 6 8 10 12
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Steps/15 minutes

N
o

rm
a

liz
e

d
 M

A
E

 

 

Variant GP

GP

Persistence

Figure 5: The normalized MAE of different models for the whole island

noted that the two phases TLBO algorithm has doubled the FES within the

same evolutionary iteration of GA and PSO. The FES of algorithms test is 4500

through which the algorithms converge in the test. The number of particles360

(Np) in PSO, GA and TLBO is set as 20, 30 and 50 respectively. While the

number of iteration (IterMax) are set as 225, 150 and 90 for PSO and GA, it is

set as 112, 75 and 45 for the TLBO at different particle numbers. To eliminate
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the randomness, 10 independent tests are implemented and listed in the Table

2365

As the result shown in Table 2, TLBO achieves the best results comparing

with two counterparts in all population settings, where the best result is achieved

with the configuration of Np = 50. Moreover, the average optimization process

is shown in Fig.6. It could be easily observed that TLBO rapidly converged to

a relatively low training errors in 1000 FES, significant outperforming PSO and370

GA. This optimization process suggests the advantage of TLBO algorithm in

seeking the optimal solution when the hyperparameters are set within a large

range which is very useful when there is no prior information about where the

optimal solution would be located. Note that besides the original TLBO, some

TLBO variants, such as mTLBO [45], weighted TLBO [46] and SL-TLBO[35]375

could further be utilized for model refinement, which will not be addressed in

this paper due to the space limitation.
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Figure 6: The average optimization process of TLBO compared with PSO and GA

5.2. Small wind farm forecasting

In this part, the proposed method and the uncertainty propagation analysis

are applied to a small wind farm located in the Donegal area of Republic of Ire-380

land which is labelled as ‘A’ in the top left corner of Fig.2. With the influence
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Table 2: Optimisation results of GA, PSO and TLBO methods

Population

size

GA PSO TLBO

Best Mean Worst Best Mean Worst Best Mean Worst

Np=20 1.6991 2.2130 2.9173 1.5645 1.6530 1.7101 1.5574 1.6429 1.7702

Np=30 1.7088 1.9720 2.6902 1.5577 1.6022 1.6738 1.5262 1.5698 1.6555

Np=50 1.6026 1.6972 1.8573 1.5717 1.6532 1.7586 1.5138 1.5606 1.6329

of Atlantic sea wind and lake-hill breeze, the wind farm outputs show high vari-

ability and great intermittency. Further, the generation is more unpredictable

in this wind farm due to its small capacity. However, its large noise and strong

discontinuity will make the proposed model more convincing in comparison with385

other less complex systems.
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Figure 7: One step ahead prediction result of the proposed method for a wind farm

Data was collected on the last week of June of 2004 in a time interval of

15 minutes to predict the output of the first three days of July. The data was

first normalized with the wind farm capacity, and then the squared exponential

covariance function was employed with the mean function set as zero. With the390

proposed model, employing TLBO as the optimization method to minimize the

cost function (17), the forecasting results are shown in Fig.7. . It can be seen

that the regression error is a little bit bigger than that of the whole island due to
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the fact that these data are much smaller and thus contains higher percentage

of noise.395
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Figure 8: The normalized RMSE comparison of three forecasting models
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Figure 9: The normalized MAE comparison of three forecasting models

Fig.8 and Fig.9 fig compares the prediction error of the three different mod-

els. It shows that the proposed temporally local Gaussian Process (TLGP)
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outperforms the other two with better accuracy from 1 hour ahead to 12 hours

ahead.

Further, the optimization process over the forecasting procedure for this400

small wind farm is similar to the whole island in Fig.6. It is obvious that TLBO

shows its advantages for searching the optimal solutions within a large search

range.

6. Conclusions

In this paper, a variant GP modelling method which integrates local prop-405

erty into the global GP has been proposed. The method is specially designed

for time series models, and could be adapted to time varying systems with

greatly reduced computation complexity. Further, the consistency of the pro-

posed model has been proved in this paper for cases where a large number of

samples are available. To train the model, a new optimization method namely410

TLBO is applied in the learning process to obtain the optimal solution. Exper-

imental results show that TLBO has a better global exploitation ability and a

faster convergence rate. The proposed methods have been applied to short-term

forecasting of wind power generation for both the whole Ireland and for a small

wind farm. The case studies confirm the effectiveness of the proposed method415

for different scales of wind generation or different degrees of noise influence.

As Gaussian Process provides additional uncertainty information beside the

mean value prediction, the method proposed in this paper, which is based on GP,

could be further employed for probabilistic wind power forecasting, which would

benefit the system operation and scheduling at different time horizons. The420

key points remained to be solved would be the law of uncertainty propagation

with multi-step forecasting, the calculation of the confidence level for the new

predictions, and the evaluation of the accuracy and stability of uncertainty

estimation. In the future research, those aspects would be studied and the

results should be compared with standard GP for further discussion. Further,425

the variants of TLBO such as mTLBO, weighted TLBO and SL-TLBO will
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be investigated and applied on this problem. The exploration ability will be

compared and analysed. This kind of research would provide more information

for the operators and thus benefit both the social and economic effects.
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