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Abstract 

Testing and implementation of Human-Robot Collaboration (HRC) could be dangerous due 
to the high-speed movements and massive forces generated by industrial robots. Wherever 
humans and industrial robots share a common workplace, accidents are likely to happen and 
always unpredictable. This has hindered the development of human robot collaborative 
strategies as well as the ability of authorities to pass regulations on how humans and robots 
should work together in close proximities. This paper presents the use of a Virtual Reality 
digital twin of a physical layout as a mechanism to understand human reactions to both 
predictable and unpredictable robot motions. A set of established metrics as well as a newly 
developed Kinetic Energy Ratio metric are used to analyse human reactions and validate the 
effectiveness of the Virtual Reality environment. It is the aim that Virtual Reality digital twins 
could inform the safe implementation of Human-Robot Collaborative strategies in factories of 
the future.  

Keywords: Reaction Metrics; Human Robot Collaboration; Virtual Reality; Digital Twin; 
Health & Safety Regulations; Manufacturing. 

1.0 Introduction 

The use of industrial robots in manufacturing and assembly lines is continuously increasing 
due to the need for high efficiencies, high accuracy, high production rates and repeatability. 
However, in some industries, the production line cannot rely on the use of robots only, and 
still require humans to perform some tasks that require creativity, adapting to unpredictable 
changes in the environment, fine motor skills and high dexterity such as cable assembly on a 
production line. As a result, interest and research in harnessing the natural and unique 
capabilities of both robot and human in collaboration tasks is increasing [1][2].  

This has led to the development of collaborative robots such as Baxter [3], Sawyer [4], and 
the FANUC CR-4iA [5]. Nevertheless, in compliance to regulations, they move at a low 
speed in order to ensure that they do not cause damage when they collide with a human. 
They also have low payloads. This is because Human collaboration with an industrial robot 
could be dangerous due to the high-speed movements and massive forces generated by the 
robots.  
 
Wherever human and industrial robots share a common workplace, accidents are likely and 
always unpredictable. As a result, in highly automated manufacturing systems industrial 
robots are located inside cages to constrain the physical interactions and proximities with 
humans. This leads to bigger size layouts, unused spaces and limited HRC operation. In 
order to avoid these drawbacks, the manufacturing sector is looking for new concepts 



beyond the current pre-defined safety measures to develop novel HRC strategies [1][2][6-
10]. Novel HRC strategies that are currently being researched include turn-based strategies 
[8], automatic task allocation based on predefined metrics [10] and multi-modal 
communication with robots [2][7-9].  
 
Nevertheless, the potential risk of injury to humans has reduced the progress of research in 
human robot collaborative strategies. This is because accidents could occur during the 
development of intelligent collaborative software and during the empirical experimental 
process of trial and error. Eliminating or reducing risks to humans during experiments could 
further aid the ability of authorities to pass regulations on how humans and robots should 
work together in close proximities. 

A way to carry out this investigation is through Virtual Reality. The main idea behind Virtual 
Reality is the creation of a digital world in which a user can be immersed and interact with 
objects [11]. Although research in Virtual Reality has made significant progress in the last 
decades, the application within robotics is still in its infancy.  

In manufacturing, Virtual Reality has started to be considered for several applications, such 
as programming [12][13], maintenance [14], process monitoring [15], product assembly [16], 
design and training [17] to mention a few.  Virtual Reality provides a cost effective and safe 
environment to test various concepts and hypotheses before deployment in the real world. 
For example, Virtual Reality-based Training Systems (VRTSs) provide trainees with an 
environment to test and operate new equipment before it is installed. Important perceptual 
cues and multi-modal feedback (e.g., visual, auditory, and haptic) can be accessed in a 
Virtual Reality environment thereby enabling effective transfer of virtually acquired 
knowledge to real-world operation skills [18].  

Virtual Reality also provides an opportunity to optimize factory layouts before construction 
[19-21]. In these cases, Virtual Reality has the potential to enable well designed layouts 
resulting in saving of up to 50% of operating costs. Optimization of manufacturing processes 
and tasks is another area that Virtual Reality lends massive benefits [22]. For example, 
complex tasks such as welding, drilling and screwing of parts require optimization of robot 
arm movement between different points in order to minimize span and maximize production 
rate. Achieving this via the programming of a robot arm is quite laborious and time 
consuming [12] [13]. Nevertheless, VR’s capability to represent virtual models of real world 
objects as well as present an intuitive programming interface makes it possible to simplify 
and speed up programming tasks. This also enables the generation of an optimization model 
that could be transferred onto a real world robot arm [12][23].  

However, in order to achieve this seamless transfer, a digital twin of existing physical robotic 
cells is required. Development of digital twins requires a full synchronization between the 
real world at the shop-floor level and its digital twin. The synchronization enables a true 
reflection of the real factory and can be exploited to obtain current factory states as well as 
extrapolated to predict future factory states. It also opens up the possibility of experimenting 
with varying human presence sensing modalities in the robotic cell without comprising 
human safety [24].  

According to regulations, human safety is achieved in HRC strategies by ensuring that 
collaborative robots do not exceed a certain size or exhibit certain speed profiles when 
interacting with a human. For example, the speed of a robot is reduced or stopped once a 
human is detected within a zone or minimum distance from the robot [23-28].  

Other safety approaches being researched is through the modification of the robot’s current 
trajectory via collision risk informed control strategies. For example, in [29], the authors 



introduced a proactive control strategy based on risk analysis while in [30], the authors 
developed a Danger Index based on likelihood of an impact with a human. The danger index 
was increased when the human was facing away from the robot, because of the reduced 
likelihood of observing and being aware of the robot’s motion. 

Nevertheless, despite the control strategies discussed above, it has been shown that during 
a human-robot collaboration session, an operator’s stress increases when the robot’s speed 
increases; when the distance between human and robot decreases or when the operator 
does not know what the robot is going to do next [2][28]. This is partly due to the lack of 
awareness of the safety functionalities present on the robot as well as the lack of knowledge 
of safe working areas. New emerging technologies such as the use of augmented reality 
techniques that allow for the visualization of the robot operating and safe areas might 
alleviate this [31].  

Another way to equip operators with knowledge of expected robot actions and an awareness 
of safety is through the use of Virtual Reality to construct a digital twin of the Human-Robot 
collaboration task. Virtual Reality also provides a safe environment to test and validate 
various Human-Robot collaborative strategies. However, what is the effectiveness of using 
such an environment considering that the participants would know it is a virtual 
environment?   

Consequently, in this work, we investigate the effectiveness of using a virtual environment to 
develop Human-Robot collaboration strategies that involve proximate interactions on a task 
[7]. This involved developing a digital twin of a real physical layout of a manufacturing cell 
and then using a questionnaire to gather responds from participants regarding their 
experiences to various robot motions including unexpected ones. This enabled us to 
measure the effectiveness of using a virtual environment to represent a real manufacturing 
cell for human-robot collaboration sessions.   

Furthermore, we developed and tested a set of new metrics (based on Kinetic energy as well 
as human direction of reaction) to gauge human reaction and behaviour to various robot 
motions in the virtual environment. The aim is that these metrics could be used to inform 
robot control strategies in the future. This is unlike the approaches used in [28-30]. 

The rest of this paper is organised as follows: In section 2, the methodology used in this 
paper is presented while in section 3, the experimental setup is discussed. This is followed in 
section 4 by experimental results while discussions are presented in section 5. Conclusion 
and future work is presented in section 6.  

2.0 Methodology  

In this section, we will discuss our experimental design. In order to use a Virtual Reality 
environment for accurately capturing and understanding human responses to robot actions, 
the realism of the virtual environment is essential. Furthermore, a mechanism to collect and 
analyse data is important. How these were achieved in this work are discussed in the next 
subsections.  

2.1 Development of the Virtual Environment 

The real world workshop consisted of a robot arm that can be programmed to carry out 
automated tasks of object placement, drilling, welding and visual observation of components. 
Currently, these tasks are done in a cage in order to separate humans and the robot arm.  

In order to create a digital twin of the workshop, physical measurements as well as 
photographs of real artefacts in a workshop were used to create corresponding CAD models 



(Figure 1). The real-world robot is an ABB IRB 2600 12-1.85, whose predefined workspace 
is also depicted in Figure 1. The CAD models were transferred to Unity3D, a virtual gaming 
environment. The CAD models were placed in the virtual environment so that the physical 
dimension relationships between the objects in the workshop (real world) was respected in 
the virtual environment. This resulted in a 1-to-1 mapping of the real environment to the 
virtual environment.  

The virtual environment was experienced by the user via a HTC vive while interaction with 
elements in the environment was achieved through the use of hand controllers. This enabled 
the user to move freely in the 3D space of the real world as well as in the 3D space of the 
virtual environment (Figure 2).  

The digital twin of the robot arm was capable of receiving coordinate data from the real robot 
arm on the factory floor. However, for investigating HRC strategies, the digital twin of the 
robot arm was programmed using the Denavit-Hatenberg method for forward kinematics. 

 
 

(i) A real world workshop (ii) Workshop environment replicated in 
Unity. The human manikin is used as a 
visual aid to understand the reaction of 
users during playbacks. 

 
 

(iii) The working space of IRB 2600 12-1.85 [32] 
Figure 1. A digital twin of a physical workshop. 

 

In order to measure human reaction during experiments, two classes of robot arm trajectory 
were programmed. The first class of trajectory was smooth and predictable. The robot was 
programmed to use this trajectory at the beginning of an experiment. The experiment 
consisted of the transportation of boxes from one location to another. In order to make the 
user experience a HRC session, the robot waits until it is fed with a box by the human. When 

Pos. A 2148mm

Pos. B 1174mm

Pos. C 967mm

Pos. D 506mm

Pos. E 1553mm

Pos. F 1853mm



fed, the robot arm moves and places the box at a predefined place in the Virtual 
environment. After dropping the box, it goes back to the place where the user is located and 
waits for the next box. This loop is repeated about 4 times in order to draw the user into the 
experience and build user confidence (Figure 2).  

Then, the robot arm performs the second class of trajectory which consists of an 
unpredictable and dangerous movement that attacks the user and moves against the user’s 
forehead. During these two classes of robot trajectory, we collect the data of the user’s 
reaction to the robot arm.  

 

Figure 2. Human-Robot task setup and human interaction with the virtual environment 

 

2.2 Data collection and data analysis 

Data is collected using a Kinect motion capture system. It enables data of the kinematics of 
the human reaction with respect to the robot arm kinematics to be captured in real time. The 
robot arm kinematic data was obtained from the Virtual Reality environment.  

The Kinect motion capture system streams joint co-ordinates in X, Y, Z. From this data 
stream, it was possible to derive Acceleration, Kinetic Energy, leaning angle, movement 
direction and force related danger metrics as shown in Figure 3 below. The importance of 
these metrics shall now be explained as follows.  

 



 

Figure 3. Relations between collected data and human reaction metrics. Robot coordinates were 
obtained from the Virtual Reality environment 

 

2.2.1 Acceleration: was used to evaluate human reaction over a period of time. Acceleration 
is widely used in literature for characterising human reactions, making it a reliable metric 
[33]. 

It is given by the equation: ܽ ൌ ଶሻݐሺݒ െ ଶݐଵሻሺݐሺݒ െ ଵሻݐ  (1) 

With the velocity being the average velocity over a period of time given by: ݒሺݐଶሻ ൌ ݀ሺݐଵǡ ଶݐଶሻሺݐ െ  ଵሻ (2)ݐ

 

With ݀ሺݐଵǡ  ଶሻ being the distance covered between t1 and t2. The acceleration is calculated forݐ
every joint in each time intervalሺݐଵǡ  . ଶሻݐ
2.2.2 Kinetic Energy Ratio: This method is introduced in this paper and consists of 
calculating the ratio of the human Kinetic Energy (KE) spent per unit time during the robot’s 
jerky period and during the robot’s smooth period.  ݎ௄ா ൌ ଶܧܭ οݐଶൗܧܭଵ οݐଵൗ  

(3) 

KE1 is the KE spent by the human during the first phase (the duration of this phase is οݐଵሻ, 
normal behaviour of the robot, and KE2 is during the second phase (the duration of this 
phase is οݐଶሻ, during which the robot will be carrying out a dangerous motion.  

The total Kinetic Energy spent during each phase is calculated with the formula: ܧܭ௜ ൌ ෍ ͳʹ ଶο௧೔ݒ݉  (4) 



It is the sum of the Kinetic Energy spent between each measure. Since every participant has 
a different behaviour and spends different amount of Kinetic Energy to perform the same 
tasks, the ratio was proposed to reduce the effect of this variation from one participant to 
another. 

In order to calculate the Kinetic Energy with accuracy, it is necessary to have an accurate 
body model. [34] states that the body segment can be divided in four groups according to 
their weight as shown in Table 1. As a result, each joint recognised by Kinect was 
designated to its corresponding group as shown in Table 2. 

The geometrical centre of each body segment was calculated and the percentage of the 
body mass was calculated for each centre thereby making the calculation of the Kinetic 
Energy more accurate. The final Kinetic Energy is obtained by summing the Kinetic Energy 
spent by each segment during the experiment. The use of Kinetic Energy to calculate human 
reaction is according to our knowledge, a newly defined metric to assess human reaction.  

Categories Weight Percentage 

Head and Neck 6.81% 

Trunk 43.02% 

Arms 9.43% 

Legs 40.74% 

Table 1. Body Segment Data [30]. 
 

Categories Joints included 
Head and 
Neck 

Head, Neck 

Trunk Right Shoulder, Left Shoulder, Spine 
Shoulder, Spine Mid, Spine Base, Right 
Hip, Left Hip 

Arms Elbow, Wrist, Hand, Hand Tip, Thumb 
Legs Knee, Ankle, Foot 

Table 2. Designation of joints to body segments 

2.2.3 Direction of reaction: In this work, this metric was developed and investigated because 
an effective collaborative strategy for human-robot safe collaboration is closely linked with 
the direction of human reaction. The direction of human reaction will help inform the direction 
of movement the robot should adopt. It will also provide information as to the reaction of the 
human during various behaviours of the robot.   

A base coordinate system between the human and robot was defined in the immersive 
environment (Figure 4). For convenience, the virtual robot’s base coordinate system serves 
as the basis for Kinect sensor’s coordinate system, whereby the real-world Kinect location is 
placed where the base of the virtual robot would be. Note that two corrections are 
necessary: 

1. The raw x,y,z coordinate data from Kinect must be transformed from Kinect’s 

coordinate system into the base coordinate system. Thanks to co-location of Kinect 



with the virtual robot’s base coordinate system, this transformation is simple:  

(X, Y, Z)corrected = (Z, X, Y)Kinect. 

2. Kinect is ideally placed at a height of 1.5m, therefore a correction of  

Zbase = Zcorrected - 1.5m  

is necessary. 

The base coordinate system enabled the direction of human reaction to be defined using a 
factor called “angle of lean.” The angle of lean, ‘Į’, is the angle between the neutral position 
of the human (when standing still and straight) and the position in response to the robot’s 
actions in real time.  

By assuming that the spine base joint and head joint were a single straight line, and using 
the position of the spine base joint as the origin, Į could be determined for each time interval 
(Figure 5).  

In Figure 5, ߙ௬  is the angle of bend in ൅ഥ  y direction i.e. either towards the robot  (-) or away 
from the robot (+) direction from the initial mean position while ߙ௫   is the angle of bend in ൅ഥ  x 
direction i.e. either left (+)  or right (-) direction from the initial position. The angle of lean 
provides precise information regarding the bending of human at the waist along the Y axis 
such that if ߙ௬ < 0  then there is a lean towards the robotic arm and if ߙ௬ >0, there is a lean 
away from the robotic arm. Similarly, along the X axis, if ߙ௫ < 0, then the human is bending 
right side from the neutral position while if ߙ௫ > 0, the human is bending to the left side from 
the neutral position. These data could be used to give a clear feedback to the robot 
manipulator to control its path in order to avoid collision/accidents. 

 

Figure 4. Base coordinate system of the immersive environment along with robot rotation 

angles. 

 



 

Figure 5. Angle of lean Į calculation. Left: Angle of bend of human reaction in x axis, (ii) 
angle of bend of human reaction in y axis. 

 

2.2.4 HIC-based Force Related Danger: This metric was used to calculate the effect on the 
human if a robot were to hit the human. An HIC (Head Injury Criteria) equation was defined 
by [35] as Equation 5.  

ܥܫܪ ൌ οݐ ቆ ͳ݃οݐ න ௧భ௧మݐ݀ ܽ ቇଶǤହ
 

ݐο   ݄ݐ݅ݓ ൌ ଶݐ െ  ଵݐ

(5) 

Where t1 and t2 are any two points in time during the collision which are chosen to maximize 
the HIC with the condition that ǻt must be less than 15 millisecond (ms) to be relevant to 
head concussion and a is the resultant acceleration after the collision at the centre of gravity 
of the head.   

Calculated HIC values are translated to a “probability of sustaining an injury of a certain 
level”. Those levels, are usually expressed by the Abbreviated Injury Scale (AIS). The reader 
may refer to [35] for more information. 

Using an acceleration equation obtained from the mass-spring-mass model and the HIC 
formula (5), an HIC-based acceleration can deduced and is defined by [31]: 

ܽሺܥܫܪሻ ൌ ଴ݒʹ ܯ݉ ට ݉ܯ ൅ ݐοܯ  
(6) 

Where v0 is the approach velocity; ǻt is the duration of the impact; M is the robot arm 
effective mass and m is the human head mass (4-5kg). Using Newton’s second law, the 
HIC-based force applied to the human by the robot arm can be deduced as Equation 7. 

ܨ ൌ ݉ כ ܽሺܥܫܪሻ ൌ ටܯ଴ݒʹ ݉ܯ ൅ ݐοܯ  

(7) 



Once calculated, this force could be compared to critical forces, such as fracture critical 
forces or pain tolerances. However, there are some limitations to this criterion which are 
related to the HIC limitations: (1) It is only suitable for frontal and blunt impacts; (2) The 
approaching speed of the robot is supposed to be uniform and the human is supposed to be 
at rest, whereas they are not in our experiments (3) the stiffness of the robot and the head is 
not represented whereas it should a determinant factor and finally, this criterion only applies 
to the head and as such, it is not suitable for other body parts. 

3.0 Experiment setup 

The experimental setup comprised of an immersion of human participants in a virtual 
environment and performing HRC tasks. As mentioned before, the interaction between the 
human and the virtual robot was established by repeatedly feeding the robot’s end effector 
with a virtual box. The robot moves with a pre-defined trajectory following a pick/drop 
mechanism. The coordinate data (x, y, z) and rotation data (, , ) of robot kinematics were 
collected and time-stamped along with the human skeleton joint and rotation data.  

Two classes of experiments were carried out with 53 individuals between the ages of 21 to 
25 years old and with mixed gender participating. This two stage approach was necessary 
because we did not want to carry out the second class of experiments without ensuring that 
the environment exhibited a level of realism to achieve user immersion. This ensured that we 
could get more realistic human reaction data as we might have, if the human was 
collaborating with a real robot. For both classes of experiments, the setup discussed in 
section 2.1 and shown in Figure 2 was used.  

The first class of experiments: was made up of 22 randomly selected individuals and the 
experiment was used to gauge the realism of the Virtual Environment before conducting the 
next class of experiment. In this experiment, the robot arm was programmed to perform the 
two classes of trajectory discussed in section 2.1. In order to capture participant’s responses 
to the robot actions, a questionnaire was designed for the participants to fill out. The 
participants were asked about previous experiences with VR and industrial robots, as this 
could be relevant in understanding their perception of the realism exhibited by the created 
virtual environment. They were also asked if they would have reacted in the same way to a 
real robot and what their overall experience with the virtual environment was like (Please see 
Table 3 for more information).  

The second class of experiments: was made up of 31 randomly selected participants and 
the experiment was used to collect data on how participants reacted to the two robot motion 
trajectories. The collected human reaction data was then analysed using the proposed 
metrics in section 2.2.  

It is necessary to understand the link between the proposed metrics and the collected data. 
The developed system extracts 7 different components of the 25 joints composing the 
tracked body: 3 coordinates and 4 orientations components. At the same time, a script was 
embedded in Unity to record components of the 6 joints comprising the end effector of the 
collaborative robot: 3 coordinates and 3 rotations angles around the three axes. It means 
that every frame, the system records 175 values for the human body and 18 values for the 
collaborative robot (An ABB robot arm). Since our frame rate is approximately 50 frame per 
second (fps), the system records more than 10,000 values per second. 

The above data was stored in a .csv file. In the second class of experiments, these data 
were used to develop a replay feature that was used to playback the collected data of the 31 
participants. Due to the 1-to-1 mapping between the real and virtual world (as discussed in 



section 2.1), a 3 dimensional play back of experiments was achievable in the virtual 
environment. As a result, this enabled us to analysis the collected data more closely.  

The playback feature revealed that the data of 9 participants were not suitable for further 
analysis and therefore had to be discarded from processing (e.g. the participant did not 
complete the full experiment or the Kinect tracked someone else in the room).  

Furthermore, the collected data was analysed offline using a developed MATLAB script. 
Offline analysis was essential due to the large amount of data generated during each 
experiment.  

Sensor noise from the Kinect was an issue in our experiments. In order to reduce noise, data 
smoothing was carried out using the Savitzky–Golay filtering method. “The Savitzky-Golay 
smoothing and differentiation filter optimally fits a set of data points to a polynomial in the 
least-square sense” [36]. This method was very effective in eliminating noisy peaks in the 
data set.  

For example in Figure 6, the acceleration of the head reached a value of approximately -
90m/s2. This data point was not realistic for a human’s head. However, after smoothing, the 
values lied in a reasonable gap. It was then possible to proceed with further analysis. 

The Figure 7 displays the KE spent by the Head and Neck segment during the duration of 
the experiment, along with the robot’s end effector z-coordinate (useful to identify the smooth 
and jerky periods of the robot). It is noticeable that the KE’s peaks correspond to the 
moments when the robot’s arm approached the participant. Furthermore, a survey was 
conducted among all participants after the experiments to obtain feedback.  

The Virtual Reality environment was developed on a computer with the following specs: 
16GB RAM, an Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz (8 CPUs) and a GeForce GTX 
980 Ti graphics card. Microsoft Kinect V2 was used for motion capture.  

 

 

(i) Acceleration values obtained from 
raw data 

(ii) Acceleration values after 
smoothening 

Figure 6. Head acceleration before and after smoothing. 

 

 



4.0 Results 

This section discusses the results obtained using the proposed metrics presented in section 
2.2. As an example of what analysis was carried out on the data sets collected from the 22 
participants, this section focuses on one of the data sets collected from an individual. 

4.1 Kinetic Energy Metric: Figure 7 below displays the Kinetic Energy of the Head and Neck 
segment during the duration of an experiment, along with the robot’s end effector z-
coordinate (useful to identify the smooth and jerky periods of the robot). It can be noted that 
their Kinetic Energy peaks when the robot’s arm approached the human to be fed with the 
box. This can be observed at 10, 20, 30 and 40 seconds.  

In between these intervals of time, the Kinetic Energy of the head of the participant drops 
almost to zero while waiting for the robot to complete the task. At around 50 seconds, the 
density of the Kinetic Energy is much higher than at the previous times. This is because of 
the jerky movement of the robot identified by the sudden irregular trajectory of the z-
coordinate of the end effector. 

4.2 Acceleration: The second metric to consider was the acceleration of the human’s head. 
As mentioned before, the calculation of the acceleration has been widely used for the 
characterisation of human reaction. The head was chosen among all the joints as the most 
representative one to quantify the human reaction. After data smoothening as described in 
section 3, the average acceleration was calculated.  

Figure 8 shows the acceleration of the head joint during the whole duration of the 
experiment. It also shows how it changes with the movement of the robot’s end effector. The 
highest density periods on the graph correspond to the times when the robot’s arm 
approaches the human to be fed with the box. Finally, the highest density and peak period is 
directly related to the jerky movement of the robot. This correlates with the Kinect Energy 
graph in Figure 7.  

 

 

Figure 7. Kinetic Energy of the head and neck segment (Orange curve) and the Robot arm 
end effector (Blue curve) during the experiments.  

 
 

 



 

Figure 8. Head acceleration during the experiment. The head acceleration increased 
during jerky robot arm movement.  

 

 

Figure 9. The angle of lean during the experiments. Į < 0 : human towards the robot. Į > 0 
: human away from the robot. During the jerky motion of the robot arm, the angle of lean 
increases.  

 

4.3 Direction and Angle of Reaction: Figure 9 shows the variations in the angle of lean during 
the duration of the whole experiment. As mentioned before, when the lean angle is positive, it 
means that the human is bending away from the robot, while a negative value represents a 
movement towards the robot. It can be observed that when a participant was feeding the 
robot, the angle of lean was a negative value.  

After the feeding phase, the angle increases because the participant steps backward to grab 
another box. Noticeably, during the jerky period, the angle increases rapidly and reaches a 
peak of 40° degrees that represents a significant inclination of the human’s head away from 
direction of the robot. This shows that the human reacted in accordance to the sudden robot 
movement.  



 

 

 
 

Figure 10. Human vs robot velocities during the experiments 

 

 

Figure 11. Calculated force related danger using Equation 7.  

4.4 HIC-based Force Related Danger: Figure 10 displays the velocity of the human’s head 
and the robot arm’s end-effector during an experiment. The robot has been intentionally 
programmed to have a fast speed during its jerky motion period.  

An amplification of the previous graph in Figure 10 is shown in Figure 11, where the 
difference between human and robot velocities is shown more clearly. Using the obtained 
data and Equation 7, it was possible to calculate the hypothetical force that would have been 
applied by the robot’s arm to the human’s head if a collision were to happen in a real world 
scenario. A force of 24KN was generated by the robot arm and this could have resulted in 
the death of a human participant. 

5.0 Discussion 

This research was started out with the need to investigate whether virtual reality 
environments could provide a safe and effective environment to carry out human-robot 
collaboration research. Towards this end, a digital twin of a real world workshop was 
constructed in a virtual environment as well as a motion capture system used to collect 
human skeletal data from participants. The collected data were then passed through both 
established and newly developed metrics in order to judge human reactions to various robot 



motions including motions that were unexpected, jerky and potentially fatal. The goal is that 
the environment could be used to collect data from human participants to inform robot 
motions in the future. This should potentially result in new, informed and safe human-robot 
collaboration strategies.  

5.1 Analysis of realism of the developed Virtual Environment: A survey was carried out 
among participants using the Virtual Environment. Data from 22 participants were collected 
in this experiment. As seen in Table 3, the participants were made up of 8 people with no 
previous virtual reality experience, 14 people with previous virtual reality experience, 6 
people with experience of industrial robots (meaning that they use industrial robots most 
days in their work) and 16 people with no experience of industrial robots.  
 
The data in the questionnaire was processed by scoring the reaction and attitude of the 
participants to the robot motion in the virtual environment.  
 
In scoring reaction in this context, we were measuring if they would have reacted to the robot 
as they would have in the real world or not. Figure 12 shows that people with or with no VR 
experience reacted to the robot with the same amount of magnitude. 

Figure 13 also shows that people with real robot experience did not react as much as those 
that did not have real robot experience.  
 
 

  
Figure 12. Showing the mean of reaction 
responses vs experience with VR. .00 is 
code for No experience with VR while 1.00 
is code for Yes. 

Figure 13. Showing the mean of reaction 
responses vs experience with real robot. 
.00 is code for No experience with a real 
robot while 1.00 is code for Yes. 

 
However, if we look at participants 3 and 5’s response, it seems that their No response is 
actually a Yes response. For example participant 3 commented: “Nope, I think I would have 
step back.. If I would have time” meaning that Yes, he/she would have reacted if they had 
the time to move out of the way of the robot. Participant 5 also commented: “I think I would 
move out of its way quicker - but I canot be sure” seeming to suggest that he/she would 
have reacted as well and moved out of the way of the robot.  
 
But perhaps because of their experience with industrial robots they knew they would not 
have had enough time to react if it was a real robot. By looking at these comments and those 
of others with industrial robot experience, it shows that the VR environment has the potential 
to be representative of the actual environment in which the industrial robot arm operates.  



 

Table 3. Results of survey carried out among participants 



 

Figure 14. Showing the mean of attitude 
responses vs Experience in VR. .00 is code 
for No experience in VR while 1.00 is code 
for Yes.  

Figure 15. Showing the mean of attitude 
responses vs Experience with working with 
Robots or as seen a working robot in 
operation. .00 is code for No experience 
with a Robot while 1.00 is code for Yes. 

 
 

  VR Experience Industrial Robot 

Experience 

Final KE Ratio Reaction  Accordance with 

Observation  

  Yes No Yes No       

Participant 1   x   x 0.908184149 Low Yes 

Participant 2 x     x 1.491934 Low No 

Participant 3 x     x 2.812031 High Yes 

Participant 4   x   x 3.085502 High Yes 

Participant 5 x     x 1.769956 Low No 

Participant 6 x   x   0.189137 Low Yes 

Participant 7   x   x 0.454912 Low Yes 

Participant 8   x   x 2.421551 Medium Yes 

Participant 9 x     x 0.469138 Low Yes 

Participant 10 x     x 3.858684 Medium No 

Participant 11   x   x 0.68106 Low Yes 

Participant 12   x   x 1.087817 Medium No 

Participant 13 x     x 1.186584 High No 

Participant 14   x   x 1.073079 Low Yes 

Participant 15 x     x 0.641418 Low Yes 

Participant 16 x     x 0.873797 Low Yes 

Participant 17   x   x 0.208117 Low Yes 

Participant 18   x x   0.04566 Low Yes 

Participant 19 x     x 0.957383 Low Yes 

Participant 20 x     x 3.300583 High Yes 

Participant 21 x     x 0.083438 Low Yes 

Participant 22   x   x 0.708075 Medium No 

Total 12 10 2 20       

Table 4. Showing Kinetic Energy ratio and previous experience of Virtual Reality. *black: ratios are in 
accordance with the observed reaction. red: values not in accordance with the observed reaction. 
After removing the red values, the median Kinetic Energy ratio of participants with no previous Virtual 



Reality experience was 0.7946 compared to the median Kinetic Energy ratio of 0.7576 with previous 
Virtual Reality experience.  

In scoring attitude, a scale of 1 to 3 was used. The participants that gave a negative attitude 
of the robot due to its sudden movements and speed were given a lower score. For 
example, comments like “Sudden, quick, virtually dangerous” received 1 while comments 
like “Fun, exciting, a bit scary” received a score of 2. Figures 14 and 15 show that people 
with previous experience of VR or having seen as well as worked with Robots were able to 
see perceive the danger of the sudden robot movement in the VR environment and as a 
result, had a negative attitude. Both analysis of attitude and reaction feedback from the 
participants’ shows that the virtual environment could be sufficient to act as a substitute for 
collecting data about human reactions to unexpected robot movements.  
 

5.2 Analysis of human reactions to robot movements using the proposed metrics of Kinect 
Energy Ratio: 31 participants were used in this set of experiments. But 9 were rejected due 
to issues such as the participant not completing the full experiment or the Kinect tracking 
someone else in the room. 12 people had no previous virtual reality experience, 10 people 
with previous virtual reality experience, 2 people with experience of industrial robots and 20 
people with no experience of industrial robots (Table 4). 

Analysis of the data showed that the 22 participants could be classified into three groups 
according to a visual observed reaction: low, medium and high reaction (Figure 16). Visual 
observation of participant’s reactions were classification by: 

 Observing the overall reaction of the participant 
 Observing by how much the participant shifted from the neutral position 
 Observing the movement speed of the participant during the robot arm feeding process 
 Observing the reaction magnitude of the participant during robot arm jerky motions 

The participants in the low reaction group did not show any reaction or very low reaction. 
This meant that the participants’ movements did not shift or slightly shifted from the neutral 
position throughout the experiment. The participants in the medium reaction group reacted to 
dangerous movement of the robot by leaning the trunk slightly backwards or taking a small 
step back from the robot. The participants in the high reaction group showed the highest 
movement’s speed and the magnitude of their reaction was higher than the other two groups 
during the jerky phase of the robot. These participants expressed their reaction by taking 
large step backward or jumping back away from the robot. 
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Figure 16. Classification of participants Kinetic Energy ratio according to their reaction to 
unexpected jerky motion of the robot arm.  

As seen in Figure 16, there was a high frequency of low reactions among the participants. 
These visual observations were compared with the Kinetic Energy ratio metric discussed in 
Section 2.2.  

The calculated Kinetic Energy ratio was classified using values as follows: An analytical 
Kinetic Energy ratio < 1.10 was deemed to belong the low reaction group: 1.10 < KE  < 2.40 
belonged to the medium reaction group and 2.40 < KE < 3.30 was deemed to belong to the 
high reaction group. Table 5 below presents the comparison of the Kinetic Energy ratio 
metric analysis with the visual observed reactions.   

 

 

 

 

 

 

Table 5. The Kinetic Energy (KE) ratios for each participant sorted according to the observed reaction 
of the human. Analytical KE ratio < 1.10 should belong to low reaction, 1.10 < KE  < 2.40 should belong 
to medium and 2.40 < KE < 3.30 should belong to high reaction. *black: ratios are in accordance with 
the observed reaction.   Red: values not in accordance with the observed reaction. 

In the low reaction group, it was revealed that two analytical ratios were not matching with 
the visually observed reaction because they were too high. In the medium reaction group, 3 
ratios were not satisfactory; either too low or too high, and in the high reaction group, one 
ratio was too low. 

Thus, over 22 participants, the analytical results of 16 (73%) were in accordance with the 
observed reaction, which means that a person with high reaction in the reality, has also high 
analytical Kinect energy ratio, and the same applied for participants with low and medium 
reactions. 

However, 6 out of 22 participants’ ratios (27%) did not match with the observed reactions, 
but this incoherence could be justified by in depth analysis of the data along with the 
playback feature.  

For example, a person who had a high magnitude of reaction during the jerky phase of the 
robot but moved more than usual during the smooth robot phase could show a low Kinetic 
Energy ratio. It is also possible to explain the results obtained for participants who were 
classified according to observation into the low and medium reaction groups but who have a 
high overall Kinetic Energy ratio. For example, a person who slightly shifted the position in 
the jerky movement of the robot ended up to belong to the high reaction group because 
during the smooth phase he moved in a stable manner or without shifting from the origin 
position. Thus, for this scenario, the movement showed in unexpected robot situation was 
greater than the one during the normal period of the robot, with the consequence of having a 
high overall KE ratio. However, by analysing the replay session of their experiment, the 
participants showed either no reaction or slight reaction. Therefore, they cannot be really 
categorised in medium or high reaction group even they have overall high kinetic ratios.   

Observed reaction Low Medium High 
KE Ratio 0.04566 0.68106 0.70808 1.18658 

0.08344 0.87380 1.08782 2.81203 
0.18914 0.90818 2.42155 3.08550 
0.20812 0.95738 3.85868 3.30058 
0.45491 1.07308   
0.46914 1.49193   
0.64142 1.76996   



During the assessment of the Kinetic Energy ratio metric, it was recognised that the 
behaviour of the person during both the smooth and jerky periods play an important role in 
determining the individual Kinetic Energy ratio. Though, this metric is a new innovative 
metric to quantify human reaction, it was demonstrated that it could accurately classify 73% 
of the analytical data according to the observed reaction. Nevertheless, there is still room for 
the experiment to be conducted on more diverse data such as different age group, academic 
backgrounds or industrial experiences. More data would provide more evidence, which 
would lead to a refinement of the developed metric for greater reliability and accuracy in 
classifying human behaviour.   

As seen in Figures 7, 8 and 9, the Kinetic Energy ratio correlates with other metrics such as 
acceleration and angle of lean metrics. Together they could be used to inform robot control 
strategies during human robot collaboration sessions. Furthermore, the HIC-based force 
related danger index could be used to safely measure collision effects during human-robot 
collaboration session without the risk of injury to humans. This index could be used for 
gamification training sessions.  

5.3 Possible correlation between human reaction and previous experience of Virtual reality: 
An analysis was conducted in order to ascertain if there was a relationship between human 
reaction and personal characteristics such as previous experience of virtual reality.   

It was discovered that it was possible to identify a correlation between people’s 
characteristics and reactions observed; for instance, participants with previous experience in 
virtual reality were more used to the unreal environment. Thus, even when the robot 
approached them at high speed they were aware that it was not a risky situation. They 
stated that they did not feel completely immersed in the developed virtual environment 
because of the lack of audio and physical feedbacks such as vibration in controller when 
robot was colliding with them. As a result, they exhibited a low reaction to the jerky motion of 
the robot arm.  

Some participants who were experiencing the virtual reality for the first time did not show a 
relevant reaction as they were distracted by the virtual environment and did not notice when 
the robot started to initiate the dangerous movement. However, the median of the Kinetic 
Energy of this group was higher than the group with previous experience of a virtual reality 
environment (Table 4). This could be explained by the fact that people with no previous 
experience had to go through a “learning stage” at the beginning of the experiment making 
their movement less accurate and, thus increasing their overall KE. 

Initially, it was thought that people with previous experience of industrial robots will be more 
aware of the danger and react accordingly. However, their reaction was actually low and 
they ended up belonging to the low-reaction group. Nevertheless, as discussed in Section 
5.2, this could be because they knew they would not have had enough time to react if it was 
a real robot. 

6.0 Conclusion 

In this work, an investigation into the effectiveness of using a virtual reality (VR) environment 
to inform the development of human-robot collaboration strategies was carried out. This 
investigation is particularly important because such a virtual reality environment presents a 
low cost solution to Academia and SMEs interested in experimenting and developing 
strategies for collaborative robotics.  
 
For SMEs, such an environment enables them to test if the potential human-robot 
collaborative strategies they are considering will work without the need to buy expensive 



equipment. In some cases, having a low cost solution to test their strategies could be the 
difference between developing a product that nobody wants and developing a product that is 
useful. By using such an environment developed in this paper, they can at least get a first 
set of results from potential users of their system before going full scale. For Academia, it 
presents a good environment in which low technology readiness level algorithms and 
approaches can be trialled, analysed and presented to the wider community.  

Towards achieving the above, a survey was used to collect participants’ attitudes to the 
developed VR environment. The survey also collected participants’ reactions to unexpected 
robot motions. It was discovered that if a virtual environment is designed and developed 
well, the realism offered by it could be effective in understanding human reactions to both 
expected and unexpected robot actions (Section 5.1).  

Quantitatively, human reactions were quantified using a set of metrics comprised of 
acceleration, Kinetic Energy ratio, leaning angle and force related danger. The acceleration 
metric is a metric commonly used in literature while the leaning angle and Kinetic Energy 
ratio metric were newly developed in this work. The Kinetic Energy ratio metric enabled us to 
derive an overall measure of the human-robot collaboration experience of a participant.  

The Kinetic Energy metric enabled us to classify people into one of three groups: low, 
medium and high reaction groups (Section 5.2). It was discovered that there might be a 
correlation between their reaction to the robot arm and previous experience of virtual reality. 
A correlation between their reaction to the robot arm and previous industrial experience with 
robots still needs to be ascertained (Section 5.3).  

Using visually observed behaviour as a benchmark, the Kinetic Energy metric was able to 
accurately classify participants up to 73%. In future work, more data will be collected to 
refine this metric. This will comprise participants from a broaden age range, background and 
industrial experiences.  

Nevertheless, in section 4, it was shown that the newly developed Kinetic Energy metric 
correlated with the acceleration metric as well as the leaning angle metric. The newly 
developed leaning angle metric enabled us to derive a measure of how far the human 
leaned away from the robot during unexpected motions as well as in what direction. This 
information could be used to control a robot’s motion in the future. 

Finally, the HIC-based force related danger metric enabled us to measure the force that 
would have been applied to a human if a robot had collided with him or her. We believe that 
this metric will be useful in gamification of the virtual environment tool as well as aid 
authorities in passing regulations in respect to human-robot collaboration strategies in 
industry.  

In future work, we plan to expand the capability of our Virtual Reality Environment by 
considering highly skilled manufacturing tasks in various sectors. One immediate task is 
composite manufacturing in the aerospace sector. For example, there is active research in 
improving current manual composite layup through human-robot collaboration. A robot “third 
hand” that can manipulate material with full awareness of the position of human limbs can 
help increase productivity, e.g. by picking up and correctly positioning the next fibre work 
piece; by fixing the composite fibre against the mould so that a human operator can shear 
the material with both hands; or many other possible strategies which can be dependent on 
the human operator’s preference and experience levels. 
 
This is quite a complex set of operations that will be challenging to do or cannot be research 
on the shop floor itself. In this case, a VR environment such as ours would enable us to 



construct an environment where a highly skilled operation can take place as well as provide 
the possibility to investigate how human-robot collaborative strategies could be developed 
with minimal risk.  
 
The metrics researched in this paper could be used by the human-robot collaborative system 
to gauge human reactions and attentiveness to the robot as well as to the task being 
performed. Lessons learnt can then be transferred to an actual shop floor.  
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