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Supply Networks as Complex Systems:

A Network-Science-Based Characterization
Alexandra Brintrup, Yu Wang, and Ashutosh Tiwari

Abstract—Outsourcing, internationalization, and complexity
characterize today’s aerospace supply chains, making aircraft
manufacturers structurally dependent on each other. Despite sev-
eral complexity-related supply chain issues reported in the litera-
ture, aerospace supply chain structure has not been studied due
to a lack of empirical data and suitable analytical toolsets for
studying system structure. In this paper, we assemble a large-scale
empirical data set on the supply network of Airbus and apply the
new science of networks to analyze how the industry is structured.
Our results show that the system under study is a network, formed
by communities connected by hub firms. Hub firms also tend
to connect to each other, providing cohesiveness, yet making the
network vulnerable to disruptions in them. We also show how
network science can be used to identify firms that are operationally
critical and that are key to disseminating information.

Index Terms—Aerospace, complex system, network science,
supply networks.

I. INTRODUCTION

SUPPLY network systems emerge as firms self-organize

into a delivery chain that makes parts necessary for the

assembly of a final product. Firms decide what and how to

produce, where to position themselves geographically, and

with whom to link. Individual firms have limited control and

visibility over the entire network [10]. As such, each firm

can be seen as a selfish agent that interacts with other firms

toward a collective goal, but also pursues its own goals using its

capabilities. Researchers have discussed how these properties

make supply chains complex systems with network-like struc-

tures [10], (Choi et al. 2001), [27], [28], [46], [47]. Although

definitions of a complex system vary, it is generally accepted

that a complex system is the result of a network of individual

components interacting by following local rules without central

control [30].

While the idea of supply networks as complex systems has

been put forward some time ago, most recent operations and

industrial informatics literature is still built on simple models

assuming few firms connected together in a chain-like fashion.

Chains imply centrally designed linear flow, with a few firms

delivering goods to the end customer. Complex systems, on
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the other hand, are networks, with many actors interacting

with each other through various pathways. The difference is

an important one, because the interaction structure of a system

impacts its functional properties such as robustness to per-

turbations and performance in distributing information and

delivering output [35].

Complex systems can be studied using network science [35].

Network science evolved from graph theory and has its roots in

the 1960s [17]. It abstracts systems as a set of nodes and links,

the former representing agents and the latter the interactions

among them. Doing so, it reveals a structure and infers the

governing rules of the system. Work on network science has

exploded in the past decade, and applications to complex sys-

tems proved it to be a powerful methodology in understanding

how these systems work [6]. Works in this arena ranged from

understanding the dynamics of the Internet [1] to the targeting

of terrorist social networks [38], the spread of diseases [26], to

the spread of social influence (Onnela and Reed-Tsochas 2010),

and economic activity of countries [22].

The reason behind this explosion is data. Increase in compu-

tational power meant that researchers can now sift through vast

arrays of data. Network science, being a powerful abstraction

methodology, helps researchers analyze data from a wide va-

riety of seemingly unconnected complex systems and discover

similarities in the underlying patterns of behavior [6].

There are, however, very few empirical studies on the ap-

plication of network science to the study of complex supply

networks [8]. One reason for this is the difficulty in gathering

empirical data, as firms do not readily reveal their connections

and have little incentive to do so. Another reason is the lack

of case studies and guides in the application of network-based

analysis [8], [24]. It is little understood how and why network

science can help operations researchers used to studying dyadic

relationships between a few firms.

In this paper, we initiate a step toward addressing these gaps.

First, we collect a large data set from a third-party industrial

database, which allows the application of network-science-

based analysis to the study of a supply network. Using a case

study from the Airbus Group, it is first shown that the supply

chain is a complex network and that network-based abstraction

can highlight structural properties that affect its functioning.

Second, the case study acts as the first structural analysis

of the aerospace industry using network science. The data

reveal interesting and important insights: nonlinear pathways

exist between firms, the structure is composed of communities

that are formed by different industrial sectors and geographic

locations, and most firms connect to large hub firms, which

act as bridges between communities, providing cohesiveness.

1932-8184 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Hubs tend to connect to other hubs, reducing path lengths

for the distribution of information, but also increasing system

vulnerability to disruption in these hubs.

In what follows, first, a literature review is presented, fol-

lowed by a description of data collection and methodology.

Then, the results of the network analysis case study are given,

followed by a conclusion of our findings.

II. LITERATURE REVIEW

The aircraft market keeps growing with the popularity of

low-cost air carriers and the need for replacing old fuel inef-

ficient aircraft with newer models. Aerospace production sys-

tems are characterized by highly specialized manufacturing and

assembly processes coupled through global supply chains [43].

Three main sourcing trends impact today’s aerospace supply

chains.

First of these is the focus on core capabilities. The traditional

single component sourcing has largely been replaced with mod-

ular architectures. Original equipment manufacturers (OEMs)

are the main assemblers, who work with a number of prime

contractors in Tier 1. In this production system, downstream

suppliers provide prime contractors with a subassembly, which

then goes to the OEM [4], [45]. The sourcing trends in the in-

dustry suggest that large companies focus on core competencies

and to outsource more design and manufacture. Modular system

architectures are popular as these require less customization and

make switching between suppliers simpler. The required degree

of precision and variability of production processes mean that

prime contractors rely on suppliers to design and build entire

subsystems or modules [3] and must have specialized knowl-

edge about the modules developed by their suppliers. Suppliers

to the prime contractors themselves can be systems integrators

that coordinate their own supply chain [39]. Few companies

in the world can afford the level of precision and cutting-edge

technology required to support aircraft manufacturing, resulting

in multiple customers per supplier.

The second trend is rationalization. Prime contractors are

increasingly dealing with few suppliers [39]. Combined with

the focus on core capabilities and outsourcing systems to the

supplier base, this means that companies are increasingly de-

pendent on capable suppliers to continue providing competitive

subsystems and subassemblies, which incorporate advanced

product and process technology.

The third trend is internationalization. In addition to high de-

pendence on a limited number of suppliers, OEMs incorporate

suppliers specifically from the customer countries, hoping to

gain more overseas market share. As a result, the supply chains

have evolved from single material transactions to global supply

chains [40].

Combined together, these trends hint at long chains of highly

interdependent firms across the world, but do not tell much

about the actual structure of the industry. However, supply

chains can make or break the aerospace industry—65%–80%

of final cost of aerospace production is dedicated to suppliers,

while majority of delays and quality issues can be also traced

back to supply chain and management and coordination issues

(Tang et al. 2013), [40].

On the other hand, many researchers have stressed the im-

portance of considering supply chain ideas from a structural

perspective (for example, [15], [16], [27], [28], [36]). However,

progress has been constrained by a lack of analytical tools to

describe and interpret network structures. The last decade has

seen the emergence of a substantial body of techniques under

the broad heading of “network science” (Watts 2004) [33],

which has provided a substantial set of tools for understanding

the characteristics of complex networks.

Reference [10] have pioneered the application of these ideas

to supply networks (see also [8], [24]). From a theoretical per-

spective, [41] discussed how the potentially scale-free structure

of military supply networks could affect their vulnerability to

disruptions. In spite of these efforts, research has been further

constrained by the lack of empirical data sets. Such empirical

maps of who supplies whom are almost entirely absent from the

literature [31].

To date, there has been less than a handful of empirical works

that study the structure of supply networks, and those that exist

do not study the aerospace industry. [8] and [25] discussed what

various network metrics meant in the context of supply net-

works. Using network-based analysis, they successfully iden-

tified structurally significant actors within the Honda, Acura,

and Daimler Chrysler networks, consisting of 70 members.

Reference [29] analyzed network “motifs” of 106 automotive

firms in southern Italy, finding several triadic connections, and

Keqiang et al. (2008) examined the Guangzhou automotive in-

dustry, consisting of 84 firms. Although these examples provide

much-needed glimpses at supply network maps, their relatively

small scale limits their usefulness for the development of

theory.

In this paper, we aim at addressing two main gaps in the

literature. First is that while researchers hint at a highly inter-

connected global structure in the aerospace industry, this has

not been validated from an empirical and structural standpoint.

Second, in the study of supply chains, neither the extent nor the

impact of system structure is known. To address these gaps, we

set out to map an important part of the aerospace industry, re-

vealing its structural dependencies and vulnerabilities. In doing

so, we collect a large-scale data set that allows the application of

network-science-based analysis to a substantial supply network.

Scale allows us to find statistically significant macroscopic pat-

terns in the network and deduce structural properties, providing

the research community with an empirically based network

science study.

III. DATA AND METHODS

The supply network data we have collected come from

publicly available sources. To maximize our chances of iden-

tifying clear patterns, we work with a supply network from the

aerospace industry for which a large sample size is available.

This industry choice allows us to use network data from a single

database managed by an independent agency.1 This database

is comprehensive and offers consistency when compiling data.

Within the aerospace industry, we focus on the network of

1www.bloomberg.com

https://www.bloomberg.com
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the Airbus Group. Given the large size of this company’s

supply network, the corresponding data are sufficient to derive

statistical analysis.

There are a few limitations of the data that need to be

highlighted, as they determine the type of analysis that is

possible. The links in the network signify that there is a

supply relationship between the two nodes (i.e., firms). Hence,

links are directional. We do not know what specific products

are produced by the suppliers and which products are sup-

plied to which specific buying firm. Hence, the whole supply

network of Airbus is collected, rather than parts related to

a particular plane model. A secondary check undertaken by

researchers on the annual report of the focal firm has shown that

> 90% of the firms listed on the Bloomberg database match

the procurement relationships declared by the company. How-

ever, the data are not exhaustive because the database contains

only publicly listed firms. Furthermore, supply networks are

dynamic constructs, changing frequently; thus, efforts to map

them, such as the study we currently undertake, only represent

a cross-sectional reality in time. Conclusions should be taken

as suggestive rather than definitive given the lack of private

firms and lack of knowledge on what proportion of the network

is composed of them. Despite these shortcomings, the data

set is the most comprehensive data set reported to date on

aerospace supply networks, and analysis shows that statistically

significant patterns can be identified.

Data were downloaded from the database during October

2013 to January 2014, and secondary checks were made during

March 2014. The initial search involved identifying all compa-

nies that have a direct sales link to the focal company Airbus

Group. We filtered production firms out of the data and left

out service firms. Airbus Group is an OEM, and all its prime

contractors and other downstream suppliers are captured as

nodes. This search resulted in identification of Tier-1 suppliers.

This then was followed by individual searches on each Tier-1

supplier, identifying each company’s suppliers, resulting in

Tier 2. This process was continued recursively until the fourth

tier was found. This recursive mode of querying ensures that

all firms in the list are directly or indirectly connected to the

focal company in the network. As every supplier obtains a

unique identification, intertier linkages and suppliers links to

multiple customers could be also identified. No further tiers

were investigated as the third and fourth tiers included raw

material suppliers and electronic parts upon inspection, which

meant that the production process started from the fourth tier

on average (see Section IV). Approximately four man months

were spent to compile and validate the data. Our construction of

the network includes 544 supplier firms and 1657 relationships

among them. Fig. 1 displays the overall network constructed.

Following data collection and validation, data analysis took

place. Analysis is divided into three main parts: we first start

by examining the overall structure of the network using mea-

sures such as degree distribution, average shortest path lengths,

clustering coefficients, density, communities, and assortativity.

These measures present us with a macroscopic view of how the

network is glued together and relates to cohesiveness and close-

ness of firms, as well as pinpointing structural vulnerabilities. A

fundamental question is whether the network is robust against

Fig. 1. Airbus supply network. Tiers have been color-coded.

node failures, that is, the disruption of a firm’s output in the

network.

Where appropriate, we used random networks of the same

scale for structural comparison [17]. Of course, a random

network is likely to be a poor match with real supply chains.

However, given that there is a lack of real-world empirical data

in supply chain literature, it is not appropriate for us to speculate

on alternative null models without having to resort to significant

assumptions.

Next, we show how key network actors and their roles can

be identified using network centrality measures, which help

companies understand which firms act as network connectors,

integrators, and mediators. If these firms are known, then focal

company can make better informed decision in their dealings

with them.

IV. NETWORK ANALYSIS

A. Tier Structure

We start examining the basic topology of the network with

its tier construction. In the field of supply chain management

“tiers” are used to refer to the number of firms that lay between

any given firm in the chain and a final destination firm where

goods end up [12]. A firm that has a direct relationship with

the final firm is considered a Tier 1. Any firm that supplies to

this firm is a Tier 2, and so on. Tier levels serve as a proxy of

the importance of a firm to the final firm, although research has

shown that subtiers are just as important as close tiers during

disruptions. Tier-1 firms would be the closest allies of the final

firm, coordinating upstream activities below. The length of the

chain also affects the dynamics of the chain. For example, the

longer the chain is, the higher the impact with which final tiers

feel the demand amplification effect and the lower the reliability

of the chain [18]. Most companies do not have visibility over

their chains: they only deal with their direct customers and
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Fig. 2. Number and direction of relationships within and across tiers.

suppliers and do not have any control over their relationship

choices. Given this emergent nature of supply chains, supply

chain structures have been assumed rather than empirically

analyzed, and these assumptions have been rarely challenged.

One of such assumptions is the “pyramid” shape that puts

forward the idea of hierarchical supply chains, in which a

company only interacts with its upstream suppliers [14]. These

suppliers, in turn, repeat the same interaction pattern, resulting

in a clear hierarchy, ensuring a span of control for each firm.

The pyramid abstraction has been used to highlight dependen-

cies that cause all firms in the chain to ultimately work for the

final omnipresent assembler, whom everyone depends on for

their survival [13], [14].

In the case of the Airbus network, however, no clear hier-

archy exists (see Fig. 2). For example, firms on the first tier

also supply to each other, in principle, making them Tier 2.

Although, as we go down the tiers, intertier supply decreases.

There are also backward supply links, going from the first

tier firms to the second tier, creating loops. This structure

confounds the idea of straightforward linear chains and hier-

archical organization in supply chains and points us firmly in

the direction of complex networks. Furthermore, the resulting

web of interconnections is much denser than what would be in

a hierarchical supply chain, possibly meaning better visibility

of demand but also a higher risk of disruption cascades.

B. Clustering

Another relevant measure is the clustering coefficient that

quantifies the extent to which two random nodes with links

between them are also connected through common third parties

and is defined as the ratio of the number of existing links

between a given node’s nearest neighbors and the maximum

possible number of such links, averaged over all nodes in the

network [35]. The clustering coefficient on our case is 0.314.

Compared with a random network of the same size, the value

is significantly higher (see Table I), which means that firms

that buy and sell from each other also depend on each other

indirectly, as they share supply links through tertiary firms they

connect with.

One possible explanation of this high degree of intercon-

nectedness would be that firms generally have high numbers

TABLE I
STRUCTURAL MEASURES OF SUBNETWORKS

of customers and suppliers. However, the average number of

customers per supplier (out degree) is only 3.05, whereas the

average number of suppliers (in degree) is only 7.71, and the

average number of relationships (degree) per firm is 5.92, which

are all quite small numbers. For a more thorough investigation

of network structure, we need to study the network degree

distribution.

C. Degree Distribution

The degree distribution refers to the distribution of the

number of relationships across firms in the network. The in-

and out-degree distributions are shown on Fig. 3(a) and (b),

respectively. These demonstrate that the number of supplier and

client relationships maintained by firms in the Airbus supply

network is not characterized by some random value, such as the

Poisson distribution that we would expect for a random network

[17]. Instead, our network approximates a power law degree

distribution, which hints at a scale-free network [5]. A scale-

free structure would imply that a significant proportion of all

relationships are associated with firms that act as hubs. In scale-

free networks, the degree distribution follows a power law, and

hence would be observed with a straight line on a log–log plot.

However, perfect power laws are only observed in infinitely

large networks, and for real-world networks such as supply

chains, finite-size effects will induce an exponential cutoff

[2]. In a previous study, [9] showed that the Toyota supply

network follows an exponential degree distribution, with some

firms maintaining significantly more relationships than others,

but a clear upper bound or capacity constraint on how many

relationships a firm can maintain. This was contrary to previous

assumptions of authors who suggested scale-free network struc-

tures in supply chains [21], (Zhao 2011), [41]. An exponential
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Fig. 3. (a) Total cumulative degree distribution. (b) Cumulative in- and out-
degree distributions.

degree distribution is typically observed in networks generated

by a tradeoff evolutionary process that involves nodes incurring

costs for obtaining links [2]. Our study can neither refute nor

reinforce the scale-free structure hypothesis, as the scale of data

is not high enough. What is certain though is that the network

carries a hub structure, and some firms connect to a significantly

larger proportion of the network, whereas most other firms con-

nect to these hubs only. Large-degree firms act as the connectors

of the network and provide cohesiveness. An implication of

such a structure for network robustness is that the network will

remain connected in the face of random disruptions as these

will most likely affect those firms that connect to large hubs.

If, on the other hand, large hub firms are disrupted, the overall

network will most likely suffer, given that they are integral to

the functioning of the network (Barabasi and Albert 1999). Of

course, this is a structural consideration only, and in reality,

a multitude of other variables such as inventory and disaster

readiness need to be taken into account. We test this implication

through a network failure study described as follows.

The in and out degrees of all nodes are first calculated.

Starting from the node with the highest in or out degree, nodes

are successively removed in descending order of node degree.

When a node is removed, its links are also removed from the

network. In the case of random failures, a random node is

removed from the network, and the random failure is repeated

100 times in order to obtain relevant confidence intervals. We

then observe the size of the “largest connected component

(LCC).” A component is composed of nodes that are directly

or indirectly connected to each other. The LCC contains the

highest number of nodes that are connected to each other. In our

case, we start off with a completely connected network; hence,

the size of the LCC is 1. The size of the LCC in each round is

Fig. 4. Changes in the size of the LCC during successive node deletion.

normalized by dividing by the size of the LCC in the original

network.

Fig. 4 shows how the size of the LCC evolves under different

failure types. The network rapidly disconnects when firms with

large numbers of suppliers stop functioning, whereas connec-

tivity is more stable and sustained under more numbers of

failures. The pattern is similar when firms with large numbers

of customers are targeted. Of course, it should be noted that,

in the Airbus network, firms have large numbers of suppliers,

but small numbers of customers, because the network under

consideration does not contain customers outside the Airbus

network. In other words, all customers of suppliers themselves

are suppliers to the Airbus network. Nevertheless, counting the

number of suppliers to suppliers appears to be a good proxy

for estimating structural robustness. On average, it takes three

firms to consecutively fail for the network to be disconnected,

whereas the failures of hub firms disconnect the network

immediately.

D. Communities

Next, we study how the structure is affected from geograph-

ical and industrial connectivity, forming into substructures

called communities. Fig. 5(a) shows the geographical distribu-

tion of firms across tiers. Thirty-eight countries are involved

in the supply network, the highest being from the U.S. (25%),

Japan (23%), and China (19%), respectively. It is interesting

that the top three do not include a European country; however,

when taken together, European firms account for the majority

of Tier-1 suppliers, followed by firms in North America. North

America and Asia dominate Tier 2. Upon inspection, we have

found that Japanese firms carry a different level of cohesiveness

and dominate much of the automotive subnetwork to which

Airbus is connected. For this reason, Japanese firms are sep-

arated from the rest of the Asian firms for analysis in the rest

of this paper. Japanese firms dominate Tier 3, whereas other

Asian countries dominate Tier 4. The network is global, but

there appears to be clear geographic bias on the different levels

of tiers.

A similar bias can be observed in terms of industrial sectors.

When we investigate industrial sector distribution across tiers,

we see that Tier 1 consists mostly of Aerospace suppliers,
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Fig. 5. (a) Geographic distribution of firms by tier. (b) Sector distribution of firms by tier.

and Tier 2 and Tier 3 consist mostly of Electronics suppliers,

followed closely by Automotive suppliers [see Fig. 5(b)]. The

amount of automotive suppliers in the network is surprising

and highlights how closely linked is the aerospace sector with

the automotive industry. Companies like GKN and Mitsubishi

Heavy Industries provide much of the interconnectivity as they

produce both aerospace and automotive components. GKN

produces airframes for Boeing and Airbus and drivelines for

Toyota. During the Japanese earthquake in 2011, GKN’s shares

rapidly fell as production in Japan was severely impacted, but

recovered later due to improved production and sales in other

divisions, including aerospace.

Raw materials suppliers are small in number and do not

dominate any one tier, although they increase as we go down

the tiers. The significance of the overrepresentation of firms

from certain sectors and geographic areas in tiers has been

checked using a two-tailed hypergeometric test. It appears that

both a firm’s location and industrial sector identification define

its structural location in a supply network.

To investigate further, we use the network density measure.

The density of a network is a simple measure of overall network

cohesiveness, with high-density networks containing multiple

paths between any two firms. Density is measured by calculat-

ing the number of links in a network as a fraction of the number

of all possible links. When compared with random network, we

observe that the density of the network is similar to random

networks; however, the clustering coefficient is significantly

higher. This means that the aerospace industry is not tightly

connected, as there are many more possible links; however,

those firms that do show high degrees of connection appear to

connect to each other via third parties as well. The implication

is that the network is divided into communities of firms that

are intricately linked to one another. This also implies that a

few firms act as the connectors between these communities, and

their role is key to providing overall connectivity. We examine

those firms in Section IV-E.

In addition, it is observed that density varies as we move

from Tier 1 to Tier 4, among different locations and different

industrial sectors (see Table I), hinting at the existence of

substructures with different levels of cohesiveness. While the

TABLE II
MODULARITY

European, Asian, and North American firms connect within

each of their subnetworks to a similar degree, Asian firms do

not interconnect as much.

To examine substructures, we use community detection.

Many networks carry communities, which refer to nodes that

share links with each other than with the rest of the network. As

such, communities are composed of nodes with dense internal

and sparse external connections [42].

First, we use a formal test to determine the existence of

communities using the modularity measure. The measure es-

sentially investigates the strength of division into subgroups in

a network. Biological and social networks show high modu-

larity and form themselves into densely connected substruc-

tures called communities [34]. Communities are important in

understanding the dynamics of the network. For instance, in

epidemiology, the resistance of connections between commu-

nities determines the rate of transfer of diseases throughout the

network of humans. Furthermore, communities give a new reso-

lution in the network under study, as different communities may

have different substructural properties. Formally, modularity is

the proportion of the links that fall within the given substruc-

tures minus the expected proportion if links were distributed at

random. The value of the modularity lies in the range [−0.5, 1).
It is positive if the number of links within substructures exceeds

the number expected by chance. Although different methods

of calculation have been proposed, we use the popular method

described by [20]. Trials with different resolution factors are

shown in Table II. Modularity seems to be high in our network

and close to that of networks reported in the literature, including

metabolic networks, collaboration networks of scientists, and

jazz musicians [34].
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Fig. 6. Communities and their properties in the Airbus network. Using a hypergeometric test, significantly overrepresented firm attributes in different
communities are highlighted in bold script. p < 0.05.

Taking a standard resolution value of 1, we find seven com-

munities in the network detected by the algorithm given in [7].

Fig. 6 shows the communities found. Although the community

detection algorithm does not have any industrial intelligence

embedded within it, it is able to find logical patterns solely

based on topological data. Of the seven communities detected,

the first is a raw material exchange between the U.S., European,

and Asian firms, taking place mostly in Tier 3. The second is

the Japanese auto producers community composed of mostly

Tier-3 firms. The third are the U.S.-based aerospace component

manufacturers directly supplying to Airbus. The Fourth are

second-tier Asian electronics manufacturers, whereas the fifth

and the sixth are, once more, Asian electronic component

manufacturers that make up the fourth and second tiers. The

difference between the fourth and sixth communities is that

the fourth community shares links with European auto and

aerospace manufacturers directly. Finally, we observe a Tier-2

community that is mostly an interchange between U.S. and

Asian Tier-2 electronics producers.

E. Assortativity

The next structural property we examine is called “network

assortativity” [32]. Social networks have been observed to show

“assortative mixing” on their degrees, which means that high-

degree nodes have a tendency to connect to other high-degree

nodes. The concept is important as something that affects a

single high-degree node could quickly cascade to other high-

degree nodes. For example, in the field of epidemiology, an

assortative network means that diseases will spread faster than

disassortative networks, whereas in the latter type of network,

targeting vaccinations to high-degree nodes, i.e., persons with a

large social network, would be an effective strategy. Assortativ-

ity also can hint at collaboration and competition. Contrasting

musicians playing in bands and physicists writing collabora-

tive articles, researchers found that disassortative mixing in

the musicians network meant that popular musicians support

newcomers, whereas in the physicist network, it meant rivalry

prevented popular physicists from working together [32].

To characterize assortativity, we study the behavior of the

average nearest neighbor’s degree of the firms of degree k,

defined as

knn(k) ≡
∑

k′

k
′
P (k′|k)

where P (k′|k) is the conditional probability that a firm of

degree k is connected to a firm of degree k′. Here, k includes

both suppliers and customers and, thus, considers all firms

connected to the node in question. Fig. 7 shows that there is

a clear increase in knn as k grows. The correlation between k

and knn is reasonably high, and thus, the Airbus supply network

is assortative. Assortativity could point to several dynamics

at play in a supply network. It could be an artefact of a bill
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Fig. 7. Average degree knn of nearest neighbors of nodes with degree k

versus k.

of materials flow. Firms with high numbers of links could be

leading their communities in certain areas of production and

then connect to other high-degree firms doing the same thing,

creating subassemblies that they pass on downstream. This

dynamic would reflect the prime contractors buying subsystems

from suppliers in aerospace. A social-network-based argument

could be that large connector firms all have clearly segmented

roles and collaborate together, keeping a cohesive structure.

However, the structure also means that disruptions at any one of

the nodes with high degrees could bring the whole network to

a standstill quickly, as they will quickly cascade to other high-

degree nodes, and affect both downstream customers waiting

for goods and upstream suppliers waiting for orders.

F. Identification of Key Actors

In the previous section, we showed that the overall structure

of the network is composed of hubs, to which most firms are

connected. The network is vulnerable to disruptions on these

hub firms but resistant to random disruptions. Furthermore, the

network is composed of several subcommunities, the mem-

bership of which is dictated by a firm’s tier, geography, and

industrial sector. Given the assortative network structure, we

hypothesized that certain firms will connect these communities,

providing the glue that holds the network together. These firms

will also act as bridges that transfer information and materials

in the network. Here, we identify these key actors by using

network centrality measures and discuss how they impact the

network. While network-level measures such as average path

lengths and density provide macroscopic views of how the over-

all structure is organized, centrality measures provide a node-

level view and examine how a certain node is embedded within

a network, helping us identify firms with significant roles.

Degree centrality is a well-known measure that simply counts

how many connections a node has. Network scientists corre-

late increasing degree of a node with increased influence and

popularity. One of the theoretical dynamics that give rise to

scale-free networks is what is known as preferential attach-

ment, a system in which nodes attach to other nodes with a

probability proportional to the number of connections a node

has(Barabasi and Albert 1999). Hence, high-degree nodes are

also more likely to attract new connections, increasing their size

exponentially. Reference [25] related the degree of a node in a

supply network to “the extent with which a firm has an impact

on operational decisions or strategic behavior of other firms”

and assert that degree central nodes should reconcile differences

of members, coordinating the network. In- and out-degree

centrality represent the extent to which a node has incoming and

outgoing connections, respectively. In supply networks, these

correspond to the number of suppliers and buyers a firm has.

Nodes that have high in-degree centrality will be integrators that

assemble components that go into a final product and are inte-

gral to the architectural design of the product, whereas nodes

with high out-degree centrality are concerned with distributing

limited resources among several customers [25]. High in-degree

centrality relates to a firm’s supply load, whereas high out-

degree centrality relates to its demand load.

Conceptualized by Freeman (1977), betweenness centrality

measures how often a node will sit on the paths that connect

different nodes to each other in the network. Nodes with high

betweenness centrality have been shown to control the flow

of materials and communication in the network [25]. Conse-

quently, they can control the speed with which information

and material can be disseminated in the network and act as

bottlenecks. Reference [25] related betweenness centrality to

a firm’s operational criticality. It is important to point out

that betweenness centrality counts shortest paths, whereas all

paths are in use in a supply network as firms work toward a

bill of materials. A more refined measure should include all

paths; however, in this paper, we base our discussions on the

conventional definition of this measure so that comparisons

with other empirical work can be made by researchers.

Finally, closeness centrality provides a measure of how close

a firm is to other firms in the network by counting the total

geodesic distance between a node and all other nodes in the net-

work. Reference [25] put forward the idea that firms with high

closeness will benefit from short supply chains and suffer less

from classical supply chain issues such as bullwhip effect, as

well as gaining the ability to act independently, given its ability

to access information in the network faster than other firms.

Fig. 8 shows the distributions of out-degree, in-degree, be-

tweenness, and closeness centrality measures. Following [25]’s

terminology, we relate these measures to demand and supply

load, operational criticality, and informational dependence, re-

spectively.

Multiple firms score highly in multiple measures of central-

ity. Of these, Alcoa Inc, Thyssenkrupp AG, and GKN PLC

have a high demand load and informational independence. They

seem to have many customers and, at the same time, place

themselves at a topologically close position to others in the

network, forming short supply chains. Alcoa Inc is a producer

of aero engine and structural parts such as airframes and is

the world’s third largest producer of aluminum. Its products

are used in both the automotive and aerospace sectors, which

might explain its closeness as it sits between the aerospace and

automotive communities. Thyssenkrupp AG is similar in the

sense that it is one of the world’s largest steel producers and also

supplies to both aerospace and automotive OEMs. GKN PLC

produces components for both sectors, too. Although it used to

be a steel producer, it sold this part of its business and focused

on aerospace and, lately, automotive, after buying a Japanese

driveline producer.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINTRUP et al.: SUPPLY NETWORKS AS COMPLEX SYSTEMS: A NETWORK-SCIENCE-BASED CHARACTERIZATION 9

Fig. 8. Network centrality distributions and top five firms in each centrality measure. Firms that are repeated in different measures are italicized. Tiers are given
in parentheses next to each firm.

Two firms with the highest supply loads also are opera-

tionally critical. These are Honeywell Inc and United Tech-

nologies Corporation They have many suppliers to coordinate

and sit between many paths in the network, coordinating parts

production. This is reflected by the large range of products

they produce, from military and defense products, to medical

equipment, fuel cells, to elevators. This of course means a

diverse portfolio of suppliers to manage for integrating multiple

parts into various products. These two companies have tertiary

dealings with the other sector producers; thus, although their

aerospace divisions supply directly to Airbus, they may be

affecting the network through other divisions. Eaton Corpo-

ration is the most operationally critical company, whose port-

folio reflects the three main industrial clusters in the network:

electronics, automotive, and aerospace. Eaton is critical in the

distribution of goods in the network, and any disruptions to it

would affect the entire network.

NHK Spring has the highest closeness centrality and pro-

duces automotive components. Although mainly a second-tier

Japanese supplier from the perspective of Airbus, it is close to

the rest of the network and has the ability to affect large portions

of it through the automotive sector and is therefore critical.

Any demand or supply misinformation to this company would

have the effect of exasperating the demand and supply balance

within the network. Without using network analysis, the critical

position of NHK Spring in information distribution would be

unknown to the focal company.

In addition to centrality measures, we examine compa-

nies that serve as connectors between specific communities

identified in Section IV-C. LG Display from Korea connects the

Asian electronics community 4, with the Japanese automotive

producers community 1, whereas AU Optronics from the same

community connects it to the multitier Asian electronics assem-

blies community 3. Honeywell acts as a bridge between com-

munities 6 (Asian electronics), 2 (aerospace manufacturers)

and 3, essentially forwarding electronics components from

Asia to Europe and U.S. manufacturers. Aluminum Corp-H

from China leads a small cluster of Asian companies into

the U.S./EU aerospace cluster. Three main companies, i.e.,

Arcelormittal France, Reliance Steel US, and Posco from South

Korea are main bridges between raw materials suppliers and

the aerospace manufacturing cluster. Several companies from

automotive and aerospace sectors serve as connectors, as these

produce for both sectors, including GKN PLC and Eaton

Corporation.

V. CONCLUSION

With its powerful methodology for abstraction that allows

the study of structural properties of systems, network science

is becoming the lingua franca of a large array of scientific

domains, from ecology to organizational networks. There are,

however, very few empirical studies on the application of

network science in supply networks, partly due to the difficulty

in gathering data.

On the other hand, researchers in manufacturing and opera-

tions literature have long suspected supply chains to be complex

emergent networks, rather than simplistic chain structures, and
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urged the discipline to not only investigate dyadic relationships

but also search for an understanding of what lies beyond the

dyad. In this paper, we contributed to these calls in a multitude

of ways. First, we collected a large data set that allowed us to

apply network-science-based analysis to the study of a supply

network and demonstrated how a network-based abstraction

can highlight structural properties that affect the functioning of

the network. Second, the supply network of Airbus has been

used as a case study, which allowed us to map an important part

of the aerospace industry, revealing interesting insights.

Our study represents a novel and significant step in under-

standing emergent supply network systems and interconnectiv-

ity within and between industries. The first of our findings is

that large-scale supply networks are complex systems and are

not supported by simplistic hierarchical models, prevalent in

the literature. Several same-tier suppliers supply to each other,

and a significant proportion of the network contains intertier

and reverse ties, possibly creating nonlinear dynamics. We

ask researchers to model and examine how such complexity

in system structure affects long-standing observations such as

demand amplification.

Second, the network has been found to have a degree dis-

tribution in which a large portion of the firms connect to hub

firms. The network is also assortative, which means that hub

firms tend to connect to other hub firms. Taken together, these

two properties make the system robust to random disruptions,

because random events will most likely affect nonhubs.

However, the network is vulnerable to the failure of hub firms,

as disruptions will rapidly cascade to the rest of the network,

making it disconnected.

Third, we found that the aerospace network is grouped into

community structures, emerging as a result of both geographic

and sector-based influences. While Tier 1 is mostly composed

of European and North American aerospace component man-

ufacturers, Tier 2 has a large proportion of electronics manu-

facturers. Tier 3 contains Japanese automotive manufacturers,

whereas Tier 4 has Asian electronics components. Raw

materials companies, while small in number, tend to supply

to multiple tiers. Raw material firms might be particularly

influential as they support multiple communities and are scarce.

Key firms bridge these communities and play significant roles

in coordination and resource allocation. Some firms were found

to play important roles in the dissemination of information,

although they are not from the aerospace sector. The inter-

connectedness of the aerospace and automotive sectors is re-

vealing in that disruptions from one industry may cascade to

another.

A number of future research avenues are planned for ex-

ploration. We used random networks for structural comparison

because of a lack of empirical data on supply networks. As

more data sets on supply network structures are gathered,

it will be a necessary task for the scientific community to

discuss appropriate null models for network-based studies of

supply chains. More data sets and refined null models can

further our understanding of whether the case study presented

here is typical or carries structural characteristics that can be

attributed to its economic, strategic, and operational settings.

An important avenue of future research is studying the extent to

which volume/variety decisions, lean and agile strategies, and

regulatory and environmental pressures interact with structure.

Once an understanding is developed, guidelines could be drawn

to align structure to organizational goals. The emergent nature

of these structures means that design or control is only possible

at the local neighborhood of the firm—hence, the firm either

needs to realign the way it is embedded in the structure or

design strategies to act with the wider network.

It also needs to be noted that our investigation has been a

structural one, as we deliberately did not consider heteroge-

neous attributes such as inventory, logistic distances between

firms, and products that are being transferred, so that a system-

level understanding could be developed. For example, a more

accurate analysis of structural robustness would need inventory

levels and lead times to be considered. The addition of these

variables would need to be carefully traded off against the net-

work size. Within the domain of network science, frameworks

from similar systems such as epidemiology or food webs can be

inspirational for modeling. On the other hand, the problem of

integrating networked intelligent behavior in this self-organized

system can be considered from the lens of system-of-systems

engineering [23].

Enriching the data with firm-level attributes, including pri-

vate firms, and conducting longitudinal analysis could help

further illuminate the findings. High-level product data would

particularly be useful. For example, in our analysis, Tier-1 and

Tier-2 firms dominate the list of critical firms, partly because

lower tier companies have less intertier connections and remain

at the periphery of the network. While structurally noncritical,

it could be that these firms carry rare products. This was the

case in the aftermath of the 2011 Japan earthquake when a

pigment manufacturer located in Onahama was damaged by

the tsunami, effecting coating manufacturers and, ultimately,

many automotive producers. Such analysis can be made with

examining the production network in conjunction with the

supply network.

Another way of enriching the analysis could include assign-

ing weights to links between firms, which may be in the form

of percentage turnover paid by client to supplier, frequency

of interactions, or length of relationships, depending on the

analysis being carried out. This would help deduce significant

relationships, identify the core network actors, and make more

in-depth analysis possible on a smaller set of firms.
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