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Abstract
In this paper we characterize the unit disc, the bidisc and the symmetrized bidisc

G = {(z + w, zw) : |z| < 1, |w| < 1}
in terms of the possession of small classes of analytic maps into the unit disc that
suffice to solve all Carathéodory extremal problems in the domain.
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1 Introduction

The Carathéodory extremal functions on a domain � ⊂ C
d constitute a special class

of analyticmaps from� into the unit discD, a class which contains a lot of information
about �. By a domain we mean a connected open set in Cd for some integer d ≥ 1.
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In brief, the Carathéodory extremal functions on � are those which, for some pair
z, w of distinct points of�, maximise over all analytic maps F from� to the open unit
discD the Poincaré distance from F(z) to F(w). A function F for which themaximum
is attained is said to solve the Carathéodory extremal problem for the pair z, w.

Even for such a simple domain as the bidisc D
2 the class of all Carathéodory

extremal functions is large, and there are few domains for which an explicit description
of all Carathéodory extremal functions can be given. However, it can happen that there
is a relatively small set C of Carathéodory extremal functions on a domain � which is
universal for the Carathéodory extremal problem, in the sense that, for every choice
of distinct points z, w in�, there exists a function F ∈ C that solves the Carathéodory
extremal problem for z, w. See Definition 2.1 for a more formal statement.

For example, if � = D then we may take C to comprise only the identity map on
D, while if � = D

2 then the set C comprising the two co-ordinate functions has the
universal property.

In this paper we pose the question to what extent does knowledge of a universal set
for the Carathéodory extremal problem on � determine � up to isomorphism?

One has to make some assumption to rule out cases such as � = C
d , in which the

only analytic functions on � are constant functions. We therefore restrict attention to
Lempert domains (see Definition 2.9), for which the theory of hyperbolic complex
spaces (in the sense of [12]) is suitably rich.

We give a positive answer to the question for three domains, namely the discD, the
bidisc D2 and the symmetrized bidisc

G
def= {(z + w, zw) : |z| < 1, |w| < 1} ⊂ C

2. (1.1)

For each of these domains there is a small class of functions which is universal for the
Carathéodory extremal problem on the domain, and moreover an appropriate structure
of this small class does determine the isomorphism class of the domain amongLempert
domains (Theorems 3.1, 3.3 and 4.8). In the first two instances, the structure is just
the cardinality, while in the case of G, it is a special linear fractional parametrization
by the unit circle T.

The domain G is of interest in connection with the theory of invariant distances
[11]. G has an extensive literature, including [2,6–10,13,16–18].

In Sect. 2we describe the Carathéodory andKobayashi extremal problems, together
with basic facts about complex geodesics. In Sect. 3 we characterize the disc and
bidisc up to isomorphism among Lempert domains by the property that they admit
minimal universal sets for theCarathéodory problemcomprising one and two functions
respectively.

In the symmetrized bidisc there is a one-parameter family of functions which is
universal for the Carathéodory problem on G ([2, Theorem 1.1 and Corollary 4.3]).
This family comprises the rational functions

�ω(s1, s2) = 2ωs2 − s1

2 − ωs1
, (1.2)

where ω ∈ T.
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In Sect. 4 we prove a converse to this statement: a domain� inC2 is biholomorphic
toG if and only if� is a Lempert domain and� has a universal set for theCarathéodory
problem that admits a linear fractional parametrization byT akin to Eq. (1.2) (Theorem
4.8).

In Sect. 5 we show that, in the case of the three domains D, D2 and G, the min-
imal universal set for the Carathéodory problem is unique up to a natural notion of
equivalence.

We are grateful to a referee for some useful comments.

2 The Carathéodory and Kobayashi Problems

In this section we describe our terminology for the Carathéodory and Kobayashi
extremal problems.

If U ⊆ C
n1 and V ⊆ C

n2 are two open sets we denote by V (U ) the set of
holomorphic mappings from U into V .

If U is an open set in C
n , then by a datum in U we mean an ordered pair δ where

either δ is discrete, that is, has the form

δ = (s1, s2)

where s1, s2 ∈ U , or δ is infinitesimal, that is, has the form

δ = (s, v)

where s ∈ U and v ∈ C
n .

If δ is a datum, we say that δ is degenerate if either δ is discrete and s1 = s2 or δ is
infinitesimal and v = 0. Otherwise, we say that δ is nondegenerate.

An infinitesimal datum in U is the same thing as a point of the complex tangent
bundle T U of U .

Let U ⊆ C
n1 and � ⊆ C

n2 be open sets. For F ∈ �(U ), s ∈ U , and v ∈ C
n1 , the

directional derivative Dv F(s) ∈ C
n2 is defined by

Dv F(s) = lim
z→0

F(s + zv) − F(s)

z
.

If U and � are domains, F ∈ �(U ), and δ is a datum in U , we define a datum
F(δ) in � by

F(δ) = (F(s1), F(s2))

when δ is discrete and by

F(δ) = (F(s), Dv F(s))

when δ is infinitesimal.
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For any datum δ in D, we define |δ| to be the Poincaré distance or metric at δ in the
discrete or infinitesimal case respectively, that is

|δ| = tanh−1
∣
∣
∣
∣

z1 − z2
1 − z̄2z1

∣
∣
∣
∣

when δ = (z1, z2) is discrete,1 and by

|δ| = |v|
1 − |z|2

when δ = (z, v) is infinitesimal.

The Carathéodory extremal problem For a domain U in C
n and a nondegenerate

datum δ in U , compute the quantity |δ|car defined by

|δ|car = sup
F∈D(U )

|F(δ)|.

We shall refer to this problem as Car δ and will say that C solves Car δ if C ∈ D(U )

and

|δ|car = |C(δ)|.

When it is necessary to specify the domain in question we shall write |δ|Ucar.
It is easy to see with the aid of Montel’s theorem that, for every nondegenerate

datum δ in U , there does exist C ∈ D(U ) which solves Car δ. Such a C is called a
Carathéodory extremal function for δ.

Definition 2.1 For a domain U in C
n , we say that a set C ⊆ D(U ) is a universal set

for the Carathéodory extremal problem on U if, for every nondegenerate datum δ in
U , there exists a function C ∈ C such that C solves Car δ. If, furthermore, no proper
subset of C is universal for the Carathéodory extremal problem on U , then we say that
C is a minimal universal set.

Example 2.2 For many classical domains � there are small sets which are universal
for the Carathéodory extremal problem on �.

(i) If � = D
d then the set of the d co-ordinate functions is a minimal universal set

for the Carathéodory extremal problem onDd , as follows from Schwarz’ Lemma.
(ii) For the open Euclidean unit ball Bd in C

d , there is a universal set for the
Carathéodory extremal problem consisting of compositions of the projections
onto the planes through the center with automorphisms of Bd .

(iii) If � = G, the symmetrized bidisc, there is a 1-parameter set {�ω : ω ∈ T} (see
Eq. (4.1) below) that constitutes a minimal universal set for the Carathéodory
extremal problem on G [2].

1 In [6, Chap. 3] we used a different notation in that we omitted tanh−1; this makes no essential difference.
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Definition 2.3 We say that a domain U in C
n is weakly hyperbolic if |δ|car > 0

for every nondegenerate datum δ in U . Equivalently, for every nondegenerate datum
δ in U , there exists a bounded holomorphic function F on U such that F(δ) is a
nondegenerate datum in C.

Lemma 2.4 Let � be a weakly hyperbolic domain in C
n and assume that C is a

universal set for the Carathéodory extremal problem on �. If δ is a nondegenerate
datum in �, then there exists C ∈ C such that C(δ) is a nondegenerate datum in D.

Proof If C(δ) is degenerate for all C ∈ C, then

|δ|car = sup
C∈C

|C(δ)| = 0.

But as � is assumed to be weakly hyperbolic and δ is assumed to be nondegenerate,

|δ|car > 0.

��
TheKobayashi extremal problemFor a domain U inCn and a nondegenerate datum
δ in U , compute the quantity |δ|kob defined by

|δ|kob = inf
f ∈U (D)
f (ζ )=δ

|ζ |. (2.1)

Again, where appropriate we shall indicate the domain by a superscript. We shall refer
to this problem as Kob δ and will say that k solves Kob δ if k ∈ U (D) and there exists
a datum ζ in D such that k(ζ ) = δ and

|δ|kob = |ζ |.

Note that the infimum in the definition (2.1) of |δ|kob is attained if U is a taut
domain, where U is said to be taut if Hol(D, U ) is a normal family [11, Sect. 3.2]. In
particular |δ|kob is attained when U = G [11, Sect. 3.2]. Any function which solves
Kob δ is called a Kobayashi extremal function for δ.

Let U be a domain inCn and δ a nondegenerate datum inU . The solutions to Car δ

and Kob δ are never unique, for if m is a Möbius transformation of D, then m ◦ C
solves Car δ whenever C solves Car δ and f ◦ m solves Kob δ whenever f solves
Kob δ. This suggests the following definition.

Definition 2.5 Let U be a domain in C
n and let δ be a nondegenerate datum in U .

We say that the solution to Car δ is essentially unique, if whenever F1 and F2 solve
Car δ there exists a Möbius transformation m ofD such that F2 = m ◦ F1. We say that
the solution to Kob δ is essentially unique if the infimum in Eq. (2.1) is attained and,
whenever f1 and f2 solve Car δ there exists a Möbius transformation m of D such
that f2 = f1 ◦ m.
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2.1 Complex Geodesics

One of the most striking results in the theory of hyperbolic complex spaces is Lem-
pert’s theorem [15] to the effect that | · |car = | · |kob in bounded convex domains. A
consequence is that, if δ is a datum in a bounded convex domain U ⊆ C

n , then there
exists a solution C to Car δ and a solution k to Kob δ such that

C ◦ k = idD. (2.2)

In the event that k : D → U and there exists C : U → D such that Eq. (2.2) holds,
then necessarily C solves Car δ and k solves Kob δ. In this case ran k is a complex
geodesic.

Definition 2.6 Let U be a domain in C
n and let D ⊂ U . We say that D is a complex

geodesic in U if there exists a function k ∈ U (D) and a function C ∈ D(U ) such that
C ◦ k = idD and D = k(D).

This terminology is suggested by the fact that if k : D → U , then ran k is a totally
geodesic one-complex-dimensional manifold properly embedded in U if and only if
there exists C : U → D such that Eq. (2.2) holds.

The following definition provides language to describe in a concise way the rela-
tionship between datums in U and complex geodesics in U .

Definition 2.7 If V ⊆ U and δ is a datum in U we say that δ contacts V if either
δ = (s1, s2) is discrete and s1 ∈ V and s2 ∈ V , or δ = (s, v) is infinitesimal and there
exist two sequences of points {sn} and {tn} in V such that sn 
= tn for all n, sn → s
and

tn − sn

‖tn − sn‖ → v0,

where v ∼ v0.

Note that if U and � are domains, V is a subset of U , δ is a datum in U that contacts
V and F1 and F2 are any two holomorphic mappings from U to � satisfying F1|V =
F2|V then F1(δ) = F2(δ) [6, Remark 4.3].

The following proposition relates the concept of contact to the notion of complex
geodesics [6, Proposition 4.4].

Proposition 2.8 Let U be a domain in C
n and let k ∈ U (D) be such that D = k(D) is

a complex geodesic in U.

(1) If ζ is a datum in D, then k(ζ ) contacts D.
(2) If δ is a datum in U that contacts D, then there exists a datum ζ in D such that

δ = k(ζ ).

In honor of Lempert’s seminal theorem [15] we adopt the following definition.

Definition 2.9 A domain U in Cn is a Lempert domain if

(1) U is weakly hyperbolic,
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(2) U is taut and
(3) |δ|car = |δ|kob for every nondegenerate datum δ in U .

Equivalently, U is a Lempert domain if U is hyperbolic in the sense of Kobayashi
[12], meaning that the topology induced by the Kobayashi pseudodistance on U is the
Euclidean topology, U is taut and every datum in U contacts a complex geodesic.

Lemma 2.10 Let � be a Lempert domain inCn and S be a subset of � having nonempty
interior. Suppose that, for all μ1, μ2 ∈ S and for every complex geodesic D in �

containing μ1 and μ2, we have D ⊆ S. Then S = �.

Proof Fix μ ∈ �. Choose an interior point μ1 of S and let D1 be the complex
geodesic passing through μ and μ1. Since μ1 is an interior point of S, there exists a
point μ2 ∈ S ∩D1 such that μ2 
= μ1. Thus μ1, μ2 ∈ S ∩D1, and soD1 is a geodesic
passing throughμ1 andμ2. It follows by assumption thatD1 ⊆ S. In particularμ ∈ S.

��

3 Characterizations of the Disc and Bidisc

The following is the simplest result on the characterization of a domain through its
Carathéodory extremal functions.

Theorem 3.1 Let � be a Lempert domain. If there is a function � ∈ D(�) such that
{�} is a universal set for the Carathéodory problem on � then � is isomorphic to D.

For the proof we shall invoke the following observation.

Lemma 3.2 Let � be a Lempert domain. If � ∈ D(�) and � solves Car δ for some
nondegenerate datum δ in � then � is surjective.

Proof By the tautness of�, there exists a function g ∈ �(D) that solves Kob δ. Hence
there is a datum ζ in D such that g(ζ ) = δ and

|ζ | = |δ|�kob = |δ|�car = |�(δ)| = |� ◦ g(ζ )|.

Thus � ◦ g is a holomorphic self-map ofD that preserves the modulus of a nondegen-
erate datum in D. Hence � ◦ g is an automorphism of D, from which it follows that
� is surjective. ��
Proof of Theorem 3.1 Consider any nondegenerate discrete datum δ in �. By the defi-
nition of Lempert domains, � is weakly hyperbolic and so |δ|car > 0. Since � solves
Car δ,

|�(δ)| = |δ|car > 0.

It follows that � : � → D is injective.
� is also surjective, by the preceding lemma. Hence � is a holomorphic bijection,

and therefore an isomorphism between � and D. ��
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More remarkably, the bidisc can be characterized up to isomorphism among
Lempert domains by the existence of a universal set for the Carathéodory problem
comprising two functions.

For the proof of this statement we need some ideas from [1, Sect. 1]. We shall say
that a discrete datum λ = (z, w) in D2 is balanced if it is nondegenerate and

|(z1, w1)| = |(z2, w2)|.

When this equation holds there is a unique automorphismm ofD such thatm(z1) = z2

and m(w1) = w2. Furthermore there is a unique complex geodesic Dλ in D
2 that is

contacted by λ, to wit

Dλ = {(ζ, m(ζ )) : ζ ∈ D}.

A subset V of D2 is said to be balanced if, for every balanced datum λ in D
2 that

contacts V , Dλ ⊆ V . According to [1, Proposition 4.10], if B is a balanced subset of
D
2 that is contacted by a balanced datum λ, then either B = Dλ or B = D

2.

Theorem 3.3 Let � be a Lempert domain. � is biholomorphic to D
2 if and only if

there is a minimal universal set for the Carathéodory problem on � consisting of two
functions.

Proof Firstly let us show that the set of the two co-ordinate functions is a minimal
universal set for the Carathéodory problem onD2. Let F j (λ) = λ j for λ = (λ1, λ2) ∈
D
2.
Consider any nondegenerate discrete datum (λ1, λ2) in D

2, where λ1 = (λ11, λ
2
1)

and λ2 = (λ12, λ
2
2). We have

|(λ1, λ2)|car = sup
F∈D(D2)

|(F(λ1), F(λ2))| ≥ max{|(λ11, λ12)|, |(λ21, λ22)|}.

Suppose that
|(λ11, λ12)| ≥ |(λ21, λ22)|, (3.1)

so that

|(λ1, λ2)|car = |(λ11, λ12)|.

By inequality (3.1) and the Schwarz-Pick Lemma, there exists f ∈ D(D) such that

f (λ11) = λ21 and f (λ12) = λ22. (3.2)

Consider any extremal function F ∈ D(D2) for Car(λ1, λ2). Then

|(λ1, λ2)|car = |(F(λ1), F(λ2))|.
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Define F̃ ∈ D(D2) by F̃(z) = F(z, f (z)) for z ∈ D. Then, for i = 1, 2,

F̃(λ1i ) = F(λ1i , f (λ1i )) = F(λ1i , λ
2
i ) = F(λi ).

Again by the Schwarz-Pick Lemma,

∣
∣
∣

(

F̃(λ11), F̃(λ12)
)∣
∣
∣ ≤ |(λ11, λ12)|.

Hence

|(λ1, λ2)|D2

car ≤ max{|(λ11, λ12)|, |(λ21, λ22)|}
= max{|F1((λ1, λ2))|, |F2((λ1, λ2))|},

so that either F1 or F2 is extremal for Car(λ1, λ2).
A similar proof applies to infinitesimal datums in D2. Thus {F1, F2} is a universal

set for the Carathéodory problem on D
2.

Clearly, neither {F1} nor {F2} is a universal set for the Carathéodory problem on
D
2. Hence {F1, F2} is a minimal universal set for the Carathéodory problem on D

2.
To prove the converse, let {�1, �2} be a universal set for the Carathéodory problem

on � and define a holomorphic mapping � on � by the formula

�(μ) = (�1(μ),�2(μ)).

Since �1, �2 ∈ D(�), clearly � maps � to D
2. That � is biholomorphic to D

2 will
follow if it is shown that� is bijective from� toD2, since every bijective holomorphic
map between domains has a holomorphic inverse (for example, [14, Chap. 10, Exercise
37]).

To see that� is injective, consider distinct pointsμ1 andμ2 in�. As� is a Lempert
domain, � is weakly hyperbolic, and so

0 < |(μ1, μ2)|kob = |(μ1, μ2)|car
= max {|(�1(μ1),�1(μ2))|, |(�2(μ1),�2(μ2))|} .

Hence either �1(μ1) 
= �1(μ2) or �2(μ1) 
= �2(μ2), so that �(μ1) 
= �(μ2).
To prove that � is surjective, we first show that there is a nondegenerate datum

(μ, ν) in � such that �((μ, ν)) is a balanced datum in D2.
Since {�1, �2} is aminimal universal set for�, {�2} is not a universal set. Therefore

there is a nondegenerate datum (μ1, ν1) in� for which�1 is a Carathéodory extremal
but �2 is not. Thus

|(�1(μ1),�1(ν1))| > |(�2(μ1),�2(ν1))| .

Similarly, there is a nondegenerate datum (μ2, ν2) in � such that

|(�1(μ2),�1(ν2))| < |(�2(μ2),�2(ν2))| .
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As � is a Lempert domain, every pair of points in � lies in an analytic disc in �,
which implies that � is connected. Thus � × � is connected, and consequently the
set of nondegenerate discrete datums in �,

ndd(�)
def= (� × �) \ {(μ,μ) : μ ∈ �},

is connected (note that the diagonal set {(μ,μ)} lies in a subspace of real codimension
at least two in � × �). Consider a continuous path

γ = (γ1, γ2) : [0, 1] → ndd(�)

such that γ (0) = (μ1, ν1) and γ (1) = (μ2, ν2). Then

f (t)
def= |(�1 ◦ γ1(t),�1 ◦ γ2(t))| − |(�2 ◦ γ1(t),�2 ◦ γ2(t))|

depends continuously on t for 0 ≤ t ≤ 1, is strictly positive at t = 0 and strictly

negative at t = 1. Hence there exists t0 ∈ (0, 1) such that f (t0) = 0. Then (μ0, ν0)
def=

γ (t0) is a nondegenerate datum in � and

�((μ0, ν0)) is a balanced datum in D2. (3.3)

Now we show that �(�) is a balanced set in D
2. Consider any balanced discrete

datum λ = (z, w) in D
2 that contacts �(�). We wish to prove that Dλ, the balanced

disc in D2 passing through z and w, is contained in �(�).
Since z, w ∈ �(�), we may choose points μ, ν ∈ � such that z = �(μ) and

w = �(ν). Since {�1, �2} is universal for the Carathéodory problem on �,

|(μ, ν)|�car = max {|(�1(μ),�1(ν))|, |(�2(μ),�2(ν))|}
= |(�(μ),�(ν))|D2

car.

Since � is taut there exists a function g ∈ �(D) that solves Kob((μ, ν)). That is,
there exist α, β ∈ D such that |(α, β)| = |(μ, ν)|kob and g(α) = μ, g(β) = ν. We
have now � ◦ g ∈ D

2(D) while � ◦ g(α) = z, � ◦ g(β) = w and

|(α, β)| = |(μ, ν)|�kob = |(μ, ν)|�car = |(�(μ),�(ν)|D2

car

= |(� ◦ g(α),� ◦ g(β))|D2

kob.

Thus�◦g solvesKob(λ). Since λ is a balanced datum inD2, there is a unique complex
geodesic in D2 contacted by λ, and therefore

� ◦ g(D) = Dλ.

Hence Dλ ⊆ �(�). It follows that �(�) is a balanced set in D2.
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Let

λ0 = �((μ0, ν0))

= (�1, �2)((μ0, ν0))

= ((�1(μ0),�2(μ0)), (�1(ν0),�2(ν0))) .

Since, by Eq. (3.3), �(λ0) is a balanced datum that contacts �(�), [1, Proposition
4.10] applies and yields the conclusion that either �(�) = Dλ0 or �(�) = D

2.
Suppose that

�(�) = Dλ0 = {(ζ, m(ζ )) : ζ ∈ D}.

Then �2 = m ◦ �1. Consequently, {�1} is also a universal set for the Carathéodory
problem on �, contrary to the minimality of {�1, �2}. Hence �(�) 
= Dλ0 , and
therefore �(�) = D

2.
Thus � : � → D

2 is a bijective holomorphic map between domains, and is
therefore an isomorphism. ��

An interesting feature of the two theorems in this section is that the dimensions of
the domains are obtained as consequences of assumptions about universal sets for the
Carathéodory problems on the domains.

4 A Characterization ofG via Carathéodory Extremals

4.1 Extremal Problems and Geodesics in G

In this subsection we recall some known facts about complex geodesics in the sym-
metrized bidisc.

Theorem 4.1 For every ω ∈ T define the rational function �ω by

�ω(s1, s2) = 2ωs2 − s1

2 − ωs1
. (4.1)

The set C = {�ω : ω ∈ T} is a minimal universal set for the Carathéodory problem
on G.

The fact that C is a universal set is proved in [2, Theorem 1.1 and Corollary 4.3]. The
minimality of C follows from the following fact.

Lemma 4.2 For every point τ ∈ T there exists a nondegenerate datum δ in G such
that, for ω ∈ T, �ω solves Car δ if and only if ω = τ .

Proof This fact is shown in [6]. Here is one way to construct such a δ [5, Sect. 1].
Choose an automorphism m of D having τ as its unique fixed point in the closed unit
disc. Let

h(z) = (z + m(z), zm(z))
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3050 J. Agler et al.

for all z ∈ D, and let δ be the infinitesimal datum (h(z0), h′(z0)) for some z0 ∈ D.
Then δ has the required property. ��
For τ and δ as in the lemma, there is no solution of Car δ in C \ {�τ }. Therefore, no
proper subset of C is universal for the Carathéodory problem on G.

The following uniqueness result for the Kobayashi problem in G is proved in [3,
Theorem 0.3] for discrete datums and in [6, Theorem A.10] for infinitesimal datums.

Theorem 4.3 If δ is a nondegenerate datum in G, then the solution to Kob δ is essen-
tially unique.

A surprising fact about G is that Lempert’s conclusion remains true despite the fact
that G is not convex (nor even biholomorphic to a convex domain [8]). To be specific,
the following result is true ([2, Corollary 5.7] in the discrete case and [11, Proposition
11.1.7] in the infinitesimal case).

Theorem 4.4 G is a Lempert domain, that is, if δ is a nondegenerate datum in G, then
there exists a complex geodesic D such that δ contacts D.

On combining the last two theorems we deduce:

Corollary 4.5 For every nondegenerate datum δ in G there is a unique complex
geodesic in G that is contacted by δ.

As a consequence of these theorems we may unambiguously attach to each nonde-
generate datum in G a unique complex geodesic.

Definition 4.6 For any nondegenerate datum δ in G, Dδ denotes the unique complex
geodesic in G that is contacted by δ.

4.2 A Characterization of G

In this subsection we characterize G in terms of the possession of a universal set for the
Carathéodory problem of the same algebraic form as the universal set for G described
in Theorem 4.1.

Definition 4.7 A domain � inC2 has a G-like universal set if there exist s, p ∈ C(�)

such that {�ω}ω∈T is a universal set for the Carathéodory extremal problem on �,
where for each ω ∈ T, �ω is defined by

�ω(μ) = 2ωp(μ) − s(μ)

2 − ωs(μ)
for all μ ∈ �.

Theorem 4.8 If � is a domain in C
2, then � is biholomorphically equivalent to the

symmetrized bidisc if and only if � is a Lempert domain and � has a G-like universal
set.

Proof Clearly, if � is a domain in C
2 and F : � → G is biholomorphic, then, as G

is a Lempert domain, so also is �. Furthermore, as {�ω}ω∈T is a universal set for the
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Carathéodory extremal problem on G, if we define �ω = �ω ◦ F for all ω ∈ T, then
{�ω}ω∈T is a universal set for the Carathéodory extremal problem on �. This proves
that � has a G-like universal set.

Now assume that � is a Lempert domain in C2 and has a G-like universal set as in
Definition 4.7. Let F = (s, p), so that F is a holomorphic map � → C

2. We shall
show that F is a biholomorphic mapping of � onto G.

To see that F(�) ⊂ G, consider μ ∈ �. Since �ω maps � to D,

∣
∣
∣
∣

2ωp(μ) − s(μ)

2 − ωs(μ)

∣
∣
∣
∣
< 1

for all ω ∈ T. Hence

|2ωp(μ) − s(μ)|2 < |2 − ωs(μ)|2.

Expand this relation to obtain

Re
(

ω(s(μ) − s(μ)p(μ))
)

< 1 − |p(μ)|2

for all ω ∈ T. Consequently,

|s(μ) − s(μ)p(μ)| < 1 − |p(μ)|2.

This inequality is equivalent to the statement that (s(μ), p(μ)) ∈ G (for example [2,
Theorem 2.1]), so that F(μ) ∈ G for all μ ∈ �. This proves that F ∈ G(�).

We next prove that F is injective and unramified (that is, F ′(μ) is nonsingular for
all μ ∈ �). Fix a nondegenerate datum δ in �. Since �ω = �ω ◦ F ,

�ω(δ) = �ω(F(δ))

for each ω ∈ T. By Lemma 2.4, there exists ω ∈ T such that �ω(δ) is nonde-
generate, that is, �ω(F(δ)) is nondegenerate. This fact in turn implies that F(δ) is
nondegenerate. To summarize, we have proved that if δ is nondegenerate then F(δ) is
nondegenerate. The case when δ is discrete yields the conclusion that F is injective,
and the case when δ is infinitesimal implies that F is unramified.

It remains to prove that F is surjective. Note that if μ1, μ2 ∈ �, then

|(μ1, μ2)|�car = sup
{∣
∣
(

�ω(μ1),�ω(μ2)
)∣
∣ : ω ∈ T

}

= sup
{∣
∣
(

�ω(F(μ1)),�ω(F(μ2))
)∣
∣ : ω ∈ T

}

= |(F(μ1), F(μ2))|Gcar.

Thus F : � → G is an isometry when � and G are equipped with their respective
Carathéodory (or Kobayashi) distances.
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Consider a nondegenerate discrete datumμ = (μ1, μ2) in� and letλ = (λ1, λ2) =
F(μ) = (F(μ1), F(μ2)). Since F is an isometry,

|λ|Gkob = |μ|�kob. (4.2)

By Corollary 4.5 there is a unique complex geodesic Dλ in G contacted by λ. We wish
to prove that Dλ is contained in ran F . Choose g ∈ �(D) that solves Kob μ and then
α1, α2 ∈ D such that g(α1) = μ1, g(α2) = μ2, so that

|(α1, α2)| = |μ|�kob. (4.3)

Then F ◦ g ∈ G(D) and

(F ◦ g)(αi ) = λi , i = 1, 2.

On combining Eqs. (4.2) and (4.3) we obtain the statement

|(α1, α2)| = |λ|Gkob.

Thus F ◦ g solves the Kobayashi extremal problem for λ in G. Now the complex
geodesic Dλ is the range of any solution of the Kobayashi problem for the nondegen-
erate datum λ in G (see for example [6, Theorem 4.6]) and so

Dλ = ran(F ◦ g) ⊆ ran F,

as was to be proved.
The fact that F is unramified guarantees that ran F contains a nonempty open set

in G. By Lemma 2.10, ran F = G. We have shown that F : � → G is a bijective
holomorphic map. ��

5 Uniqueness of Minimal Universal Sets

It is natural to ask whether, for a general Lempert domain�, there is a unique minimal
universal set for the Carathéodory extremal problem on �, up to an obvious notion of
equivalence: if C is a universal set for �, then so is

C′ def= {mϕ ◦ ϕ : ϕ ∈ C}

where mϕ is an automorphism of D for every ϕ ∈ C. We regard C and C′ as equivalent
universal sets.

Wedo not knowwhether uniqueness (up to equivalence) holds for a general Lempert
domain, but for the three domains studied in this paper, it does hold.

In the case that� = D, as we observed in Example 2.2, it follows from the Schwarz-
Pick Lemma that any singleton set containing an automorphism ofD is a universal set
for the Carathéodory problem on D. Such a set is clearly minimal. Conversely, let C
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be a universal set for D. Then C contains a Carathéodory extremal function ϕ for the
discrete datum (0, 1

2 ). Again the Schwarz Lemma implies that ϕ is an automorphism
m of D, and so, by minimality, C = {m}.

Consider the case that � = D
2. By, for example, [1, p. 293], a universal set for the

Carthéodory problemonD2 is {F1, F2}, where Fj is the j th co-ordinate function, given
by Fj (z) = z j for j = 1, 2. This set is easily seen to beminimal. Conversely, let C be a
minimal universal set for D2. Then C contains a Carathéodory extremal for the unbal-
anced discrete datum ((0, 0), ( 12 , 0)). Now such a datum has a unique Carathéodory
extremal function, up to equivalence, to wit, the co-ordinate function F1(z) = z1 (see,
for example, [4, Theorem 12.2]). Hence C contains m1 ◦ F1 for some automorphism
m1 ofD. Likewise, consideration of the unbalanced datum ((0, 0), (0, 1

2 )) leads to the
conclusion that C contains m2 ◦ F2, where F2 is the second co-ordinate function and
m2 is an automorphism of D. Hence

{m1 ◦ F1, m2 ◦ F2} ⊆ C.

Since the left hand side of this inclusion is a universal set for D2, it follows by mini-
mality that the inclusion holds with equality. Thus {F1, F2} is the unique universal set
for D2, modulo equivalence.

By Theorem 4.1, the set {�ω : ω ∈ T} is a minimal universal set for the
Carathéodory extremal problem on G. Consider any other minimal universal set C
for G. Let τ ∈ T. By Lemma 4.2 there is a nondegenerate datum δ in G such that �ω

is a Carathéodory extremal for δ if and only if ω = τ . By [5, Corollary 2.8], every
Carathéodory extremal function for δ is of the form γ ◦ �τ for some automorphism
γ of D. Hence, up to equivalence, C contains �τ , and since τ ∈ T was arbitrary,

{�ω : ω ∈ T} ⊆ C.

By minimality, C is equivalent to {�ω : ω ∈ T}.

6 Concluding Remarks

Our results show that a minimal universal set for the Carathéodory extremal problem
on a domain � provides significant information about �. It would also be of inter-
est to describe all Carathéodory extremal functions on �. As we mentioned in the
introduction, even for the bidisc, the set of all Carathéodory extremal functions is
large. This fact is pointed out by Ł. Kosiński andW. Zwonek in [13]. They discuss the
Carathéodory extremal functions for bounded convex domains, strongly linearly con-
vex domains, the symmetrized bidisc and the tetrablock. They describe cases in which
the Carathéodory extremal function for a particular pair of points is unique modulo
automorphisms of D and analyse the relationship between this property and the non-
uniqueness of complex geodesics through the points. The authors observe that their
results give an understanding of the phenomenon of the uniqueness of Carathéodory
extremal functions, but state that in the non-unique case the form of the extremal func-
tions is not well understood. We have studied the nature of Carathéodory extremals
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in the case of the symmetrized bidisc [5]. We were able to describe large classes of
Carathéodory extremal functions for datums of various types in G, both when they
are unique and when they are non-unique.

We have also found other characterizations of the symmetrized bidisc. In [4] we
characterize G in terms of the action of the automorphism group of G.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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