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Mammals have evolved specialized brain systems to support efficient navigation within diverse habitats and

over varied distances, but while navigational strategies and sensory mechanisms vary across species, core

spatial components appear to bewidely shared. This reviewpresents common elements found inmammalian

spatial mapping systems, focusing on the cells in the hippocampal formation representing orientational and

locational spatial information, and ‘core’ mammalian hippocampal circuitry. Mammalian spatial mapping

systems make use of both allothetic cues (space-defining cues in the external environment) and idiothetic

cues (cues derived from self-motion). As examples of each cue type, we discuss: environmental boundaries,

which control both orientational and locational neuronal activity and behaviour; and ‘path integration’, a pro-

cess that allows the estimation of linear translation from velocity signals, thought to depend upon grid cells in

the entorhinal cortex. Building cognitive maps entails sampling environments: we consider how the mapping

system controls exploration to acquire spatial information, and how exploratory strategies may integrate idi-

othetic with allothetic information. We discuss how ‘replay’ may act to consolidate spatial maps, and simu-

late trajectories to aid navigational planning. Finally, we discuss grid cell models of vector navigation.

Introduction

Anymobile organism can gain an adaptive advantage by moving

about its environment in such a way as to optimise its chances of

survival and reproduction, for example finding food, and avoid-

ing predation. There is a natural dynamic tension between the

need to explore (in order to locate new resources) and the

need to exploit existing discoveries [1]. For example, as re-

sources are used up at one location, it becomes favourable to

move to a new and previously unexplored one. In many species

this entails storing information about the environment. In mam-

mals, specialised brain systems appear to have evolved to

support efficient purposeful navigation. The neurobiology of

mammalian navigation accommodates the huge variety of habi-

tats mammals occupy, from dense forest to desert, from open

skies to oceans, and the substantial ranges over which many

species forage, explore and migrate. This allows some species

to return to a home base having travelled hundreds of kilometres

[2–4]. While such naturalistic observations offer some sense of

the sheer scope of mammalian navigation and insight into be-

haviours guided by evolutionary principles, laboratory studies

allow for better control of environmental variables and investiga-

tion into underlying brain systems. Drawing on such studies

below, we first outline the building blocks of navigation: spatial

neurons in the hippocampal formation (see Box 1 for a glossary

of key terms used in this review, highlighted on first use in the text

by italics), and the hippocampal anatomical circuitry supporting

spatial mapping. We then go on to consider some ideas of how

spatial maps are built, supported by hippocampus-directed

exploratory behaviour, consolidated, and retrieved in the service

of navigation and spatial planning.

Navigation in the Laboratory

Early laboratory studies in rats demonstrated that significant

learning could occur during exploration without explicit reward

[5,6], and that goal-directed actions, reflecting acquired spatial

knowledge, could be employed without having ever been prac-

ticed (for example [7]). These studies led Tolman [6] to the belief

that something akin to a ‘field map’ of the environment becomes

established in the rat’s brain during learning, allowing for more

flexible cognitive functions, such as the ability to generate novel

shortcuts when familiar routes are unavailable [6,8,9] (but also

see [10]). Tolman’s cognitive map theory was greatly refined

and extended after the discovery of putative neural correlates

of a map-like representation, namely place cells (described

below), found in the hippocampus [11].

Spatial learning of this sort contrasted with reinforcement-

based learning, in that it allowed for the acquisition of new spatial

knowledge in the absence of either reward or competition be-

tween cues for learning, phenomena that traditional associative

models of learning struggle to account for [12] (also see [13] for a

review). It later became clear, however, that in many situations

spatial behaviour could be supported by both latent learning

and reinforcement-based mechanisms. Tasks that demanded

goal-directed navigation and flexible planning would depend

on the hippocampus, while more routine spatial behaviours,

such as following familiar routes might rely on stimulus–

response associations — for example, at a junction (stimulus),

turn left (response) — implemented by separate brain systems

whose contributions could be dissociated, for example, by inac-

tivation [14]. An important theme of research in this area has thus

been to develop tasks capable of isolating flexible ‘map’-based

navigation strategies from spatial routines.

Below, in our consideration of the mechanisms of navigation,

we discuss results from several tasks in the laboratory, including

random foraging, used to investigate spatial representation and

learning and its neurobiology (see [15] for a recent review): how-

ever, the most widely used behavioural assay of navigation is the

watermaze task [16]. Rodents learn to escape from a tank of
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Box 1. Glossary of terms.

Allocentric

An allocentric reference frame is onewhich defines space relative to the external world. This contrasts with an egocentric reference

frame, which defines space relative to the body.

Allothetic cues

Space-defining cues in the environment external to the animal, such as the sun, a tree, a river.

Boundary cell, boundary vector cell, border cell

The firing of a ‘boundary cell’ is primarily determined by environmental boundaries such as vertical surfaces (‘walls’) or drop edges

(‘cliffs’). The term ‘boundary cell’ includes boundary vector cells and border cells. A boundary vector cell fires at a preferred

distance and direction from an environmental boundary, for example whenever there is a boundary 40 cm to the north of the an-

imal. A border cell is defined simply by the characteristic that most of its locational firing field occurs adjacent to a boundary.

Boundary vector cells and border cells were first reported using different terminologies in the subiculum (2006) and medial ento-

rhinal cortex (2008), respectively; their spatial characteristics likely greatly overlap.

Cognitive map

A cognitive map is a neural model of the external spatial world which represents the distances and directions between places. It

enables generation of paths, such as detours or shortcuts, never previously taken, and planning pertaining to currently impercep-

tible places. Several forms of localisation and navigation do not require information-rich cognitive maps, and the existence of

cognitive maps is sometimes questioned.

Grid cell

A grid cell is a neuron that fires whenever the animal is located at one of the vertices of a periodic triangular array tessellating the

entire extent of an explored space. Grid cells are thought to provide a coordinate frame to cognitive maps, and to support path

integration using self-motion cues, but they are also influenced by allothetic cues such as boundaries. Theoretical models outline

how grid cells may be used to compute vectors from a starting point to goal location.

Headscans

Headscans are rodent head movements, especially lateral movements, which enable the animal to sample different views of the

environment from a single location. Headscans typically occur during pauses to locomotion, with or without rearing upon hindlegs,

and increase upon introduction to novel and altered environments.

Head direction cell

A head direction cell is a neuron that fires whenever the animal’s head faces a particular direction relative to the environment. In

rodents, a given head direction cell encodes a specific azimuth. In bats, head direction cells are tuned to azimuth, pitch, or roll, or

combinations thereof, but most show azimuth tuning.

Hippocampal formation

Typically understood to include the hippocampus proper (the Cornu Ammonis subfields CA1, CA2, and CA3), the dentate gyrus,

subiculum, parasubiculum, presubiculum, and medial and lateral entorhinal cortices.

Idiothetic cues

These are cues relating to the animal’s self-motion, enabling updating of heading and position. Idiothetic cues support path

integration. Although visual and auditory cues are located outside the animal, many researchers consider use of visual and optic

flow as idiothetic processing, supporting path integration.

Path integration

Path integration is a self-motion-based estimation of current position and heading, computed by calculating how the subject’s own

movements have effected spatial translation since last-known position and heading. It is sometimes understood as referring

specifically to the calculations supporting return to a starting location.

Place cell

A place cell is a hippocampal pyramidal neuron that fires in one or more restricted regions of space. An individual place cell fires

differently, often unpredictably, in different spatial contexts (‘remapping’).

Rearing

Rearing on hind legs is an exploratory behaviour shown by many four-legged mammals, including rodents, dogs and primates, by

which the animal raises its head high, presumably to samplemore distal cues, such as visual or olfactory cues, than those available

at lower levels.

Ring attractor

A ring attractor is a type of neural network architecture widely hypothesised to support head direction signalling whereby head

direction cells with similar preferred directions excite each other, but cells with different preferred directions inhibit each other.

(Continued on next page)

R1024 Current Biology 28, R1023–R1042, September 10, 2018

Current Biology

Review



opaque water by swimming to a small hidden platform beneath

the water surface. Crucially, the platform cannot be identified

by local olfactory, visual or auditory cues, and can only be

identified by tactile cues when the animal bumps into it.

Accordingly, the animal first typically swims quasi-randomly until

it happens upon the hidden platform, then gradually learns to

use available visual cues and its self-motion to navigate to the

platform location. Navigational accuracy typically improves

quickly. The watermaze, while specifically designed to test

‘cognitivemap’ theory [11], can examine various types of naviga-

tion. Thus, rats can find the hidden platform by using an array of

distal visual cues [16], a beacon [17], a landmark at a defined

vector from the goal [18], or the geometric arrangement of

pool walls [19] or of proximal landmarks [20]. The discovery

that damage to the hippocampus of the rat brain greatly impairs

navigation relying on a map-like representation of distal land-

marks [16] provided further support for O’Keefe and Nadel’s

[11] theory.

Spatial Cells within the Hippocampal Formation

The bedrock of O’Keefe and Nadel’s [11] theory was the discov-

ery of individual neurons, or place cells, in the rat hippocampus

that only fired when the animal entered a specific location within

its environment, the neuron’s ‘place field’ (Figure 1A,B). A given

place cell shows different place fields in different environments

(Figure 1I,J) or fires in one environment and not the other

(‘remapping’ [21–25]). Different place cells have different fields

within the same environment. In open fields, place-field firing

rates are generally invariant to the animal’s orientation and travel

direction [26], but on linear tracks, fields are largely unidirec-

tional. Place cells have more place fields in larger environments

[27], but, unlike those of grid cells (discussed below), these fields

are not periodic. Several other cellular building blocks of the

‘cognitive map’, reviewed by [21,23,24,28], have been found in

the hippocampal formation; these cell types are briefly described

below.

Boundary cells, including boundary vector cells and border

cells [29–33], fire whenever a boundary is encountered at a spe-

cific distance and direction from the navigator (Figure 1C and

Figure 2), with each boundary cell having a different preferred

distance/direction. Boundary cells respond to boundaries with

different sensory properties [32,33]; potentially, a tree trunk,

rock face, cliff edge or even a patch of mud can all serve as

boundary cues (Figure 1C).

Grid cells [34] are thought to provide themapwith a coordinate

frame. In well-explored open spaces, a grid cell has multiple

firing fields (nodes) which tessellate the environment with a

regular triangular pattern (Figure 1D), whereby each node is sur-

rounded by six nodes creating a hexagon. In restricted environ-

ments such as hairpin mazes, this triangular pattern is not

observed [35]. Grid cell organization in the medial entorhinal

cortex is modular [36,37]: for instance, grid scale — node

diameter and inter-node distance, both closely correlated— dif-

fers for different modules, progressively increasing in quantal

steps (�1.5x steps) along the dorsoventral axis of the medial

entorhinal cortex, but is very similar for grid cells within a

module. How grids are formed is intensely researched and

debated, but the consensus view is they support path integration

(reviewed [38–41]).

Head direction cells [28] provide the navigating animal with a

compass-like sense of direction. In rodents, a given head direc-

tion cell encodes a specific direction (azimuth) relative to the

environment (Figure 1G), independently of the animal’s location

[28], with different head direction cells having different preferred

directions. In bats, head direction cells are tuned to azimuth,

pitch or roll, or combinations thereof, but most show azimuth

tuning [42]. Head orientation in rodents appears largely based

not on magnetic inputs, but on external cues and self-motion

cues generated by head rotations. Orientation is crucial for a

functional spatial network; the orientation of all other spatial cells

(including place, boundary and grid cells) depends on head di-

rection orientation [28,43], and the head direction cell signal,

Box 1. Continued

Speed cell

A speed cell is a neuron whose firing rate is robustly correlated, typically positively and linearly, with the running speed of the

animal. Speed cells are thought to provide input to grid cells to support path integration.

Theta phase precession

A temporal coding phenomenon, observed first in place cells in 1993 and then also in grid cells, whereby a given cell’s action

potentials (spikes) occur at progressively earlier phases of the local theta oscillation as the animal traverses the spatial field.

The precise mechanisms underlying phase precession remain unclear. Phase precession may contribute to coding ‘distance-

through-field’ and spatial sequences.

Theta sweep

A theta sweep is a non-local coding phenomenon occurring during the theta oscillation, whereby hippocampal place cells

transiently encode a sequence of locations resembling potential future paths, for example when an animal is at a choice point

in a maze. It is thought to serve a ‘lookahead’ function (for example ‘What is at end of west and east arms?’) contributing to

decision-making (for example ‘Ah, I should turn left’). Theta sweeps and theta phase precession may share some underlying

mechanisms.

Time cell

A time cell is a hippocampal neuron that fires at a specific stage of a temporal sequence. Different time cells fire at different stages

of the sequence (for example the initial, middle or last few seconds of a minute-long epoch) and with varying durations.
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likely supported by a ring attractor network, comes online in

development before other spatial cells [44–47].

Though these spatial cells have mainly been studied in

ground-dwelling rodents (with spatial fields normally identified

in two dimensions) there is evidence from flying bats [21], as

well as rodents and humans exploring complex structures [48],

that the building blocks of the cognitive map can also represent

three-dimensional space (Figure 1E,F). And beyond abstract

spatial parameters, cells within the hippocampal formation also

encode self-motion information more directly. Notably, speed

cells increase their firing rates as running speed increases

(Figure 1H), enabling calculation of how far the animal has

travelled [49,50].

Self-motion is also linked to another prominent feature of the

electrophysiology of the hippocampal formation: the theta oscil-

lation (4–12 Hz) which is seen in local field potentials during loco-

motion in rodents and primates (including humans [51]). Theta

appears to be closely linked to the spatial functions of the hippo-

campal formation. The frequency (and power) of theta correlates

positively with running speed (Figure 1H) [52], and robust speed–

frequency relationships likely enable theta phase precession,

whereby spikes occur at progressively earlier phases of the theta

oscillation as the animal traverses the place field (Figure 3A–C).

Phase precession, shown by place cells [53] and grid cells [34],

implies theta phase coding of distance-through-firing-field, and

is very obvious in linear tracks [53,54], but also occurs in two-

dimensional environments [55,56].

Importantly, theta phase coding of distance-through-field

observed in place cells and grid cells is cell-specific, contributing

to ‘theta sequences’ [54,57,58] (Figure 3D–F), whereby the

spatial sequences encountered on environmental routes are, in

effect, converted into temporal sequences clocked by theta.

Place cells firing at later, intermediate, and early theta phases

will have their firing field peaks ahead of, at, and behind the an-

imal’s current location, respectively; thus, the spatial sequence

of place fields on the track (red-to-green-to-blue, Figure 3D) is

present in the temporal order of firing within each cycle (red-

then-green-then-blue, Figure 3F) [54,59]. This aids sequence

coding, likely contributing to mechanisms in theta sweepswhere

the animal shows ‘lookahead’ place-field sequences corre-

sponding to future path segments [58,60]. Implications of theta

phase precession for consolidation and navigational planning

are considered later in this review.

Alongside studies in rodents, studies with human participants

are particularly useful in placing cellular results in a wider

context. Humans are able to follow complex task instructions

and — often using multivoxel decoding techniques in conjunc-

tion with virtual environments— brain mechanisms of navigation

can be investigated by functional magnetic resonance

imaging (fMRI; for review see [61]). These studies suggest that

the hippocampal spatial coding system observed in animals

is essentially preserved in humans. For example, signals of loca-

tion or episodic spatial context [62,63] were detected within the

hippocampal formation [64], while hexa-directional responses

consistent with a grid-cell-like representation have been found

in human entorhinal cortex [65,66] (and also inmonkey entorhinal

cortex [67]). Crucially, these macroscopic observations from

fMRI are supported by rarer electrophysiological studies in pa-

tients implanted with electrodes. These have identified neurons
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Figure 1. Schematic illustration of different types of spatial cell in
the hippocampal formation.
Experimenters typically record spatial cells from an animal while it continu-

ously forages in a confined two-dimensional space (A) or three-dimensional

space (E). Schematic examples of firing rate maps for a place cell (B),

boundary vector cell (C), and grid cell (D), as recorded from a rodent, and place

cell with spherical place field (F), as recorded from a bat [207]. Red portion of

firing field denotes region of highest firing, yellow portion region of second-

highest firing, and so on. (G) An example rodent head direction cell, which fires

strongly when the animal faces cell’s preferred direction, here southwards.

(H) A typical linear increase in frequency of an oscillation (such as hippocampal

theta [52]) or in the firing rate of a speed cell [49,50] as an animal increases

running speed. Which type of speed-related signal contributes to generating

grid cell signals is debated. (I,J) Place cell ‘remapping’ [25], whereby the same

place cell exhibits different, non-corresponding place fields in different envi-

ronments. Less-well characterised spatial cells not illustrated here include

landmark vector cells in the hippocampus [97] and axis-of-travel cells in the

subiculum [202].
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that correspond to place [68,69] and grid cells [70], with some

evidence of head-direction-like responses from ‘path cells’

[71], while new evidence from intracranial theta recordings indi-

cates that human subiculummay code for goal locations relative

to environmental boundaries [72].

The greater coverage of fMRI (as compared with electrophys-

iological methods) has revealed the coding of spatial variables

within a wider navigation network, including retrosplenial cortex,

parahippocampal cortex, and superior-lateral occipital cortex.

Notably, location-related and heading-related signals can be

decoded in retrosplenial cortex [63,73], with head-direction-

like responses observed in the thalamus [74]. There are also

signs that the posterior cortical regions are sensitive to aspects

of environmental scale, boundaries and barriers to movement

[75–78]. Establishing the precise form these representations

take and the complementary roles of distinct regions remains a

topic of current research. It is clear, however, that the human

navigation network overlaps substantially with regions involved

in visual scene processing [79] and with the ‘default mode

network’ [80], suggesting that these regions participate in the

extraction of such spatial information from visual scenes and in

the construction of spatial imagery during spontaneous thought,

memory retrieval and planning [81,82].

While these studies suggest substantial cross-species conti-

nuity in spatial representation and processing, and potentially

extend our understanding of links between navigation and other

forms of cognition, rather basic questions about information flow

remain. For instance: what are the key inputs to place cells?

What is the relationship between different spatial cell types?

To help answer these questions, we introduce the anatomy of

the hippocampal formation.

Functional Anatomy of the Hippocampal Formation

Neuroanatomical Overview

A rodent-based functional anatomy of the hippocampal forma-

tion in Box 2 outlines the core mammalian wiring diagram, two

axes of organisation (a long axis and a proximo-distal axis) and

navigation-related functions associated with two features: the

CA3 collaterals and the dentate gyrus. Here, we discuss informa-

tion flow in this network, focusing on place cells, grid cells, and

boundary cells, grounded upon entorhinal-hippocampal and

subiculum-hippocampal projections.

Place cells are found in the dentate gyrus and hippocampus

proper. The head direction signal is built up subcortically and

mainly conveyed to the hippocampus from anterior thalamus

via the parasubiculum, presubiculum and entorhinal cortex

[28]. What about locational inputs to the hippocampus? A

long-hypothesised input to place cells is provided by boundary

cells, found in input and output regions of the hippocampal
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Figure 2. Influence of environmental boundaries upon spatial
coding and behaviour.
Schematic illustration of the original boundary vector cell model [102] of inputs

to place cells (A,B) and potential extensions to the model (C,D). (A) A place

cell’s place field in the south-east corner of square-walled box is formed from

thresholded summation of inputs from BVCs with firing fields along east and

south wall. (B) Similarly, a place field in the north-west central region formed

from boundary vector cells with fields somewhat distal to north and distal to

west walls. (C) A boundary-off cell which shows reduced firing along the south

wall (top-right map) can bemodelled [33] as combining excitatory input from all

regions within an environment (cell 2), with input from an inhibitory boundary

vector cell firing along south wall (cell 1). Bottom row depicts firing rate maps

from two real subicular boundary-off cells (cells 3 and 4) before (left) and after

(right) insertion of a walled barrier in the centre of the environment. Note the

barrier induces an additional zone of reduced firing (blue portions) in expected

location. Values in Hz indicate peak firing rate after smoothing. (E) Geometry-

specific, feature-insensitive boundary firing: top row, broadly similar firing of a

boundary vector cell in three different environments, largely insensitive to

changes in sensory features and spatial context; bottom row, a place cell re-

maps in each environment. (Schematic illustration based on [32].) (F) Lesions

to dentate gyrus prevent increases in exploratory behaviour (rearing on hind

legs) elicited by changes to geometry of environmental boundaries. Rats

trained repeatedly in a square-shaped enclosure (left) are exposed in a test trial

to a new cylinder-shaped enclosure (right), while between-object distance and

cue-card orientation are preserved. Control rats increase rearing frequency in

new shape, but rats with dentate gyrus lesions do not. Schematic illustration

based on [140]. (G,H) Schematic diagram demonstrating the results of Keinath

et al. [154]. In both experiments described, mice were disoriented, via passive

rotation, before exploring a rectangular box, during which hippocampal place

cell activity was recorded. In the first experiment (G), mice randomly foraged

for food throughout the environment. To establish heading, the only cues

available were the local geometry provided by the walls of the box and the

polarising black and white wall. As illustrated by the activity of a single place

cell in this example, the place fields were anchored to the local geometry (note

the rotation to a geometrically equivalent but visually distinct location between

trials 1 and 2). In a second experiment (H), mice were required to find food in

one corner of the box. The first search distribution (left-hand image) revealed

that reorientation was guided primarily by the geometry of the walls: the mice

first searched in the food corner (green circle) or, equally as often, in the

geometric equivalent corner (red circle), while apparently ignoring the

disambiguating visual cue (striped wall). The orientation of the recovered place

cell representation was highly correlated with the corner in which the mice first

searched for food and could reliably predict the to-be-searched corner on

each trial. Trials 1 and 2 offer an example: when the place field is located close

to the north-east corner during trial 1, the mouse first searches for food (de-

picted by a black circle) in the north-east corner. However, when the place field

rotates 180� to a geometrically equivalent location in trial 2, the mouse’s first

search behaviour (black circle) exhibits the same rotational shift.
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formation including the subiculum [29,32,33], and both input

(superficial) layers and output (deep) layers of themedial entorhi-

nal cortex [30,31,83], presubiculum and parasubiculum [84]. Grid

cells are presumed to provide major inputs to place cells, but

they are found throughout hippocampal-receiving, as well as

hippocampus-projecting, regions of the medial entorhinal cor-

tex, presubiculum, and parasubiculum [34,36,84]. As boundary

and grid cells are found in both hippocampal input and output re-

gions, understanding their particular contributions is proving

challenging.

Entorhinal-Hippocampal Projections and Grid Cells

Grid cells are most numerous, and their firing fields most grid-

like, in the medial entorhinal cortex [84,85], so understanding

the role of this entorhinal input to place cell function is a key

issue. Interactions between entorhinal cells and hippocampal

place cells, including the relative importance of the direct versus

indirect entorhinal-to-CA field projections (Figure 4A), are not

fully understood. Basic place-cell characteristics are preserved

in CA1 when all CA3–CA1 input is removed, though behavioural

recall in thewatermaze task is impaired [86]. Lesioning entorhinal

layer 3, which removes the entorhinal–CA1 field and entorhinal–

subiculum projections, impairs spatial precision of CA1 cells but

not of CA3 cells, which receive input from entorhinal layer 2 [87].

Larger lesions of medial entorhinal cortex only partially disrupt

locational signals in place cells, but strongly affect their temporal

firing (notably theta phase precession) [88–90] and impair water-

maze navigation.

Several studies suggest that the locational responses of place

cells can arise independently of grid cell input [45,47,91,92].

Indeed, it is currently easier to argue that hippocampal output,

potentially including CA1 place cells and subicular boundary

cells [32], seems crucial to grid cells [93–95], than the opposite.

Taken together, the studies cited in this section suggest that the

hippocampal formation supports navigation, that entorhinal

input is important to place cells, but that place-cell locational sig-

nals come frommultiple sources, not just grid cells. As such, it is

important to consider other sources, including cues from bound-

aries [29–32,96] and landmarks and objects [97,98]. More is

known about boundary cells and we focus on those here.

Consistent with being important input to place cells and grid

cells, both entorhinal- and subicular boundary cells appear early

in development [83,99].

The Boundary Cell Network

While early place cell research emphasized place cell ‘remap-

ping’ following changes in gross environmental features,

later studies that manipulated environmental geometry alone

demonstrated that place cells typically fired in corresponding

locations in geometrically different environments, specifically in

locations that tended to maintain their distance to the nearer

walls of each environment [100,101]. This led to the boundary

vector cell model [29,102–104], which explains place fields in

terms of geometry-sensitive inputs to the hippocampus. These

boundary vector cells were predicted to have firing rates repre-

senting preferred distances to environmental boundaries in

specific allocentric directions (controlled by the head direction

system; Figure 1C and Figure 2A–D). Thus, one boundary vector

cell might fire whenever a boundary is perceived �40 cm to the

north of an animal, and this might occur in several regions in a

defined space (Figure 1C). Place field(s) could be modelled as

the thresholded sum of a few putative boundary vector cells

(Figure 2A,B), capturing place cell findings under various geo-

metric manipulations [102]. The subsequent discovery of bound-

ary cells [29–33,96] whose firing fields strongly resembled those

of themodelled hippocampal inputs lent support to the boundary

vector cell model.

In order to explain place fields located interiorly within an envi-

ronment, however, the boundary vector cell model assumed that

boundary vector cells exhibit a wide range of distance tunings;

some argued that the entorhinal cortex (the main input to the

hippocampus) contains only border cells with fields adjacent

to environmental walls [31,83], and therefore that boundary

cells function not to provide inputs to place cells, but rather to

anchor grid cells [31,83]. This grid-anchoring idea is certainly
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85ms
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Current Biology

Figure 3. Idealised examples of theta phase precession and a ‘theta
sequence’.
(A–C) Theta phase precession of place cell firing. (A) As a rat runs along a linear

track, a hippocampal place cell fires (B) as the rat moves through the cell’s

place field. (C) The firing rate code for location is also a temporal code: spikes

(vertical red bars) fire at successively earlier phases of the theta oscillation

(black sinusoidal trace) — theta phase precession. (D–F) A ‘theta sequence’

emerges from theta phase precession of different place cells, in which a spatial

sequence is represented temporally within a theta cycle. (D) Rat runs through

different place fields in a fixed sequence (‘red to green to blue’). (E, F) Within a

single theta cycle (red square is �1.2 cycles), place cells firing at later (blue),

intermediate (green), and early (red) theta phases will have their firing field

peaks ahead of (blue), at (green), and behind (red) the animal’s current location,

respectively. In effect, theta sequences compress spatial sequences, perhaps

enabling consolidation of spatial routes via spike-timing-dependent plasticity.
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reasonable. Boundary representations seem to correct the cu-

mulative error in grid cells’ computations of path integration.

When an animal spends a long time away from a boundary,

grid cell spatiality is disrupted [105]. Moreover, environmental

boundaries exert powerful effects upon grid cell organization,

including upon ‘gridness’ (the hexagonality of fields), grid scale

and orientation [37,106,107], presumably mediated by boundary

cells, whether directly or via place cells [108].

Do boundary cells function as inputs to place cells as well as to

grid cells? We previously reported boundary vector cells with

firing patterns consistent with longer-range tunings in the subic-

ulum [32]. A reasonable counter-claim, however, is that subicu-

lum is primarily a hippocampal output structure [83,109]. How

might this debate be resolved? Three potential resolutions

can be suggested. First, distally-tuned boundary cells may be

too rare to be important, favouring accounts where the role of

boundary cells is confined to grid cell anchoring [31,83].

Second, manipulations in large-scale environments may reveal

longer-range distance tuning in boundary cells in classic input

regions. And third, complementing the second point, subicular

boundary vector cells may provide input to hippocampus proper

(Figures 2 and 4).

Importantly, recent evidence shows very substantial direct

projections from subiculum to CA1: in fact, the largest cortical

input to distal CA1 is from the subiculum (denoted by thickest

black line, Figure 4Cix) [110,111]. Moreover, while traditional

lamellar slice preparations indicate information flow from CA3

towards CA1 and subiculum, more realistic (larger, longitudinal)

slice preparations show theta-related information flow from sub-

iculum towards CA3 and CA1 [112], consistent with subiculum

acting as input to hippocampus. Further, consistent with direct

subiculum–CA1 projections coming from both subicular

Box 2. Functional anatomy of the hippocampal formation.

Anatomical axes

Two anatomical axes in the hippocampal formation have functional consequences for navigation: the long axis and the ‘proximo-

distal axis’. The best-characterised of these is the long axis (Figure 4B; reviewed in [208]), which is oriented septal-to-temporal in

rodents and posterior-to-anterior in primates (so that the rodent septal pole is equivalent to the primate posterior pole). The

septal(rodent)/posterior(primate) pole has been theorised to support spatial cognition and memory, and the temporal(rodent)/

anterior(primate) pole anxiety, consistent with rodent [209] and human data [204,210]. Strong two-pole functional dualism seems

incompatible with hippocampal physiology, because hippocampal theta appears crucial for spatial, mnemonic and anxiety-related

functions [11,38,120], and resembles a single travelling wave along the entire long axis (reviewed in [120]).

The second, ‘proximo-distal’ axis (reviewed in [211]), illustrated here with reference to CA1 (Figure 4C), is associated with

differential contributions of, on the one hand, themedial entorhinal cortex and its major input the postrhinal (aka parahippocampal)

cortex, and on the other, the lateral entorhinal cortex and its major input the perirhinal cortex. The lateral entorhinal cortex, typically

associated with non-spatial item memory (‘WHAT’), targets distal CA1, while medial entorhinal cortex, typically associated with

space/navigation (‘WHERE’), preferentially targets proximal CA1.

Importantly, Knierim et al. [211] argue that both streams provide spatial information, with the lateral entorhinal-associated stream

providing content-oriented object and location information based on external sensory cues (allothetic), and the medial entorhinal-

associated stream providing context-oriented spatial information provided by internal sensory self-motion cues (idiothetic), but

also by allothetic cues. Notably, theta-associated idiothetic information, largely absent from lateral entorhinal cortical cells, is

strongly present in medial entorhinal cortex, as suggested by the presence of grid cells, speed cells and head direction cells (which

while fixing to environmental cues are also strongly controlled by lateral head motion).

CA3 collaterals and the dentate gyrus

The extensive recurrent connections between CA3 pyramidal cells are theorised to support an auto-associative memory

[212–214]. By exploiting Hebbian learning in recurrent connections, autoassociative memory allows retrieval of an entire stored

representation based on fragments of the original set of cues (‘pattern completion’), thus enabling recall, not just recognition.

Hippocampal pattern completion via fast and slow attractor dynamics, and CA3’s long-hypothesised role in such completion,

has now been demonstrated in place cell representations and navigation tasks [45,215–218]. Notably, CA3 plasticity promotes

navigating to the watermaze’s hidden platform using extramaze cues when most of the previously-presented extramaze cues

are removed [216]. This illustrates how pattern completion can be crucial to navigation, since various scene-changing factors

(for example daylight, snowfall, decay, seasons) mean environmental cues are seldom exactly as previously encountered (a com-

plementary way of addressing this problem is to store geometric representations that are resistant to scene-changing factors, as

discussed in main text). Importantly, interference between similar stored representations poses problems in these auto-associa-

tive models; performance is improved when non-overlapping representations are stored.

The dentate gyrus, with high cell numbers (>10x more neurons, septally, than both entorhinal cortex and CA3), is proposed to

ensure that similar-but-different rhinal cortical inputs to the hippocampus are stored as non-overlapping representations in CA3

(‘pattern separation’) [213,214,219,220]. Similar-but-different inputs could occur with novel configurations of the same spatial

cues. The dentate gyrus is one of few mammalian brain regions where adult neurogenesis occurs, and integrating specifically

recently-born cells underlies pattern separation. Thus, when neurogenesis is ablated, behavioural discrimination of highly similar

locations/contexts is impaired, while promoting survival of newborn cells, or their relative contribution as input to CA3, improves

pattern separation [221,222]. Enabling mapping of new spatial contexts with minimal interference likely partly underlies neurogen-

esis’ importance in hippocampal-dependent spatial tasks, such as classic watermaze navigation [223,224].

Current Biology 28, R1023–R1042, September 10, 2018 R1029

Current Biology

Review



excitatory pyramidal cells and inhibitory interneurons [110], we

hypothesise subiculum-to-CA field information flow includes

boundary vector input that is inhibitory as well as excitatory. In

short, it remains very possible that boundary cells provide a

functionally significant input to hippocampal place cells as pre-

dicted by the boundary vector cell model.

Boundaries and Inhibition

Why do we suggest inhibitory boundary vector input? Boundary

cells include ‘boundary-off cells’ (Figure 2C) [33]. Appearing like

short-range ‘inverse’ boundary vector cells, a boundary-off cell

can simply be modelled as a cell that fires everywhere except

in restricted region(s) of inhibition driven by afferent inhibitory

boundary vector cells (Figure 2C). This theoretical prediction of

boundary vector cell interneurons has yet to be robustly tested,

though we have preliminary evidence for such a cell type

(Figure 2C) [33]. What function(s) could inhibitory boundary sig-

nals serve? One may be that, extending the boundary vector

cell model, inhibition also shapes the place field summation pro-

cess (Figure 2D). Another possibility is that inhibitory boundary

vector cells may contribute to grid cell generation. In one

speculative model, grid cells are formed from inputs involving in-

teractions between place cells and boundary cells involving a
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Figure 4. Anatomy of the hippocampal
formation.
(A) Overview of connectivity. (Ai) Cartoon of whole

rat brain within the head. (Aii) Depiction of ‘hori-

zontal’ sectioning plane. (Aiii) Horizontal histolog-

ical section, with hippocampal formation circled in

red. (Aiv) Representation of regions within the

hippocampal formation, comprising lateral ento-

rhinal cortex (LEC), medial entorhinal cortex

(MEC), parasubiculum (Para), presubiculum (Pre),

subiculum (Sub), CA1, CA2, CA3, and dentate

gyrus (DG). (Av) Overview wiring diagram. Su-

perficial layers of entorhinal cortex, to which the

presubiculum and parasubiculum densely project,

are mainly input layers, acting as a major conduit

for neocortical and subcortical information to

reach the hippocampus, while entorhinal deep

layers, subiculum, and CA1 provide output from

hippocampus to the rest of the brain. Perirhinal

cortex (PERI) and postrhinal cortex (POST, ho-

mologous to parahippocampal cortex in primates)

project preferentially to LEC and MEC, respec-

tively. Anatomical overviews have emphasised the

largely unidirectional nature of hippocampal cir-

cuitry. The ‘trisynaptic circuit’ comprises these

projections (see numbered arrows in Av): (1) en-

torhinal cortex to dentate gyrus; (2) dentate gyrus

to CA3; (3) CA3 to CA1. The CA1-to-subiculum

projection can be considered the ‘fourth synapse’

extending the trisynaptic circuit. Projections from

CA1 and subiculum to the entorhinal cortex close

the loop. The ‘trisynaptic circuit’ overview of hip-

pocampal pathways is incomplete because of

substantial direct projections from entorhinal

cortex to CA fields and subiculum (dashed grey

arrows), substantial longitudinal projections along

the hippocampal long-axis, and ‘reverse’ pro-

jections such as from subiculum to CA1 (poten-

tially carrying boundary vector cell signals; see

main text). Importantly, CA3 pyramidal neurons

make substantial projections to themselves

(‘recurrent collaterals’, semi-circular arrow) as well

as to CA1. (B) Hippocampal long axis. (Bi) Whole

rat brain showing long axis of the hippocampus

(yellow) and entorhinal cortex (red). (Bii) Cartoon of

place cells (cell 1, small-scale; 2, large scale). (Biii)

Cartoon of grid cells (cell 3, small-scale; cell 4,

large scale), with spatial scales smaller at the

septal hippocampal and caudomedial entorhinal

ends. (C) Proximo-distal axis of CA1. (Ci) Whole rat

brain depicting ‘coronal’ sectioning plane. (Cii)

Coronal histological section with hippocampus

circled in red. (Ciii) Coronal hippocampal section

showing distal (blue) and proximal (green) ends of

CA1). (Civ,Cv) Spatial input to distal CA1 includes

the following cell types (numbered): (1) and (2) object-related spatial cells [97,225] both in lateral entorhinal cortex; (3) boundary vector cell and (4) boundary-off

cell, both in subiculum. (Cvi, Cvii, Cviii, Cxi) Spatial input to proximal CA1 includes the following cell types: (5) grid cell; (6) speed cell; (7) border cell; (8) object

vector cell [98], all found inmedial entorhinal cortex. The strongest hippocampal formation inputs to distal CA1 come from subiculum and lateral entorhinal cortex

(Cix); in turn, these regions provide the weakest inputs to proximal CA1, where instead CA3 and medial entorhinal cortex input dominate (Cx) [111]. Thickness of

arrows denotes strength of projection, normalised to strongest input (subiculum strongest for distal CA1, CA3 strongest for proximal CA1), based on [111].
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boundary-related repulsive force [94,95]. Many models of navi-

gation require inhibited firing near barriers to select efficient

paths, which is particularly important during detour behaviour

[33]. Thus, inhibitory boundary vector cells and boundary-off

cells may contribute to planning motor sequences that avoid

obstacles.

In summary, boundary cells likely provide important allothetic

input to place cells and grid cells. Exactly how crucial this input is

to place-cell firing is unclear. One potential pointer to boundary

cells alone being insufficient for optimal place-cell function is

that, in rat pups, place-cell stability is compromised in central re-

gions away from environmental boundaries until the period of

grid-cell maturation [113]. This finding suggests a key gain-of-

function that grid cells, emerging at weaning, confer upon place

cells: grid cells extend the stabilising influence of environmental

boundaries far into open space. In the next section, we ask how

the mapping systems can utilise self-motion (idiothetic) cues.

Path Integration

How does an animal know how far it has moved? Path integra-

tion is the self-motion based estimation of current position and

heading, enabled by the animal calculating how its own move-

ments have effected spatial translation since the last-known po-

sition and heading. Following the discovery of grid cells, a

consensus rapidly emerged around the idea that they provide

a critical component of this process, potentially translating sen-

sory information about movement into an index of location

[38,39,41,114].

Estimates of linear and angular displacement during locomo-

tion can come from several sources. As the angular contributions

are less understood, we focus on linear displacement here. First,

motor efference copy, information derived from the collateral

discharge of neurons driving movement, for example estimating

the vigour and number of strides taken. Second, proprioception,

information derived from muscles, joints and tendons, for

example estimating stride number and stride extension. Third,

vestibular information, capturing acceleration cues from the

otoliths and enabling integration of velocity from acceleration,

and distance from velocity (information which, importantly, is

available during passive translation in the absence of self-gener-

ated motion). Fourth, optic flow, information derived from global

visual changes during movement, which can be used to derive

estimates of linear displacement as well as heading. And fifth,

integrating time, assuming a ‘standard’ travel speed, which

could contribute to an estimate of distance.

In Figure 5A–E, rate-to-running-speed relationships in a speed

cell are used to illustrate how different sensory modalities

contribute to an overall estimate of running speed, and thus

potentially of linear displacement. Species differences amongst

mammals likely exist. For example darkness may affect speed

estimation more in mice than rats [49,50,115,116], and acoustic

flow may be more important in some bats than others [117,118].

The findings of Aharon et al. [118], partly illustrated here in

(Figure 5F–H), suggest that one mammalian strategy to estimate

travelleddistance is to assumea ‘standard’ travel speed, and inte-

grate time. This could be aided by time cells, which have been
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Figure 5. Path integration: sensory
contributions to linear displacement and
role of grid cells.
Presubiculum speed cell illustrating role of

different sensory contributions to speed estima-

tion. Speed cell recorded in a cylinder (A), and then

on linear track in light (B) and darkness (C) [50].

Broad similarity of firing-rate-to-speed slopes

across light/dark on linear track indicates visual

information including optic flow was dispensable

for this speed cell (as for the three darkness-tested

speed cells in Kropff et al. [49]). In contrast,

passively displacing the rat in the experimenter’s

hand greatly changed the rate-to-speed function,

which asymptoted at higher speeds (D). This

suggests vestibular signals could drive the speed

cell, but such signals alone without motor effer-

ence and/or proprioception led to errors at higher

speeds. Remarkably, passive displacement whilst

the rat was restrained in a towel abolished the

cell’s rate-to-speed function (E). This strongly

suggests the importance of a motor efferent signal

in this speed cell, though proprioception cannot

be ruled out. The insufficiency of the vestibular

system alone for accurate updating of linear

displacement in this cell (D,E) is consistent with

strong disruption to grid cells when rats are

passively displaced in carts [226]. Species differ-

ences may occur: darkness appears to flatten the

slope of the rate-to-speed function in mouse grid

cells [115] much more than in rat speed cells

[49,50]. (F–H) Path integration task in pipistrelle

bats [118]. Bats were trained to collect food from a platform 20 m down a corridor (F) over several weeks. Probe trials, with the feeding platform removed, tested

bats’ ability to hover at the platform’s former location (denoted by pink zone) (G), under various sensory manipulations: wind in (H) for example. Bats used path

integration, ignoring acoustic information and landmarks, but used time rather than speed to estimate distance, potentially consistent with ‘time cells’ in rodents

[119]. (I–K) Ablation of NMDA receptors from the retrohippocampal region in mice results in disrupted grid cell firing and a pattern of unimpaired performance in

straight-line test trials (I) and watermaze beacon task (not shown), but impaired vector reproduction in the long–short (J) and short–long (K) test trials, showing

deficits in simple path integration. Moreover, grid cell disruption correlated with path integration deficits. (Adapted from [125].)
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characterised in entorhinal cortex and hippocampus in rodents

[119]. A time cell fires at a specific stage of a temporal sequence,

with different timecells firing for different durations and at different

stages of a sequence, for example the initial, middle or last few

seconds of a minute-long epoch. It has been suggested that

similar theta-based mechanisms could underlie both grid pattern

emergence and time estimation (see [120] for discussion).

Interestingly, GluA1 knockout mice, which show disrupted

grid cells and impaired path integration [121], show impaired

theta-frequency mechanisms [121] and impaired short-term

habituation [122], the latter potentially indicating that time

passes more slowly for these mice. We hypothesise that time

cells in these mice, while showing the expected stage-in-

sequence properties, will exhibit longer firing durations. In sum-

mary, different methods for path integration exist, and this is a

part of the navigation system that is likely to vary between

mammalian species according to the different sensory systems

and environmental cues available.

In rodents at least, locomotion velocity is positively correlated

with theta frequency (local field potential and cellular interburst

frequency) and the firing rates of ‘speed cells’, as well as that of

grid cells and place cells (Figure 1H). A key challenge is to deter-

mine how these two candidate velocity signals for estimating

linear displacement contribute to path integration. This question

relatesdirectly todebates on themechanismsunderlying grid cell

generation, with theta frequency mechanisms important under

oscillatory interference models, and firing rate important under

attractor models; see discussion in [38,39,41,114,123]. It may

be fruitful to develop hybrid grid cell models incorporating both

oscillatory interference and attractor mechanisms [124].

Importantly, while debates on grid-cell-related mechanisms

continue, work linking grid cells to behavioural tests of path inte-

gration is now emerging. The importance of grid cell function to

path integration is suggested by exciting findings that geneti-

cally-induced disruptions to grid cell functionality in mice corre-

late with deficits in an L-shape path integration task in water

(Figure 5I–K) [125] (see also [121]). The mutations do not impair

success in a beacon task, suggesting that the deficits are indeed

related to path integrative navigation and not more general

impairments.

Map-building

The spatial cells of the hippocampal formation provide the build-

ing blocks of an allocentric representation that allows a mammal

to integrate allothetic information, such as environmental bound-

ary cues, and idiothetic information, such as linear translation

cues, to track its current location and relate it to stable and navi-

gationally relevant features of the environment. But in order for

this mechanism to be useful, the animal must venture beyond

its immediate surroundings to build maps of the wider world.

Environmental Sampling, Novelty Detection,

Exploration

Building cognitive maps entails sampling environments. Pre-

sumably because the benefits of spatial maps — for example,

in reliably predicting the locations of resources, conspecifics

and predators — so readily outweigh the costs of their acquisi-

tion, the hippocampal formation has evolved to construct and

update spatial maps in an ongoing, continuous ‘default’ fashion.

Motivational factors, by affecting synaptic plasticity [126] and

boosting ‘replay’ (discussed below), can further enhance the sta-

bility of individual place cell maps and associated memory

[127,128]. Such map-building is enhanced when environments

are well sampled, for example by revisiting the same location

from different directions or sampling different views from the

same place.

A central claim of original cognitive map theory was that map

building, elicited by novelty detection, is driven by an intrinsic

motivation and that, without a hippocampus, animals would

lack curiosity and would not exhibit any exploratory activity

[11]. Briefly, current evidence supports this view, albeit in a

weaker form. While some exploration is clearly hippocampus-in-

dependent, spatial-directed exploration is indeed controlled by

hippocampus-dependent processes for detecting spatial nov-

elty, which result in increased intrahippocampal neuromodulator

levels, in turn enhancing exploration, synaptic plasticity, and

eventual storage of new information [120,126,129–133]. Thus,

the hippocampus controls overt behaviour in at least two

ways: not only in using spatial maps to enable navigation

behaviour, but also in directing exploration to enable effective

map-building.

Exploration

As well as physically moving about the environment, exploratory

behaviours can include actions which enable the animal to

gather allothetic information about its current location. In rats,

two behaviours, rearing on hind legs and headscans, are exam-

ples. Rearing lifts the head high, presumably to afford better

sampling of distal cues (visual or olfactory, for example) than is

perceivable at lower levels. Rearing increases in response to

spatial (and other) novelty and has been hypothesised to be

important in spatial information-gathering [129,134]. Consistent

with the neuromodulatory scheme above, cholinergic agonists

injected into the medial septum or hippocampus increase

rearing, and on first exposure to a novel environment, rearing

frequency is highly positively correlated with hippocampal

acetylcholine [129].

Various findings [135,136] support the prediction of [129] that

rearing, conferring higher viewpoints, is preferentially elicited by

distant rather than nearby allothetic cues. This idea has partic-

ular relevance for spatial mapping because distal rather than

proximal cues tend to dominate the angular orientation of hippo-

campal spatial maps [28,129,137–139]. Sampling distal cues

from multiple viewpoints, rearing is especially suitable for

incorporating allothetic cue information regarding location and

angular heading into hippocampal spatial representations.

Accordingly, when rearing frequency increases because of

spatial novelty, rather than anxiety, this increase is hippocam-

pus-dependent [107,114,115]. Moreover, a hippocampal theta

frequency variable, the frequency-to-running-speed slope, theo-

retically associated with spatial-context novelty, consistently

predicts rearing frequency [52,114].

Consistent with the dentate gyrus performing a pattern sepa-

ration function (Box 2: CA3 collaterals and the dentate gyrus) for

spatial information, several studies implicate the dentate gyrus

in spatial-novelty-elicited rearing, for example following changes

to environmental geometry (Figure 2F) [129,134,140–142].

Importantly, when rearing on hind legs is experimentally

enhanced and prevented, spatial learning of object locations is

also respectively enhanced and prevented [142]. In contrast,
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object-identity learning is unaffected by these manipulations,

suggesting that rearing may be particularly important for

acquiring spatial knowledge [142].

Though suggestive, these rearing studies did not directly

investigate the relationship of exploration to cellular spatial map-

ping. Excitingly, one study [143] of headscans did manage this.

In this work, mismatch trials consisted of rotations of extra-track

cueswith respect to intra-track cues. As expected for a spatially-

directed investigative behaviour, the sensory view sampled dur-

ing a headscan widened in response to greater mismatches of

the spatial cues. Importantly, these investigative headscans pre-

dicted the appearance, or abrupt strengthening, of CA3 and CA1

place fields in novel and familiar rooms. In summary, during both

the construction of novel maps and the updating of existing

maps, this exploratory behaviour responded to spatial novelty

and initiated place field formation.

Taken together, these rearing and headscanning studies align

with a model [11] of how the hippocampal mapping system first

detects spatial novelty, then directs effortful, but intrinsically

rewarding, exploratory actions aimed at acquiring allothetic

spatial knowledge, and then incorporates this exploration-

enhanced knowledge into spatial maps, which are subsequently

useful. This sketch has emphasised allothetic information, but

many mammals make great use of idiothetic cues as well as

allothetic cues. Howmight these two types of spatial information

be integrated? For recent neurocognitive-mechanistic reviews of

such integration, see [40,144]. In Box 3, we suggest that one

major organizing principle of long-duration exploratory behav-

iour, the ‘home base’, has evolved to integrate allothetic and

idiothetic representations, and thus enable accurate, stable

spatial mapping.

Map Retrieval

How do animals re-orient after losing their bearings? Search

tasks show that mammals are particularly adept at using the ge-

ometry of environmental boundaries [145,146]. In one study

[147], rats used the geometric properties of a rectangular box

to retrieve hidden food at a corner. Because two corners shared

identical geometric properties, for example ‘short wall left of long

wall’, rats searched similarly in both those corners. This search

equivalence occurred despite unique multimodal features at

each corner, and one long wall of the otherwise-black box being

white. Thus, although various sensory features unambiguously

predicted the goal location, rats typically ignored these to use

a less efficient strategy based solely on geometric properties.

With extended training, it was shown that rats could use the

non-geometric features to disambiguate geometrically-equiva-

lent places [147].

This initial geometric primacy, replicated across mammalian

species, including human children, under many (though not all)

conditions [148–150], led to the much-debated ‘geometric mod-

ule’ theory [147,151,152]. This hypothesised a reorientation-

serving module dedicated to coding solely geometric properties

of an environment using global shape parameters [147,152].

Gallistel [152] suggested that this makes sense from an evolu-

tionary standpoint as the macroscopic shape of the navigator’s

environment rarely changes, while other features such as the

colour of surfaces and smells do change, across seasons.

When animals are not disoriented, boundary cues, especially

those near to the animal, exert less control over orientation.

For example, in one study [128], polarising environmental shape

cues controlled head direction signals only after disorientation.

Taken together, the findings show that the geometry of environ-

mental boundaries is highly influential in re-orienting spatial

maps after disorientation, but what are the neural underpinnings

of this behaviour?

At a cellular level, the orientation of locational maps is

controlled by the head direction system, with locational

search then guided by the place-cell or boundary-cell system.

Importantly, in many circumstances, the boundary cell system

may be sufficient to drive behaviour independently of the

‘remapping’ place cell system, as the results of [153] suggest.

One intriguing possibility is that boundary cells, whose firing is

specifically attuned to the geometry of environmental bound-

aries — while being largely insensitive to features such as

surface colour and texture, odour, and distal spatial cues, unlike

remapping place cells (Figure 2E) — could contribute to the

properties of the system characterised as the ‘geometric mod-

ule’, as originally envisaged by Cheng and Gallistel [147,152].

Testing the influence of environmental geometry on orienta-

tion, Keinath et al. [154] recently recorded the firing patterns of

place cells, serving as a head-direction-driven orientation corre-

late. Disoriented mice navigated through an environment in

which they could establish heading based on two sources of in-

formation: a polarising visual cue and the local geometry pro-

vided by the walls of the box (Figure 2G). If place cells were

anchored to the polarising cue, providing asymmetry to the navi-

gable search space, then place fields should have occupied a

consistent position across trials. However, the results revealed

that the position of each cells’ place field alternated across trials,

confusing geometric-equivalent locations (Figure 2G). Thus, the

hippocampal map was anchored to the spatial geometry in spite

of a disambiguating polarising cue being available to help estab-

lish heading.

A second experiment by Keinath et al. [154] investigated

whether this map alignment could predict where the navigating

mice would search. Although the disoriented mice were continu-

ally trained to find food in the corner with a short, striped wall to

the left of a long white wall, they first searched both in that corner

and its geometric equivalent (Figure 2H left-hand panel): like the

hippocampalmap, orientationwas guidedprimarily by thegeom-

etry of the walls. Moreover, the recovered place-cell representa-

tion was highly correlated with the corner in which the mice first

searched for food and could reliably predict the to-be-searched

corner on each trial. The two right-hand images of Figure 2H

show an example cell: when the place field was located close

to the north-east corner during trial 1, the mouse first searched

for food in the corner containing the black circle; but when the

place field was rotated 180� to a geometrically equivalent loca-

tion in trial 2, the mouse’s first search behaviour (black circle) ex-

hibited the same rotational shift. In summary, the geometry of an

environment exerts powerful control over reorientation behav-

iour, likely modulated by the head direction system, with place

cells and/or boundary cells guiding search within the map.

Replay

Once maps are retrieved and correctly oriented, the advantages

for generating efficient, and potentially novel, routes can be
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exploited. Again, it appears that specialized neurobiological

mechanisms support this process, and in particular the hippo-

campus’ capacity to ‘replay’ spatial experience during specific

oscillatory states is implicated in both the consolidation of spatial

knowledge and in planning future behaviour.

Oscillatory States in the Hippocampus

Various oscillations, including theta (4–12 Hz), gamma (30–

150 Hz) and so-called ‘ripples’ (140–220 Hz), are studied in

the context of navigation (see [120,155–157] for recent relevant

reviews). Here, we focus on ripples because of their close as-

sociation with the apparent replay of spatial experience.

Although the theta oscillation dominates the hippocampal for-

mation during locomotion in most species, stationary behaviou-

ral states are characterised by large irregular activity, within

which the transient �140–220 Hz ripple oscillations are

observed, coinciding with large amplitude ‘sharp waves’ in

what is called the sharp wave/ripple complex [11,158]. Ripples

also occur during sleep where, as in awake behaviour, they

Box 3. Exploration, map-building and the home base.

The creation of a ‘home base’ in a novel environment, from which exploratory trips originate, is seen in many mammals including

rodents (reviewed in [227]). Over a one hour period in a novel rectangular box in a laboratory, rats spontaneously spend a greatly

disproportionate amount of time at one particular location, typically a corner [228]. Reassuringly, lab-based and larger-scale natu-

ralistic findings show good correspondence in terms of journeys from and to the home base: for example, outward paths are

slower, more investigatory, while return paths are rapid and direct; and rats show home base behaviour in a large yard

[227–230]. The return path typically involves path integration, and hippocampal-lesioned rats are impaired in direct homing

even in the light [227,229–231]. This settling upon a single, initially novel, location in the lab likely usefully models not just creating

the actual home (e.g. for housing progeny), but also how a mammal extends its home range, selecting an increasing number of

‘satellite’ home bases in a privileged ‘one-at-a-time’ manner.

Is there a function of the home base beyond security? As suggested by behavioural studies [227,229,231,232], we propose that

home-base creation reflects an exploratory map-building strategy optimising the integration and tuning of allothetic and idiothetic

spatial representation, in which the home base functions as a single privileged hub of spatial certainty for error-correction and re-

calibration of path integration mechanisms, from which spatial knowledge can extend outwards. Arguably, an overlooked obser-

vation of rodent home base behaviour in the laboratory is that, beyond the obvious superiority of corners (two boundaries) over

sides (single boundaries) over central portions in terms of providing landmarks and protection, selection of the home base location

is arbitrary. Because box corners are similar, as demonstrated by different animals selecting different corners, why does a given

animal spend a greatly disproportionate time at just one place? We suggest home base behaviour is designed to minimise two

problems that spatial mapping poses: path integration error, and same-place recognition.

We suggest that home base behaviour reflects the need not only to reset the path integrator, but also to recalibrate its underlying

mechanisms. Applied to later development, this argument is admittedly speculative, since it might be assumed that such recali-

bration is unnecessary, as consistent with the emphasis upon context-invariant rate-to-speed slopes in speed cells in [49].

Certainly, frequent resetting of preferred angle in head direction cells at a lab-defined ‘home base’ after even short excursions

has already been elegantly shown in a homing task [233]. It is possible that linear resetting and recalibration of angular and linear

path integrative mechanisms occur also. Recalibration as understood here includes not only altering the weights of the individual

sensory contributions to estimates of displacement, but also changing the gain relationships. For instance, if home base arrival is

sooner than expected, then the gain of a function relating neural activity to travelling speed (running, flying) may need to be

decreased. Using idiothetic information is difficult; errors can arise from several different sensorymodalities subserving ideothesis,

and from faulty estimates of either/both angular and linear displacement. In summary, pinpointing sources of error is a challenging

problem, likely requiring many trials to tune the system optimally.

Circling behaviour (‘pivoting’) [228] and rearing on hind legs (often involving head rotations) occur at high levels in and around the

home base, and enable sensory sampling of external cues from multiple viewpoints. One major goal of this allothetic information-

gathering process appears to be to derive a fixed point of spatial stability, aided by distinctive landmark cues at the home base. The

concept of spatial stability raises theoretical controversies [11] beyond our scope here, involving the problem of re-identifying ‘the

same place’, given view-limited egocentric sensation, time elapsing between different views, and a changing world. This is related

to the ‘loop closure’ problem in the robotics literature [234]. We suggest that home base behaviour minimises this ‘same place’

problem by having, initially, just one place to re-identify. Minimising the same-place problem enhances the spatial certainties

that aid solving the error-source problem; a repeatedly-visited locus of spatial stability is likely a crucial tool for optimising path

integration mechanisms, and combining idiothetic with allothetic cues, beyond just resetting.

In conclusion, home base creation likely reflects not only security-related motivation, but addresses problems associated with

spatial map-building. Even if initial inspection suggests several equally-safe locations, it may be adaptive for spatial mapping to

establish a privileged hub of spatial certainty, from which spatial knowledge can gradually extend outwards. Exploration is clearly

species-dependent and habitat-dependent, but home ranges can be quite extensive [235] even in rodents, averaging, for example,

three hectares in Pacific rats in Hawaiian rainforest [236]. Presumably, then, exploration creates ‘satellite’ home bases, and then

integrates mini-maps associated with these nodes of spatial certainty, with mapping gradually extending the size of or developing

a new home range.
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are mutually exclusive with theta, theta being present during

rapid eye-movement (REM) sleep, while ripples occur during

slow-wave sleep.

The firing of place cells during ripple events is not random but

preserves the spatial relationships between the neurons’ place

fields, making it possible to construct virtual trajectories while

the animal itself is stationary or even sleeping (Figure 6). The cells

thus seem to ‘replay’ spatial experience. Compared to real-

world spatial firing patterns, replayed trajectories unfold much

more rapidly (over a few tens of milliseconds) and may occur in

either forward or reverse directions (‘reverse replay’). Studying

replay offers potentially fascinating insights into themechanisms

of spatial mapping and navigation (for recent reviews see

[159–163]). While replay remains much-debated, these studies

arguably suggest that replay serves two functions: to consoli-

date spatial knowledge (‘map building’) and to simulate travers-

able paths (‘using maps’). We discuss these functions in turn.

Consolidating Spatial Knowledge

In Marr’s influential, systems consolidation model of hippocam-

pal function in episodic memory, information is transferred from

the hippocampus to the neocortex during sleep. The idea that

ripple activity might represent a Marr-type hippocampus-to-

neocortex information transfer phase was proposed in detail

by Buzsaki [164]. The suggestion was that theta represents the

online learning state, and ripple activity the offline consolidation

state. We should emphasise that current concepts of replay as

consolidation include replay serving intra-hippocampal as well

as hippocampal-neocortical consolidation. As soon as recording

technological advances could test these suggestions in slow-

wave sleep, they proved prescient in that place cells that fired

together during spatial experience preferentially fired together

during the sleep following that experience [165,166]. Many sub-

sequent studies continued to suggest a consolidation function

for replay during sleep [167,168] and during broadly-stationary

waking states [169–173], where reverse replay was strikingly

clear [170,171,173].

A success of replay research, exemplified in Lee and Wilson’s

seminal forward-replay study [168], was identifying a plau-

sible mechanism by which spatial sequences could become

amenable to rules governing synaptic plasticity, and thus consol-

idated into memory (Figure 6). But what exactly is being consol-

idated in replay? Foster [161] argues, contrary to the replay-as-

recapitulation model, that replays may not represent segments

of experience but rather ‘‘a model of the world’’ reflecting ‘‘which

paths are traversable’’. Studies examining replay in complex

environments may help to decide between recapitulation or

model-building accounts. In one study [174], the paths leading

to a maze’s left arm or right armwere always taken from the cen-

tral arm. Intriguingly, despite this stereotyped path pattern,

replay events occurred which represented the ‘shortcut’ path

from the left to right arm, even though this path was never expe-

rienced. Such replay appears to embody a Tolman-like ‘cogni-

tive map’ in which spatial knowledge is inferred from discrete

experiences [6]. Other studies also support the model-con-

struction, rather than experience-recapitulation, concept [161–

163,175,176].

A minimal prediction from the replay-as-consolidation model

is that inhibiting ripples should disrupt the overall process

of spatial learning, and evidence supports this prediction

[177–179]. For instance, Girardeau et al. [177] timed disruptive

stimulation to either ripple or non-ripple states during the

sleeps following learning of a spatial reference task and found

that ripple-stimulated rats consistently performed worse.

Though such work has not yet selectively inhibited replay, but

rather inhibited ripple states more generally, it suggests that
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Figure 6. The consolidation of location sequences in replay and
theta sequences.
Lee and Wilson [168] suggested how the sequential structure of experience,

such as the order of locations experienced when running in one direction on a

particular linear track (A, top), represented by cells firing in those locations

(A, bottom), could be rehearsed and thus consolidated during slow wave

sleep (B). Such a mechanism would suit an episodic memory system in order

to learn an event order bound to sequentially-visited locations, such as the

smell of food A at place 1, food A itself at place 2, predator odour at place 3, a

predator at place 4 and so on. The authors emphasised that experience un-

derwent a �20-fold compression during this sleep-based replay, leading to

intervals between the firing of route-connected cells which suited synaptic

learning rules known as ‘spike-timing dependent plasticity’ (reviewed in [237]).

The influential spike-timing dependent plasticity model asserts that pre-

before-postsynaptic neuron spiking within a narrow time window (�10–50 ms)

elicits long-term potentiation of synapses, while correspondingly post-before-

presynaptic spiking elicits long-term depression of synapses [238]. Thus,

under a compressed, virtual-route replay regime (B), place cell 1 might fire

20 ms before place cell 2 (signalling an eastwards-visited adjacent location),

and place cell 2 might fire 20 ms before place cell 3 (further eastward),

potentiating thememory of the eastwards 1-to-2-to-3 route. In contrast, during

real locomotion, 400–500 msmight elapse between the place field locations of

place 1 and 2, and place 2 and 3 (A, bottom), well beyond the classic spike-

timing dependent plasticity window. Thus, importantly, consolidation replay

might not only recapitulate experience, but also do so under appropriate

synaptic connection-strengthening conditions. The suitability of compressed

trajectories to synaptic plasticity is widely agreed. The compression of longer

trajectories is not unique to ripple/replay activity, but also occurs during theta

states (Figure 3). Theta-state compression may thus also suit spike-timing-

dependent plasticity. A potential caveat with learning theta sequences, how-

ever, is that they are not very robust on the first lap across a novel track [239],

and it is not clear to what extent neuromodulatory influences on plasticity such

as widening the spike-timing-dependent plasticity window [130] can mitigate

this. In contrast, while there was initial concern that replay required repeated

experience [169], which would not suit learning episodic memories, it now

seems clear that at least reverse replay can occur subsequent to just one

single trial across a novel track [171,174,176]. In summary, consolidation of a

route by replaying it backwards (reverse replay) may potentially offer a more

robust consolidation mechanism for novel experiences than theta sequences.
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ripplesmay contribute to a consolidation-dependent component

of learning. In summary, while the contents of consolidation may

be debated, the replay-as-consolidation model remains prom-

ising.

Consistent with systems-consolidating ripple activity transfer-

ring information from the hippocampus to neocortex, hippocam-

pal replay/ripples orchestrate activity in regions downstream of

the hippocampus, such as the prefrontal cortex [180] and

deep entorhinal cortex [181,182]. Olafsdottir et al. [182] showed

that replay in the medial entorhinal cortex lagged CA1 place cell

replay by �10 ms, as if hippocampus initiated entorhinal grid

replay. These data are clearly consistent with the systems

consolidation replay model.

Planning for Elsewhere

If replay was purely a systems-consolidation phenomenon, we

would always expect to see ripples/replay begin in hippocampus

proper (CA3 then CA1) and then propagate to hippocampal

output regions. Complicating this picture of hippocampally-led

systems consolidation, however, medial entorhinal replay in

superficial layers is often independent of CA1 replay [183], while

layer 3 medial entorhinal input seems necessary for extended

hippocampal replay during quiet waking [184]. These dual-re-

gion replay studies, andmany others, have thus suggested func-

tions for replay in addition to consolidation, such as planning in

navigation tasks [161–163,185].

Perhaps the clearest example of navigational planning was

shown in a task involving a goal whose location was stable on

any given day, but changed from one day to the next [186]. Strik-

ingly, replay events occurring shortly before goal-directed navi-

gation tended to be forward replays predicting future paths to

the current day’s goal, including paths not previously taken

that day. Furthermore, replays were more predictive of future

paths than measures of heading, indicating that replays were

not merely prospecting paths directly in front of the rat. Consis-

tent with forward replay of ‘routes ahead’ at decision points

in spatial tasks [187–189], causal evidence links awake replay

to navigational planning [190]. When ripple events were

truncated by stimulation at decision points in a spatial working

memory alternation task, task performance was significantly

impaired [190].

What exactly is being planned in replay episodes? Intriguingly,

trajectory distance correlates strongly with the total duration of

its replay (with concatenated ripple events for long trajectories)

[175,176]. Thus, readout of replay duration could help in naviga-

tional planning to select shorter paths [161]. In general, replay

may be simulating various possible trajectories to enable evalu-

ation of the costs and benefits of particular journeys. This would

be consistent with observations where replay and theta sweeps

reflect amenu of potential alternatives, rather than simply predict

behavioural choices [60,174].

The cost–benefit analysis that replay enables need not be

limited to goal-seeking and efficiency savings but could extend

to other adaptive behaviours, by using replay simulations to

retrieve associations with particular places. So, for instance,

after shock training at one end of a track, hippocampal replay

events depicting virtual trajectories towards the shock zone

were associated with behaviours avoiding that zone [189].

An important challenge is thus to understand how goals [191], ob-

stacles [32,33] and punishments are incorporated into replay to

direct future behaviour. For example, it has been speculated

that boundary cells’ function might extend to reflect aversive,

for example social or predator-related, barriers to movement

[192]. Incorporating boundary cells into hippocampal replay

studies might be fruitful. Overall, studies of replay indicate that

the hippocampal formation does not merely reflect ongoing

spatial behaviour, but serves offline consolidation and planning.

While navigation tasks vary widely, a typical contribution of the

hippocampal formation will be to calculate a vector or path to a

distal/hidden goal [11,193,194] (for reviews see [132,195,196]),

likely involving theta sequences and/or replay. From a computa-

tional perspective, grid cells may be particularly helpful for

vector-based navigation, for example in planning direct routes

cutting across unvisited areas or taking shortcuts, and several

theoretical models have outlined how grid cells can be used to

compute vectors from a starting to goal location over large-scale

space [193,195–199]. A general advantage of using grid cells

over place cells is that, at least after sufficient exploration

[200], universal coordinate frames, at different scales corre-

sponding to different grid modules, become available. The ability

to combine activity from different grid modules enables calcula-

tion of start-to-goal vectors whose length exceeds that of the

largest grid scale. In contrast, place-cell firing can only indicate

local relationships within an environment and, because of hippo-

campal remapping, relationships between place cells in different

environments are often arbitrary.

Thesegrid cell vector navigationmodels canbedivided into de-

coding models and ‘look ahead’ models (see discussion in [196]).

Decoding models have the advantage of being able to compute

translation vectors quickly, but postulate additional neural mech-

anisms yet to be identified, such as distance cells [196,198] or grid

cells exhibiting phase precession aligned with specific one-

dimensional axes, as in the phase-coded vector cell model

[196]. Look-ahead models [193,195,196] have the advantage of

making use of already-identified neural mechanisms, but have

the limitation that calculation duration correlates with distance,

which could be burdensome for long distances [196]. While grid

cells offer computational advantages, it remains unclear how

grid cell networks canbe interrogated: replay is a goodcandidate,

but goal-directed grid replay remains to be shown.

Once vectors are calculated, other regions aside from the hip-

pocampus might play a more active, moment-to-moment role in

guiding ongoing travel [201,202]. This would be consistent with

hippocampal formation population activity peaking towards

journey beginnings, and such activity predicting navigational

accuracy [194,203–206].

Conclusions

Navigation in mammals makes use of a dedicated system that

exploits latent learning, together with specific, purposeful

exploratory behaviours to build up cognitive maps of the

environment, based on specialised spatial cells in the hippo-

campal formation and its inputs. Studies in rodents show

that navigation to hidden goal locations can draw on a wide

variety of external and internal sources of information about

location, orientation and movement. Allothetic information

related to distal visual cues and environmental geometry

(coded by boundary cells) is particularly important in establish-

ing orientation (coded by the head direction system) and
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location (coded by hippocampal place cells and medial entorhi-

nal grid cells), but idiothetic information appears to play a vital

role in tracking movement (perhaps with respect to time and

speed cells) and in stabilizing and extending the representation

of location into open spaces. In turn, cellular codes for idiot-

hetic information, in particular, appear to be linked to theta

oscillations that dominate the network during locomotion and

are modulated by speed.

When an animal is stationary, access to the map is reflected in

distinct oscillatory states in the hippocampus which are associ-

ated with consolidation of existing spatial knowledge and with

navigational planning. These plans include generating direct

routes to goals, negotiating obstacles, and avoiding punishing

places. Many facets of these cognitive processes remain

obscure, but the close connection between ongoing spatial

behaviour and neural activity within the hippocampal formation,

coupledwith emerging clarity over the role of offlinemechanisms

such as replay, provide unique tools for discovery.

This review has emphasised apparently common mammalian

characteristics. However, many questions remain about the

extent to which the neural mechanisms that support spatial

representation are specialized (neurons, oscillations, regions) ac-

cording to the sensory and behavioural adaptations of different

species — for example, echolocation, gaze, flight, swimming,

burrowing — especially in large-scale two-dimensional and

three-dimensional space (sky, sea). For instance, while oscilla-

tions apparently play amajor role in hippocampal formation func-

tion in rodents— in path integration, scheduling encoding versus

retrieval, consolidation and planning — translating insights from

rodents to bats, primates, and seamammalsmay not be straight-

forward.Other open questions concern theway the hippocampal

formation interacts with other systems, for instance in optimizing

exploration vs exploitation, perceiving and recognizing places,

generating spatial imagery, and forming episodic-like memories.

Answering these questions, to obtain an integrated view of the

uses of cognitive mapping within and beyond navigation, may

require high-density recording technologies whose multi-region

coverage can approach whole-brain technologies like fMRI.
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