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Gaussian one-way thermal quantum cryptography with finite-size effects

Panagiotis Papanastasiou, Carlo Ottaviani, and Stefano Pirandola
Computer Science and York Centre for Quantum Technologies,

University of York, York YO10 5GH, United Kingdom

We study the impact of finite-size effects on the security of thermal one-way quantum cryptogra-
phy. Our approach considers coherent/squeezed states at the preparation stage, on the top of which
the sender adds trusted thermal noise. We compute the key rate incorporating finite-size effects, and
we obtain the security threshold at different frequencies. As expected finite-size effects deteriorate
the performance of thermal quantum cryptography. Our analysis is useful to quantify the impact
of this degradation on relevant parameters like tolerable attenuation, transmission frequencies at
which one can achieve security.

I. INTRODUCTION

Quantum key distribution (QKD) [1, 2] lets two autho-
rized users (Alice and Bob) to establish unconditionally
secure communication over an insecure quantum chan-
nel controlled by an eavesdropper (Eve). After having
shared a secret key, the users can employ it in a one-
time pad protocol. To implement the key distribution,
the sender (Alice) sends non-orthogonal quantum states
to the receiver (Bob) through the communication chan-
nel. In this way, the parties can detect Eve’s intrusions
to gain information. The absolute privacy of the com-
munication is established post-processing the raw key by
classical protocols of error correction and privacy ampli-
fication, which reduce Eve’s information on the final key
to a negligible amount.

Protocols using continuous variable (CV) systems [3, 4]
have been proposed for point-to-point one-way communi-
cation, exploiting squeezed states [5, 6], finite alphabets
[7–10], Gaussian [11] and non Gaussian post-selection
[12]. Schemes based on Gaussian modulations of coher-
ent states have been investigated in great detail [13–19],
and we have now also experimental implementations over
long distances [20–22]. Besides one-way protocols, it has
been proposed to exploit two-way communication [23–
25], quantum illumination [26], floodlight QKD [27–30],
and measurement-device-independence (MDI) [31, 32],
the latter very promising to establish end-to-end com-
munications [33, 34]. In particular CV-MDI protocols
are very promising for future implementation of high-
rate metropolitan networks, or for multi-users quantum
conferencing [35].

Thermal QKD has been investigated in both one-way
[36, 37] and two-way [38] configuration, with the goal of
exploring the possibility of implementing QKD at fre-
quencies alternative to the optical one. Initially, the
use of thermal states in the optical regime was proposed
to describe imperfections in the preparation of coherent
states due to the use of cheap thermal sources [40, 41].
In thermal protocols, the coherent-state based encod-
ing is replaced by the Gaussian modulation of thermal
states, prepared by adding trusted noise on top of coher-
ent states. The analysis of the performance at various
frequencies is carried out by expressing the trusted noise

in terms of the thermal photon number of the background
radiation.

The increasing attention received by CV-QKD in re-
cent years is justified by the relative simplicity of the ex-
perimental setup, and the very high key-rate achievable,
which can be close to the secret-key capacity of an opti-
cal communication channel, also known as PLOB bound
[39, 42, 43]. Moreover, the possibility of implementing
communications exploiting all the electromagnetic spec-
trum represents an additional appealing feature of CV
systems. The progress achieved in recent years on the
security proofs of Gaussian CV-QKD, has led to estab-
lish composable security proofs for coherent-state one-
way protocols [44, 45] and MDI schemes [46]. An impor-
tant scenario to consider, when we study the security of
CV-QKD in practical conditions, is to quantify the se-
curity performances of a protocol when finite-size effects
are incorporated in the analysis. The study of finite-size
effects is a precursory step in the security analysis of both
one-way [47] and MDI schemes [48].

Up to now, thermal protocols have been studied only
considering ideal asymptotic conditions, where the par-
ties exchange infinitely many signals over the quantum
channel. This is a powerful assumption that simplifies the
mathematical complexity of the security analysis: One
can work within the Devetak-Winter security criterion
[49] and use the Holevo quantity [50] to bound Eve’s ac-
cessible information. The study of security under more
practical conditions requires to assume that Alice and
Bob can only make a finite use of the communication
channel. This introduces finite-size effects that deteri-
orate the performance, reducing the tolerable excess of
noise, lowering the key rate and shortening the achiev-
able distances.

In this work, we study the impact of finite-size effects
on the security of thermal one-way protocol, adapting
the approach described in Ref. [51] for coherent state CV
QKD. This allows us to quantify the performance of ther-
mal QKD under more realistic assumptions than in pre-
vious studies. We focus on one-way schemes used in di-
rect reconciliation (DR) because this represents the con-
figuration providing the best performance for Gaussian-
modulated thermal-state quantum cryptography. The
performances are then limited, by construction, to 3 dB
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of channel attenuation.
We systematically analyze the impact of finite-size ef-

fects on the performance of thermal one-way quantum
cryptography in various decoding configurations (homo-
dyne and heterodyne detections), which may be em-
ployed in short to mid-range communication, if one as-
sumes to use optical fibers. Our analysis also shows that
the parameter estimation procedure is negatively affected
by the use of trusted thermal noise, which can further
degrade the achievable distances. We also show that us-
ing thermal states, generated starting from moderately
squeezed ones within state-of-the-art experimental equip-
ment (e.g., 10 dB of squeezing), can provide an incremen-
tal improvement of the achievable distance which satu-
rates for higher squeezing factors. Finally, we study the
impact of the finite-size effects on the threshold of a pro-
tocol operating in the microwave regime.
The structure of the paper is the following. Section II

describes the protocol, including the optimal attack. In
Section III, we focus on the case where Bob’s decoding
is performed by randomly switching the homodyne de-
tection between the two possible quadratures (switching
protocol). The discussion of other cases (no-switching
protocol and encoding based on squeezed-thermal states,
rather than coherent-thermal ones) is given in the Appen-
dices. In Section IV, we describe the steps to compute
the secret key rate incorporating finite-size effects. In
Section V, we give the results of our analysis, and dis-
cuss the performance of the switching protocol in terms
of the achievable distance in the optical regime, and the
security threshold at various frequencies. Finally, Sec-
tion VI is left to our conclusions.

II. PROTOCOL AND EAVESDROPPING

We now describe the one-way thermal QKD protocol
in the prepare and measure (PM) representation. Addi-
tional details on thermal QKD can be found in Ref. [36–
38, 40, 52] and in the recent review of Ref. [41]. The
general bosonic mode of the electromagnetic field can be
described in terms of its quadratures, Q and P , defined
as Q := a† + a and P := i

(

a† − a
)

. We remark that we
assume unit vacuum shot-noise units (SNU) and, from
quadratures Q and P we define the vectorial operator

X := (Q,P )T .

The one-way communication goes as follows (see
Fig. 1): Alice prepares thermal states and modulates
them by applying random displacement in the phase
space, according to a bivariate Gaussian distribution. We
notice that the sender can prepare thermal states start-
ing from coherent or squeezed states. We then have that
Alice’s input mode, A, can be described by the following
input quadrature XA

XA = Xs +Xth +XM , (1)

τ

QM
Alice Bob

QM

e

E!"

A B

Eve

E!

FIG. 1: The initial mode A is in a thermal state with variance
Vth + Vs and modulate dwith variance VM . After mode A is
sent through the channel, Bob receives mode B and applies
a homodyne detection on either q- or p-quadrature or a het-
erodyne detection measuring q and p-quadrature at the same
time. The thermal-loss channel is modelled by a beam split-
ter with transmissivity τ . The Gaussian eavesdropping takes
the form of an entangling cloner attack, where Eve’s system
is described by the modes e and E in an TMSV state with
variance ω. According to this description, an optical fiber is

simulated with transmissivity τ = 10−
0.2d
10 , where d (in km)

is the length of the fiber, and excess noise variance Vε = τε,

where ε = (1−τ)(ω−1)
τ

.

where Xs describes the quantum fluctuations of the ini-
tial coherent or squeezed state from which the sender
starts,Xth is the contribution from trusted thermal noise,
while XM describes the Gaussian encoding. It is easy to
see that the resulting input variance, describing the input
mode, is given by the following simple relation

VA = Vs + Vth + VM , (2)

where VM > 0 and Vth > 0, and Vs = 1 if the sender
starts from coherent states. In the next stage of the pro-
tocol, mode A is affected by a thermal-loss channel. The
output mode B is then measured by Bob who can per-
form homodyne (switching protocol) or heterodyne de-
tections (no-switching).
The optimal eavesdropping of CV one-way protocols

after de Finetti reduction [45, 53] of general attacks, is
a single-mode Gaussian collective attack [54–56], com-
pletely characterized in [57]. Thermal-loss channels, like
free-space and optical fiber communications, can be di-
lated into entangling cloners, consisting of a beam splitter
with transmissivity τ , placed between the parties. This
device receives the incoming signal-mode A and Eve’s an-
cillary mode E (see Fig. 1). Eve’s modes E and e are in a
two-mode squeezed vacuum state (TMSV) ρeE which is a
zero-mean Gaussian state [3] described by the covariance
matrix (CM)

VeE =

(

ωI
√
ω2 − 1Z√

ω2 − 1Z ωI

)

, (3)

with variance parameter ω ≥ 1. The output modes E′

and e are then stored in a quantum memory that is op-
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timally measured by the eavesdropper after the parties
have concluded the communication stage.
In order to quantify Alice-Bob mutual information and

Eve’s accessible information, one needs to compute Bob’s
output mode B (see Fig. 1) which is described by the
following vectorial operator

XB = (QB, PB)
T =

√
τ(XM +Xth) +Xε, (4)

where the term Xε describes the excess of noise on the
channel, conventionally defined as ε := (1− τ)(ω − 1)/τ
[13]. It is easy to check that the variance of XB can be
written as

VB = τVM + VN , (5)

with variances VM ≥ 0, Vth ≥ 0, Vs ≤ 1, where all noise
contributions are grouped in the term

VN = 1 + Vε + τVth, (6)

and where we have defined the variances of the excess
noise as Vε := τε [51].

III. SWITCHING PROTOCOL WITH

THERMAL STATES FROM MODULATED

COHERENT STATES

We now consider a specific implementation: Alice
starts preparing Gaussian-modulated coherent states,
adds trusted thermal noise, and sends the resulting sig-
nals to Bob who, at random, switches his detection setup
between homodyne measurements on Q or P (switching
protocol). We discuss here only the direct reconciliation
(DR), i.e., Bob infers Alice’s encoded state from the out-
comes of his detections.
With Alice starting from coherent states, one has the

shot-noise variance Vs = 1, so that V = Vth. In such a
case, Eq. (6) reduces to the simpler expression

V c
N = 1 + Vε + τVth. (7)

We notice that, despite DR can only tolerate a maximum
of 3 dB of channel’s attenuation, in case of thermal one-
way QKD, it does much better than the RR, which has
been showed to tolerate only a small amount of thermal
noise [38].

A. Mutual information

From the variances of Eq. (5) and Eq. (7), we compute
Alice-Bob mutual information

IAB := HB −HB|α, (8)

with HB (HB|α) being Bob’s total (conditional) Shannon
entropy [58]. In particular, we may write

IAB =
1

2
log2

VB

VB|α
, (9)

where VB is the variance of Bob’s output signal while
VB|α = V c

N is Bob’s variance conditioned to Alice’s prepa-
ration. Therefore, using Eq. (5) and Eq. (7) we obtain
the following general expression for Alice’s Bob mutual
information

IAB =
1

2
log2

(

1 +
τVM

1 + Vε + τVth

)

. (10)

B. Key rate

Under ideal conditions of infinite number of channel
uses, we can write the Devetak-Winter rate [49]

R := IAB − IE , (11)

where Eve’s accessible information, IE , is computed with
the Holevo function [50]. In DR the quantity IE is given
by

IE = SeE′ − SeE′|α, (12)

where SeE′ and SeE′|α describe the total and condi-
tional von Neumann entropies of the output states ρeE′

and ρeE′|α. For Gaussian states, the von Neumann en-
tropies are completely determined by their CMs VeE′

and VeE′|α taking the following simple form [3]

S =
∑

i

h(νi), (13)

where the entropic function h(.) is defined as

h(x) :=
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
, (14)

and νi are the corresponding symplectic eigenvalues [3].

Moving from ideal conditions to realistic scenarios, the
parties extract a usable key from a finite number of uses
of the quantum channel. This generally deteriorates the
performances because the efficiency of the classical pro-
tocols of error correction and privacy amplification is re-
duced, as well as the accuracy of the channel parameter
estimation. A first adjustment to the key-rate of Eq. (11)
incorporates the efficiency of classical protocols, and is
given by the following key rate

Rξ = ξIAB − IE , (15)

with efficiency ξ ≤ 1. We remark that the design of
efficient classical error correction codes, such that ξ ≃ 1
is non-trivial, but recent progress [59, 60] showed that
efficiencies as large as ξ ≃ 0.98, or more, are achievable
today. For this reason this imperfection should not be
considered as a major bottleneck for the development of
CV quantum cryptography.
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IV. FINITE-SIZE DESCRIPTION

The key rate Rξ of Eq. (15) clearly fails to intercept
all finite-size effects which play a role in quantifying the
parameters of the attack which, accordingly to the dis-
cussion in Sec. II, is quantified by excess of noise Vε and
transmissivity τ . In this section, we quantify the impact
of finite-size effects by adapting the approach described in
Ref. [51], which is fairly simple to generalize to the ther-
mal case. We can define two statistical variables Mi and
Bi, for i = 1, . . . ,m, representing the realizations of the
input XM and of the output mode XB of Eq. (4). The
definition of the estimator of covariance σ̂MB , between
modes XM and XB, is then easy to define as follows

σ̂MB =
1

m

m
∑

i=1

MiBi. (16)

From Eq. (16) we can compute both expectation value
and variance. Assuming Mi and Bi as independent and
normally distributed Gaussian variables, we get the ex-
pectation value

E [σ̂MB ] =
√
τVM = σMB , (17)

and the variance

Vσ̂MB
=

τV 2
M

m

(

2 +
VN

τVM

)

. (18)

Similarly, we can obtain expectation value and vari-
ance of the estimator, τ̂ , of the transmissivity τ . From
Eq. (17), one then writes

τ̂ =
σ̂2
MB

V 2
M

=
Vσ̂MB

V 2
M

(

σ̂MB
√

Vσ̂MB

)2

, (19)

where

(

σ̂MB√
Vσ̂MB

)2

is chi-squared distributed.

From Eq. (19), we can compute the following expecta-
tion value

E [τ̂ ] =
Vσ̂MB

V 2
M

E





(

σ̂MB
√

Vσ̂MB

)2


 = τ +O(1/m), (20)

having confidence interval quantified by variance

σ2
τ̂ =

4τ2

m

(

2 +
VN

τVM

)

+O(1/m2). (21)

The same steps can be made to obtain the variance VN

starting from the statistical sampling Bi and Mi. Using
Eq. (5) we can write the estimator V̂N as follows

V̂N =
1

m

m
∑

i=1

(

Bi −
√
τ̂Mi

)2

. (22)

It is clear from Eq. (20) and Eq. (21) that the stan-
dard deviation στ̂ becomes rapidly negligible as m ≫ 1.

One can then safely replace the estimator τ̂ with its ac-
tual value τ in Eq. (22). Then, noticing that variable
Bi−

√
τMi is normally distributed with variance VN , we

have that
∑m

i=1

(

Bi−
√
τMi√

VN

)2

is also χ2-distributed with

expectation values m and variance 2m. We then can
write

V̂N =
VN

m

m
∑

i=1

(

Bi −
√
τMi√

VN

)2

.

The estimator for the variance Vε, can now be expressed
using V̂N and τ̂ . It is easy to check that one obtains the
following formula

V̂ε = V̂N − τ̂V − 1,

with expectation value

E(V̂ε) = VN − τV − 1, (23)

and variance

σ2
V̂ε

=
2V 2

N

m
+ V 2σ2

τ̂ . (24)

We remark that these equations are formally identical
to the case described in Ref. [51]. The only but crucial
difference, in our case, is the presence of the contribution
from thermal noise Vth, which appears in V .
Assuming an error probability for the parameter esti-

mation of the order of εPE = 10−10, we can associate
confidence intervals of 6.5-sigmas which allow us to write
the values of transmissivity and excess noise as

τ low := τ̂−6.5στ̂ (τ̂ , V̂ε), V
up
ε := V̂ε+6.5σ

V̂ε
(τ̂ , V̂ε). (25)

The quantities in Eq. (25) are then used to compute the
finite-size key rate, which is given by the following ex-
pression

K =
n

N̄

[

Rξ(ξ, Vs, VM , Vth, V
up
ε , τ low)−∆

]

, (26)

where N̄ = n+m, is the total number of signals points,
n is the number of signals used to build the key, and
the correction term ∆ accounts for the penalty for using
the Holevo bound in the key rate of Eq. (26) using a
finite number of signals. (Its description can be found in
[47, 51]).

V. PERFORMANCES AND DISCUSSION

In this section, we discuss the performance of finite-
size thermal one-way QKD DR. The results are obtained
numerically, evaluating the key rate of Eq. (26), and
quantifying relevant quantities like achievable distance,
block-size dimensions needed to obtain a positive key or
to recover the asymptotic key rate, and the finite-size
performances of thermal QKD at different frequencies.
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FIG. 2: (Color online) This figure focuses on the key-rate
in the optical regime. The left panel describes the key rate
versus channel attenuation given in dB. The red solid curve
describes the ideal key-rate, using just coherent states. The
blue-dashed curve describes the ideal key rate assuming a
preparation noise with variance Vth = 9 SNU. Then, we keep
the same Vth and plot the finite-size rate for block size with
N̄ = 109 (black dashed line) and N̄ = 107 (gray dashed) with
ξ = 0.98 and ω = 1. The key rate is optimized over the Gaus-
sian modulation VM . The right panel presents the key rate as
a function of the block size (N̄). We fix channel attenuation
to 1 dB, and we assume pure loss attack ω = 1 while ξ = 0.98.
The plot shows the convergence of the key rates toward the
asymptotic values (dashed curves) for different values of the
preparation noise Vth = 0, 1, 10, 100, 150 SNU, from top to
bottom.

A. Secret key rate for different block sizes in the

optical regime

Here we focus on the size of the signal blocks needed
in order to achieve a positive key rate in the presence
of increasing thermal noise. We use the average values
〈τ̂ 〉 ≃ τ and 〈V̂ε〉 = Vε for which one can write Vε =
τε, with ε = [(1− τ)ω − (1 − τ)] /τ . The parameter ω
represents the variance of thermal noise of Eve’s ancillary
states used in the attack. We write the transmissivity τ

in terms of dB of attenuation defining τ = 10−
dB
10 and

we express the key rate as follows

K = (1− r)
[

Rξ(ξ, Vs, VM , Vth, ω, dB, r, N̄)−∆
]

, (27)

where r := m/N̄ . From Eq. (27) we can plot the key rate
as a function of the channel attenuation, fixing the val-
ues of Vth, efficiency ξ, thermal noise ω, and shot-noise
variance Vs. Then we can optimize over the remaining
parameters. The results for pure-loss attacks are shown
in Fig. 2. In the left panel we plot the key rate for dif-
ferent values of the block-size and preparation noise. In
particular, the red solid line describes the asymptotic key
rate when Alice send coherent states, i.e., Vth = 0, while
the blue-dashed line is for Vth = 9 SNU. Then, we com-
pare the previous curves with the key rate of Eq. (27) for
N̄ = 109 (black dashed line) and N̄ = 107 (gray dashed
line).
In Fig. 2 (right panel), we quantify the block-size

needed to achieve a positive key rate for increasing values
of the preparation noise. We fix the attenuation to 1 dB
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R
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V
(q)
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V
(q)
s = 0.1

V
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.

FIG. 3: (Color online) We consider the case for signal points
block-size of N̄ = 109, reconciliation efficiency β = 98%,
trusted thermal noise of Vth = 9 SNU and pure loss attack
ω = 1. We compare the finite-size key rate obtained when

Alice starts from coherent states (V
(q)
s = V

(p)
s = 1) with the

case when V
(q)
s = 10−1, i.e., Alice’s encoding is performed by

adding thermal noise on moderate squeezed states. We notice
that in such a case the achievable distance is only incremen-
tally improved. Moreover the performance of the protocol

saturates for stronger initial squeezing, i.e. for V
(q)
s = 10−2

(blue-dashed), 10−5 (green line).

and assume pure loss attack (ω = 1 SNU). We then plot
the key-rate as a function of the block-size, for prepa-
ration noise Vth = 0, 1, 10, 100, 150 SNU from top to
bottom and efficiency ξ = 0.98 [59]. Our results show
that, by an increase in Vth, the block-size need to be in-
creased in order to match the asymptotic value of the key
rate (dashed lines).

Finally Fig. 3 compares the key rate of the switching
protocol when Alice start from coherent states (red solid
line) with the case where she start from squeezed states.
To distinguish between these two cases Eq. (6) splits as
follows

V
(q)
N = 1 + Vε + τ

(

Vth + V (q)
s − 1

)

, (28)

V
(p)
N = 1 + Vε + τ

(

Vth + V (p)
s − 1

)

, (29)

where V
(p)
s = 1/V

(q)
s . For coherent states V

(q)
s = V

(p)
s =

1 and we recover Eq. (6). This case is described by the
red line in Fig. 3, while the others lines describe the

cases V
(q)
s = 10−1 SNU (black dot-dashed), V

(q)
s = 10−2

(blue-dashed) and V
(q)
s = 10−5 (green). We see that us-

ing squeezed states can only incrementally increase the
achievable distances, which saturates as the degree of
squeezing increases.
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FIG. 4: (Color online) The red line shows the security thresh-
old (frequencies vs channel’s transmissivity) for a shot-noise
level attack ω = Vth+1 without finite-size effects, and assum-
ing infinite Gaussian modulation. Then we have the case for
block size with N̄ = 106 signal points (black) and N̄ = 109

(blue).

B. Security thresholds with finite-size effects at

different frequencies

In order to study the performance of the protocol at
different frequencies, we follow the approach used in [36,
38]. We rewrite the preparation noise variance Vth ≥ 0,
as

Vth = 2n̄, (30)

where the average thermal photon number n̄ is given by
the Planck’s formula

n̄ =
1

exp
(

hf
kBT

)

− 1
,

at temperature T . The quantity h is Planck’s constant,
kB is Boltzmann’s constant, and f represents the fre-
quency of the signals.

Therefore, the shot-noise level of Bob’s detectors oper-
ating in the microwave regime will be different from the
shot noise level in the optical regime, which is equal to 1
in vacuum shot-noise units. This shot noise will be given
with respect to Alice’s thermal mean photon number and
will lead to an entangling cloner attack with ω = Vth+1.
Assuming room temperature of T = 300 Kelvin and re-
placing ω = Vth + 1, we can rewrite the key rate K as
function of frequency f and transmissivity τ . The cor-
responding threshold of the rate for different block sizes
is illustrated in Fig. 4 and shows that, in the microwave
region, security is achieved only for transmissivities very
close to τ = 1 for a moderately high block size number
of N = 109.

VI. CONCLUSION

In this work, we studied the security of thermal one-
way quantum cryptography, including finite-size effects.
These are evaluated adapting the estimation theory de-
veloped in Ref. [51] suitably extended to the case of ther-
mal protocols. We focused on the protocol used in direct
reconciliation because it is known that one-way proto-
cols in reverse reconciliation cannot work at micro-wave
frequencies.

Our analysis confirms that implementing CV-QKD
with Gaussian modulated thermal states is challenging,
and we cannot achieve long distance communications
when we move away from a pure-loss attack scenario.
When thermal noise increases (for instance Vth > 10)
both key rate and achievable distance rapidly deterio-
rate. This is caused by the role of the preparation noise
variance Vth on the confidence interval. In fact, the use
of large amount of trusted noise, spreads the confidence
intervals reducing the transmissivity and increasing the
noise to be considered. This determines a degradation of
the performance, which can only be balanced by increas-
ing the block-size. This degradation rapidly worsening
when the protocol is operating in the microwave regime
since in such a case the typical detector’s shot-noise im-
plies an entangling cloner attack with too high thermal
noise.

Finally we remark that alternative approach, based on
schemes exploiting post-selection and two-way commu-
nication might be more effective in the thermal regime.
This will be investigated in future works.
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Appendix A: No-switching protocol

In this appendix, we focus on the no-switching pro-
tocol studying both DR and RR. The description of
the statistical estimators for the no-switching protocol
is clearly analogous to that described in the main text
for the switching protocol. For the no-switching scheme,
we build two estimators, one for each quadrature q and
p. The optimal estimators of transmissivity and excess
of noise are then computed by combining them in the
optimal linear combination.

Let B′ describing Bob’s output after the fifty-fifty
beam splitter. The vectorial quadrature XB′ =
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(qB′ , pB′)T has entries given by

qB′ =
qB + qvac√

2
, (A1)

pB′ = −pB − pvac√
2

, (A2)

where qvac and pvac describe the contributions from the
vacuum mode mixed with mode B at the final beam-
splitter.
From Eq. (5), one can write the variances of mode B

as follows

V q
B = τVM + V q

N , (A3)

V p
B = τVM + V p

N . (A4)

In the general case, where Alice starts from squeezed
states, the noise contributions are given by the expres-
sions

V q
N = 1 + Vε + τ(Vth + Vs − 1), (A5)

V p
N = 1 + Vε + τ(Vth + 1/Vs − 1). (A6)

One can write the following output quadratures of mode
B′

qB′ =

√

τ

2
qM + qN ′ , (A7)

pB′ = −
(
√

τ

2
pM + pN ′

)

, (A8)

where qN ′ and pN ′ are given by

qN ′ =
1√
2
(qN + qvac) (A9)

pN ′ =
1√
2
(pN − pvac) . (A10)

These have variances

V q
B′ =

1

2
τVM + V q

N ′ , (A11)

V p
B′ =

1

2
τVM + V p

N ′ , (A12)

and where

V q
N ′ =

V q
N + 1

2
=

2 + Vε + τ(Vth + Vs − 1)

2
(A13)

V p
N ′ =

V p
N + 1

2
=

2 + Vε + τ(Vth + 1/Vs − 1)

2
. (A14)

If Alice uses coherent states Vs = 1, the previous formulas
simplify to the following expressions

V c
N ′ = V q

N ′ = V p
N ′ =

V c
N + 1

2
=

2 + Vε + τVth

2
. (A15)

The covariance between the input and output mode,
for quadratures qM and qB′ , is given by

Cov(qM , qB′) =

√

τ

2
VM . (A16)

We can build the following statistical estimator

σ̂MB′ =
1

m

m
∑

i=1

Mq,iB
′
q,i, (A17)

compute its expectation value, obtaining

E [σ̂MB′ ] =

√

τ

2
VM , (A18)

and the variance

V q
cov =

1

m2

m
∑

i=1

Var(Mq,iB
′
q,i),

=
τV 2

M + VMV q
N ′

m
,

=
τV 2

M

2m

(

2 +
V q
N + 1

τVM

)

. (A19)

Then, assuming that qM and qN ′ are independent vari-
ables, with zero mean, we obtain the following expression
for the estimator of the transmissivity

τ̂ =
2σ̂2

MB′

V 2
M

=
2V q

cov

V 2
M

(

σ̂MB′√
V q
cov

)2

, (A20)

where

(

σ̂MB′√
V

q
cov

)2

is chi-squared distributed. Therefore,

the expectation value is given by

E(τ̂ ) =
2V q

cov

V 2
M

(

1 +
σ̂2
MB′

V q
cov

)

,

=
2σ̂2

MB′

V 2
M

+O(1/m),

= τ +O(1/m) (A21)

and the variance

Var(τ̂ ) =
8(V q

cov)
2

V 4
M

(

1 + 2
σ̂2
MB′

V q
cov

)

,

=

16τ2V 4

M

4m

(

2 +
V

q

N
+1

τVM

)

V 4
M

+O(1/m2),

=
4τ2

m

(

2 +
V q
N + 1

τVM

)

+O(1/m2). (A22)

For m ≫ 1, we neglect terms proportional to 1/m2 and
write the variance of τ̂ as follows

σ2
q :=

4τ2

m

(

2 +
V q
N + 1

τVM

)

. (A23)

It is clear that repeating these steps for quadrature p̂B,
we get

σ2
p :=

4τ2

m

(

2 +
V p
N + 1

τVM

)

, (A24)
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where the difference from σ2
q is the squeezing term of V p

N .
From these, one can compute the optimal linear com-

bination given by

σ2
nsw =

1

σ−2
q + σ−2

p

. (A25)

Assuming that Alice starts the preparation from coherent
states, we have that Vs = 1 and σ2

c,nsw has the simpler
form

σ2
c,nsw =

2τ2

m

(

2 +
V c
N + 1

τVM

)

. (A26)

By solving Eq. (A13) with respect to Vε and using the
estimators of V q

N ′ and τ , we obtain

V̂ε = 2V̂ q
N ′ − τ̂ (Vth + Vs − 1)− 2. (A27)

We can replace the expression for V̂ q
N ′ with

V̂ q
N ′ =

V q
N ′

m

m
∑

i=1

(

Bq,i −
√

τ
2Mq,i

√

V q
N ′

)2

(A28)

which is chi-squared distributed, with mean m and vari-
ance 2m, because

(

Bq
i −

√

τ
2Mi

)

/
√

V q
N ′ is a linear com-

bination of normally distributed variables, having unit
variance and zero mean. Therefore, we obtain the fol-
lowing mean value for the excess noise

E(V̂ε) = E

(

2V̂ q
N ′ − τ̂ (Vth + Vs − 1)− 2

)

:= Vε (A29)

and its variance, which is given by

s2q := Var(V̂ε) = Var
(

2V̂ q
N ′ − τ̂ (Vth + Vs − 1)− 2

)

=
4

m2
(V q

N ′)
22m+ (Vth + Vs − 1)2σ2

nsw

=
2

m
(V q

N + 1)2 + (Vth + Vs − 1)2σ2
nsw. (A30)

The same steps provide the expression of the variance for
quadrature pB which is

s2p =
2

m
(V p

N + 1)2 + (Vth + 1/Vs − 1)2σ2
nsw, (A31)

and from Eq. (A30) and Eq. (A31), we obtain

s2nsw =
1

s−2
q + s−2

p

, (A32)

which for Vs = 1 simplifies to

s2c,nsw =
(V c

N + 1)
2

m
+

V 2
thσ

2
c,nsw

2
. (A33)

Now, assuming the general case of moderately squeezed
initial states, we can write the confidence intervals which
are taken [51] as follows

τ low =τ̂ − 6.5σnsw(τ̂ , V̂ε), (A34)

V up
ε =V̂ε + 6.5snsw(τ̂ , V̂ε), (A35)

assuming an error probability for the parameter estima-
tion of the order of εPE = 10−10.

Finally, proceeding as in Sec. VB, we can write a key
rate of the form

K̃ = (1− r)
[

R̃ξ(ξ, Vs, VM , Vth, V
up
ε , τ low)−∆

]

, (A36)

where the rate R̃ξ given by the following expression

R̃ξ = ξĨAB − χ̃, (A37)

where

ĨAB = log2

[

1 +
τVM

2 + Vε + τVth

]

, (A38)

and the expression of the Holevo function χ̃ depends on
the implementation of the no-switching protocol, i.e., if
the parties use direct or reverse reconciliation.

[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.
Mod. Phys. 74, 145 (2002).

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M.
Dusek, N. Lutkenhaus, and M. Peev, Rev. Mod. Phys.
81 1301 (2008).

[3] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N.
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