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A sunflower particle showing how the internal structuring present in the original particle can influence the morphology of the char particles post pyrolysis.
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A B S T R A C T

A new classification system is proposed for the morphological characterisation of char structures from biomass.
These char structures are unlike the coal chars that have an established nomenclature via the International
Committee of Coal and Organic Petrology (ICCP) which divides char structures into thin walled and thick walled
spheres and networks, mixed dense and mixed porous, fusinoids and solids. The chars from biomass show a
tendency, depending on heating regime, to produce different types of internal pore structure (cellular and
porous) and aspect ratio (high and low) compared with coal chars. For this reason a new classification system
has been developed to cover these new structures which should assist in combustion, co-firing and gasification
research where these intermediate char structures play an important role in conversion efficiency. Low heating
rates (using a muffle furnace at 1000 °C and 3min) were used to create chars from 9 different biomass types,
with a range of lignocellulosic compositions. Char type appeared to depend on the biomass type itself and
original lignocellulosic composition (cellulose, lignin and hemicellulose content) and cell structure.

1. Introduction

The use of biomass for energy production is increasing in many parts of
the world, either through blending with fossil fuels or firing as a fuel in its

own right. Biomass is considered to be CO2-neutral [1–6] and therefore plays
of a role in CO2 reduction strategies. Biomass also has the additional benefit
of inherently lower levels of sulphur [2,3,7] and nitrogen [2,7], in most cases.
However, there are significant differences when compared to coal in terms of
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higher moisture and volatile contents and lower levels of fixed carbon and
ash [8]. However, despite these differences, they both follow comparable
reaction stages during conversion [9,10]:

i. Pyrolysis – the devolatilisation and volatile release of materials, which
often soften and swell while ejecting gaseous products of moisture and
hydrocarbons, resulting in the formation of carbon-rich char

ii. Conversion of the intermediate carbon rich char particles in the
presence of an oxidant gas, i.e. combustion

iii. Deposition or collection of mineral residues along with any unburnt
carbon particles

Generally, a degree of overlapping occurs between step (i) and (ii)
[11–13], however the process by which fuels are converted to heat are
principally the same, as is the need to understand how these carbon
structures from step (ii) affect the overall conversion efficiency. Much
work has been focussed and published on coal char investigations
[10,11,14–29], including the link between coal macerals and their as-
sociated char morphotypes [11,22,28]. The link between biomass
characteristics and char morphology is less well known.

Biomass has three major lignocellulosic components, namely cellulose,
hemicellulose and lignin. These three components are the major constituents
of plant cell walls, a substantial portion of the dried biomass [30], and make
up to over 90wt% of the plant cells on an air-dry basis [31]. Cellulose is
composed of long chains of cellobiose units [32], lignin is a complex, high-

molecular-weight structure containing cross-linked polymers of phenolic
monomers, and hemicellulose consists of branches of short lateral mono-
saccharides [33]. The glucose produced during photosynthesis is converted
either into cellulose, which makes up the main structural component in cell
walls, or stored in the form of starch granules in amyloplasts [33,34]. Starch
is stored in tree twigs, fruits seeds, rhizomes, and tubers for the next growing
season. The cellulose in cell walls are packed into microfibrils by the long-
chain cellulose polymers linked by hydrogen and Van der Waals bonds,
which are protected by hemicellulose and lignin [33]. The percentage of each
component varies by biomass, and the influence of biomass composition on
biomass char formation has not been explored in literature.

Recently, there has been an increase in the number of biomass char
studies [35–38]. The morphology of the char structures has been ana-
lysed via Scanning Electron Microscopy (SEM) imaging [39–41] and
optical microscopes [42,43]. With the increasing body of work into
biomass chars, there is a need for a classification system to characterise
the chars which accommodates the variances in structure compared to
coal chars. Coal char has the following discriminating features [10];

1. Char Wall-Thickness – there has always been a distinction made
between thin walled (classically known as tenui-) and thick walled
(known as crassi-) chars. Differences in classification systems
[44–47] are made around the threshold between thick and thin but
most systems concede that chars generally can be seen as thick or
thin – whereby the logic follows that thin chars will burn out more

Fig. 1. Examples of low (a) and high (b) aspect ratio, thin wall (c) and thick wall (d), porous (e) and cellular (f) for wheat shorts chars.
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rapidly, and were derived from highly reactive material. Jenkinson
[48] used wall thickness as one of the criteria in his char modelling
system along with other characteristics such as NMR and ICP-MS
data on mineral composition.

2. Char Voidage and Porosity – primary porosity includes larger central void
(s), and secondary porosity which occurs as smaller voids located on char
wall boundaries. The number and size of pores differentiates spherical
particles (tenuisphere and crassisphere), from network particles

Fig. 2. Logic tree for classifying biomass chars types.
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(tenuinetwork, crassinetwork) and from mixed-porous and mixed-dense.
Numerous pores of a reasonable size denote a network structure whereas
up to 3 large open pores would define a sphere.

3. Fused and unfused structures – some coal macerals plasticise, vesiculate
or swell and form new, potentially anisotropic structures [11,49]. The
more reactive inertinite structures still structurally modify during heating
[50]. ‘Unreactive’ components will tend to remain fused throughout the
conversion process. Qian and co-workers discuss this in relation to bio-
mass char, to some extent, but used SEM imaging of whole particles,
rather than cross sections with oil immersion microscopy [51].

A biomass classification system needs to be as simple as possible whilst
describing the main characteristics seen in biomass char. Ideally, the system
needs to overlap with the current coal char classification system where ne-
cessary, not least to allow similarities between coal and biomass chars to be
identified. The identified features should be of use for scientific study, whilst
maintaining some relevance to end users e.g. working in utilisation related
applications, such as combustion studies [52]. The proposed system draws on
the characteristics (1) and (2) but discards the third, introducing aspect ratio
as a more useful feature, not least because the aerodynamics of the particle
will be dictated, in part, by its shape and density (which relates to (1) and (2))
[53]. The aerodynamics of the particulates in the flame, particularly as bio-
mass particles can up to 3mm in diameter, can make a large difference in
determining whether the particle is entrained (leading to burnout), or falls
out of the flame (to be collected in the furnace bottom ash [54]).

2. Experimental

2.1. Biomass samples

Nine different biomasses were analysed in this study; namely wheat and
wheat shorts, miscanthus, olive residue, Swedish wood, corn stover, rapeseed,
sunflower seed, and distillers dried grain (DDG). These 9 different types of
biomass were dry sieved into different size fractions (namely 1180–600 μm,
600–300μm, 300–212μm, 212–106 μm, 106–75μm, 53–75μm).

2.2. Char preparation

To better understand how char morphology is affected by heating rate,
the biomass char samples were prepared via slow heating using a laboratory
muffle furnace. Ceramic crucibles were filled with 10 g of fresh biomass and a
closed ceramic lid (to allow pyrolysis but with reduced air ingression in order
to minimise combustion) and placed directly into a preheated fixed bed
furnace at 1000 °C. Samples were left for 3min, to allow the pyrolysis stage to
be completed, after which the crucibles were removed and placed in a de-
siccator to avoid any ingress of moisture. This method has been described in
more detail previously [9,10]. The muffle furnace treatment would be closer

to a fluidised bed process or stoker system [55] rather than a pulverised fuel
combustion flame [24].

2.3. Oil immersion microscopy

Scratch free, polished blocks were prepared using epoxy liquid resin for
each sample in order to be characterized. A Zeiss Leitz Ortholux II POL-BK
microscope with a 32x oil-immersion objective (and an internal 10x lens)
providing a total of 320X magnification was used to analyse particle mor-
phology. Composite images (3090×3900 pixels) from mosaics of 15×15,
representing a total area of 4mm×3.3mm, were obtained from the Zeiss
AxioCam digital camera attached to themicroscope and operated with KS400
V3.1 software.

2.4. Lignocellulosic composition analysis

The lignocellulosic compositions of all the raw biomass samples were
determined using standard chemical assay tests with an estimated repeat-
ability of±10% [56]. Lignin was determined via the standard acetyl bro-
mide method [57]. 100mg of biomass sample were added to a glass cen-
trifuge fitted with a Teflon lined screw cap. 10ml of acetyl bromide in acetic
acid (250ml) solution was added, capping immediately. The tube was heated
in a water bath of 50 °C for 2h with stirring at 30min intervals. Upon
cooling, the material was centrifuged at 2000×g for 15min. Around 0.5ml
of the solution was pipetted into a test tube containing 6.5ml of glacial acetic
acid and 2ml of 0.3M NaOH. After stirring, 1ml of 0.5 hydroxylamine hy-
drochloride solution was added. All contents were stirred. Absorption spectra
were determined for all samples. The absorption maxima at 280nm were
used to calculate lignin concentration using the equation proposed by Fu-
kushima and Kerley [58]:

=

−L A 0.0009
23.077 (1)

where L is the lignin concentration (mg/ml) and A is the absorbance.
The concentrations of hemicellulose and cellulose were determined using

the potassium hydroxide (KOH) fractionation method [59] after the removal
of the lignin (via the sodium chlorite method proposed by Ishizawa et al.
[60]). The hemicellulose was isolated by extraction using 20ml of 4M KOH
at room temperature for 2 h. A sample to liquor ratio of 1:20 was used. The
resultant extract liquor was adjusted to pH 5 by the addition of 6M acetic
acid, followed by precipitation of the hemicellulose using acetone. The
hemicellulose was washed with ethanol and water, followed by drying under
vacuum at 60 °C. The final unextracted residue was weighed and classed as
cellulose.

3. Classification system

The proposed biomass char classification system is based on three
morphological characteristics: aspect ratio, wall thickness, and por-
osity. The key to any successful classification system is simplicity and
the use of criteria that can be easily distinguished by a manual operator.
The following sections evaluate the potential variances, and define the
classification system for future users.

3.1. Aspect ratio

Some biomass chars can have significantly higher aspect ratio (ratio of
length to width) than seen in coal chars, presumably because of their fibrous
nature and their resistance to fracturing during milling [53] and the ability of
the internal components to maintain their shape during devolatilisation [61].
It is acknowledged that the type of mill can probably influence aspect ratio
i.e. ball milling will induce a different breakage mechanism compared to a
ring roller mill [62]. By evaluating all images, (summarised in Fig. S1 in the
Supplementary data) two classifications are proposed – Low Aspect Ratio and
High Aspect Ratio. If the aspect ratio is 3 or higher, the particle should be
classed as High Aspect Ratio.

Fig. 3. Distribution of biomass char properties by biomass type.
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The likelihood that a particle will form high aspect ratio chars rather than
low aspect ratio is linked to particle size, heating rate and cellular structure
[63,64]. If the cellular structure is quite developed, the high aspect particle
will be able to swell during softening (assuming a high enough heating rate)
and form a significantly wider particle, as illustrated in Fig. 1a for wheat
shorts. This distinction should prove to be useful in combustion research
where it has been shown that higher aspect ratio particles (described as cy-
lindrical) burn faster than low aspect ratio particles (described as spherical)
[65]. Particles of different shape will travel differently in the boiler. Flatter
‘platelet-like’ structures are more likely to be retained in the flame than
denser, rounded particles. The latter would be more prone to fall through the
boiler quickly if they have a low aspect ratio and mass [66].

3.2. Wall thickness

As with coal char, there are different ways to consider wall thickness, but
in literature, 3–5µm tends to be the threshold that defines the transition from
thin walled chars to thick wall chars [10,67]. During manual analysis, the
char particle that is identified by the cross hair must be assessed for wall
thickness. Without the use of image analysis to measure the wall thickness of
the whole char [68], the manual analyst must give a qualitative assessment of
the ‘general’ thickness of the char. Regardless of the differences in burnout
kinetics (there is a difference in burnout rates when comparing coal and
biomass char [69], biomass to biomass [9], and a biomass to its torrefied
form [70]) wall thickness is still a critical parameter since thick walled chars
burn out more slowly than thin walled chars because of the diffusion limited
reactions that take place in a boiler [71]. The proposed system distinguishes
between thin walled biomass chars (that have a wall thickness of<3µm)
and thick walled (that have a wall thickness>3µm) where the judgement
around ‘thickness’ is based on the overall assessment of the whole char. Fig. 1
shows thin (Fig. 1c) and thick (Fig. 1d) walled chars for wheat shorts. Ad-
ditional examples can be found in Fig. S2 in the Supplementary section.

3.3. Porosity

Two different types of pore were seen with all biomass types in this study;
those that had clearly retained cellular porosity (based on typical initial cell
walls seen in biomass) [72] and those where the porosity was more like open
rounded pores seen in tenuisphere and crassisphere coal chars. Fig. 1e and
Fig. 1f show examples of both these classes. Cellular char structures indicates
controlled devolatilisation where the lignocellulosic structure remained intact
allowing the controlled loss of volatiles through predefined channels and
pores, while porous structures dictates structural softness and fluidity that
indicates that the volatile release phase was less controllable. Coal chars are
formed from the partial melting and fluidisation of the fixed carbon material
during devolatilisation. Porous structures are those that show softening and/
or enhance volatile/moisture release. Macro pores are larger and more con-
sistent with coal char pores, as seen in tenuispheres and crassispheres. Some
char particles can be clearly a mixture of both porous and cellular types.
Cellular pore structures are similar to those seen in the original biomass cell
structures where each cell appears more uniform and rounded, located next
to many other similar sized cells. These cells bear most resemblance to in-
ertinite structures in coal such as fusinite and semifusinite (which are formed
from the oxidised cellulosic structures of plants, either through forest fires or
slow autochthonous oxidation and ageing [73]). When defining cellular pores
however, there is an issue with structural anisotropy or orientation of the
particle in relation to the surface. In some cases, such as DDG and olive
residue, cellular pores may appear to be more elongated. These internal
structures are more like inertinite-derived char structures and result from
sectioning along the length of the pores rather than at right angles. As with
the cellular structures, there is no sign of extensive softening or swelling.

4. Application of the classification system to biomass chars

On the basis that there are 3 specific criteria to identify chars, i.e. aspect
ratio, wall thickness and porosity, 9 groupings exist as follows. The chars

were found to be either one of walled-porous-low aspect ratio (ThPL), thin
walled-porous-low aspect ratio (TPL), thick walled-cellular-low aspect ratio
(ThCL), thin walled-cellular-low aspect ratio (TCL), thick walled-porous-high
aspect ratio (ThPH), thin walled-porous-high aspect ratio (TPH), thick walled-
cellular-high aspect ratio (ThCH), thin walled-cellular-high aspect ratio
(TCH), or solid (S). The solid category was added to describe all materials
without any significant porosity (<5%) where wall thickness, in most cases,
are thick walled. Whilst this category could be expanded to high and low
aspect ratio solids, neither was seen in biomass chars i.e. no char was found to
be completely solid with very low porosity. Even in coal, the creation of solids
would normally only originate from sclerotinite or macrinite [74] (inertinite
sub-macerals) or from heat affected coal or pet coke materials. Fig. 2 shows a
logic tree that defines the decision making process required to identify each
char type.

4.1. Influence of biomass type and particle size on char properties

Fig. 3 presents the overall char properties of the tested biomasses.
Groupings can be made of chars with similar features, e.g. high aspect
ratio particles (regardless of thick or thin, cellular or porous). Overall,
the chars for all biomasses are predominately of low aspect ratio, in-
dicating that swelling has probably occurred during combustion. DDG
showed the highest proportion of low aspect ratio particles (80%) and
Swedish wood the lowest (57%).

There was greater variance in the wall thickness of the chars, with
DDG, Swedish wood, wheat shorts and rapeseed exhibiting pre-
dominately thick walled structures (> 60%), while miscanthus, wheat,
corn stover, olive and sunflower had a greater proportion of thin walled
chars overall. Interestingly, wheat shorts and wheat showed opposite
wall thickness trends, indicating that they have different pyrolysis ki-
netics despite being from the same plant.

Distinct trends can be seen for porosity, as miscanthus, Swedish
wood, olive and sunflower chars are mainly composed of cell structures,
while DDG, wheat shorts, wheat, and rapeseed have mainly porous char
structures. Only corn stover showed a more balanced porosity with
almost equal part cell (52%) and porous (48%) char structures.

The initial size of the biomass particles was found to impact the properties
of the resultant chars (Table 1). Wheat shorts are predominantly TCH and
ThCH at large particle sizes, but almost entirely ThPL for fines, indicating a
fundamental change in structure and aspect ratio with decreasing particle
size. Similar changes are also noted for DDG, wheat, and rapeseed. Swedish
wood exhibited chars with increasing levels of cell-type structures, while olive
showed more thin walled structures with decreasing particle size. Fig. 4
provides an indicative illustration of the trends in groupings as influenced by
particle size, based on the data in Table S1 in the Supplementary data. Fig. 4a
shows that for all the biomass chars, a larger initial particle size will result in a
high aspect ratio for the resultant char. As particle size decreases, the aspect
ratio reduces, suggesting that smaller particles either start with more sphe-
rical particles or that swelling is greater during combustion. Whilst coal
particles can melt or soften and form spherical droplets, biomass char parti-
cles can be very irregular and shape is determined by the combined influence
of the lignin structure of the original biomass and the mechanical process by
which the particles are formed [64]. Pulverised wood can have either a
spherical or cylindrical structure, but straw can have a cylindrical structure
and the aspect ratio is determined by the degree of milling [53,64]. The
majority of the samples show similar trends, but wheat shorts and sunflower
particles exhibit a greater spread of char aspect ratios across their initial
particle size distribution.

Three distinct trends were observed for the biomass char wall
thickness and particle size (Fig. 4b). Wheat shorts, Swedish wood, olive
and DDG char wall thickness increases with decreasing particle size,
suggesting that the fines of these biomasses could take longer to burn
out than larger particles with thinner walls [68]. Wheat and corn stover
show the same trend, but with a greater proportion of thin walled chars
at large particle sizes. Miscanthus, sunflower and rapeseed show the
opposite trend to the other samples, with decreasing particle size
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resulting in thinner char walls. Sunflower and rapeseed are both
flowering plants and miscanthus is a grass species, while DDG, corn and
wheat are cereal grain crops, olives are fruits. This variation in species
may account for the distinct difference in char wall thickness.

For porosity (Fig. 4c), all biomass chars showed more cell structures
for larger particles sizes, and more porous structures for fines. Olive,
miscanthus, wood, and sunflower chars had predominantly cell struc-
tures across their particle size distribution, while wheat and DDG were
mainly porous. Corn, wheat shorts and rapeseed showed a mix of cell
and porous structures.

4.2. Influence of composition

It has been shown in several studies that coal macerals impact the
associated char morphotype [11,22,28]. This study found that this was
also true for biomass composition and the resultant char morphologies.
Table 2 provides the composition of all the biomasses. Some biomasses
contained mainly cellulose (olive), starch (wheat shorts) or hemi-
cellulose (DDG), but all samples had lignin contents between 8 and
14%. Only corn, DDG, wheat shorts, and Swedish wood contained

Fig. 5. Correlation between lignin content and porous chars (a), hemicellulose
content and low aspect ratio chars (b), cellulose and starch content and high
aspect ratio chars (c) for all biomasses.

Fig. 4. Visualisation of influence of particle size on char aspect ratio for dif-
ferent biomass types (a), influence of particle size on char wall size for different
biomass types (b), and influence of particle size on char porosity for different
biomass types. The shape of the biomass triangle gives an indication of the
changes with decreasing particle size range, with the wider edge being the
largest particle size, and point the fines.
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starch. By correlating the biomass composition to the resultant char
properties, 3 strong trends were observed. The strongest correlation
existed between lignin content and porous cells structures (Fig. 5a).
This indicates that the higher the lignin content, the more likely the
char will have open pores rather than a cellular structure. Increasing
hemicellulose content results in lower aspect ratio chars (Fig. 5b) and
increasing cellulose and starch content results in a decrease in the
proportion of higher aspect ratio chars (Fig. 5c).

4.3. Structural components and char structure

All biomasses are composed of three different tissues: ground
(parenchyma, sclerenchyma and collenchyma cells), vascular (xylem
and phloem cells) and dermal tissues [75]. Each type of cell has its own

unique characteristics, and thus it is possible to identify cells even when
the biomass particles were milled into smaller fragments (Fig. 6). These
characteristics include the number of cell wall layers, location, and
lignocellulosic composition. In order to verify the identifications, a
piece of un-milled raw miscanthus was examined across its cross section
(Fig. 6a). For the un-milled raw miscanthus piece, some of the original
plant cells have thicker cell walls, particularly for xylem and scler-
enchyma cells. These cells are specialised in certain functions which
require them to have both primary and secondary walls for an enhanced
strength. Xylem cells require secondary thickening to withstand the
negative pressure while conducting water, whilst sclerenchyma pro-
vides mechanical support to plants. Other less specialised cells with
only primary walls, like parenchyma, appear to have thinner walls.

As mentioned in Section 3.1, the heating rate used in this paper

Fig. 6. Air optical microscope mosaic image of
cross section of unmilled miscanthus piece (left)
and SEM image of cross section of milled particle of
miscanthus 212–300 µm (right). Identified compo-
nents: (a) Epidermis; (b) Vascular bundle; (c)
Bundle sheath, sclerenchyma cell; (d) Collenchyma
cells (e) Parenchyma cell, (f) xylem cells; (g)
phloem cells; Xylem and phloem are collectively
known as vascular bundle.

Fig. 7. Oil-immersion microscope image: Cross section of milled miscanthus char 212–300 µm. Identified components: (a) Sclerenchyma cell, bundle sheath, (b)
Collenchyma cell, (c) Epidermis cell, (d) Parenchyma cell; (e) Phloem cell, (f) xylem cells.

Table 2
Biomass compositional components.

Cellulose (%) Lignin (%) Starch (%) Hemi-cellulose (%) Starch and Cellulose (%) Hemicellulose and Cellulose (%)

Corn 24 10 36 30 59 54
DDG 1 12 10 77 11 78
Miscanthus 58 11 0 31 58 89
Olive 70 10 0 20 71 90
Rapeseed 51 10 1 38 51 90
Wheat Shorts 22 11 67 0 89 22
Sunflower 48 11 1 40 48 89
Swedish Wood 10 8 51 31 62 40
Wheat 56 14 0 30 56 86
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allows the char particles to retain original biomass cell structures since
the volatiles released during devolatilization stage have sufficient time
to escape through existing cracks and natural pores [76]. This allows
further identification of cells even after devolatilization (Fig. 7). Simi-
larly, cells with both primary and secondary walls appear to have much
thicker char walls compared to those with only primary walls. This is
because secondary walls are inherently thicker and stronger, whilst its
constituents are less accessible since the microfibrils are more orderly
arranged [32].

The fact that secondary walls in biomass would produce chars with
thicker walls makes the study of its constituents important. Normally,
secondary walls have twice the cellulose content of primary walls [77].
Also, secondary walls are characteristically thickened with lignin,
which is rarely found in primary walls [32]. The rigid lignin provides
the necessary compressive strength and bending stiffness [32], while
cellulose, through the winding of microfibrils, provides the required
tensile strength, about twice that of a basic steel [78]. Thus, with
adequate compressive and tensile strengths to prevent the tearing and
expansion of cells (and compression of adjacent cells), coupled with the
relatively low reactivity of cellulose and lignin, the original structure of
biomass is retained during the rapid volatile and moisture release upon
fast heating. However, the lack of such strengthening factors in ‘weaker’
cells with only primary walls makes the cell walls relatively easier to
swell and rupture due to the internal pressure from volatile release,
thereby breaking the boundaries between adjoining cells to produce
thinner chars with larger pores.

Third generation biofuel residues such as micro and macro algae
sources, and refuse derived fuels, may well create new char morphol-
ogies that not described by the classification system in this paper. Most
of these biomass sources have cell-like structures (although RDF can be
more than cardboard and paper and can even contain plastics) but more
work is needed to confirm whether they behave differently during
heating.

5. Conclusions

This paper presents a new classification system for the morpholo-
gical characterisation of char structures from biomass. These char
structures are unlike the chars seen from coals, and have a tendency to
produce different types of internal pore structure and aspect ratios
compared with coal chars. For this reason, a new classification system
has been developed which classifies biomass chars by 3 parameters;
aspect ratio, wall thickness and porosity. From this, 9 groups were
found based on combinations of these parameters. Biomass chars were
found to have predominantly low aspect ratios, which indicates swel-
ling during combustion. Particle size also impact on the char porosity of
individual biomasses, with larger particles producing higher aspect
ratio chars in all cases.

Biomass composition was found to influence the resultant chars
formed. Chars with high lignin and small particle sizes exhibited porous
structures, large biomass particles with low levels of lignin tended to
produce cellular structures.

The proposed biomass char classification system has the potential
for adaption for new fuels and is the basis for a new image analysis
technique currently under development. This classification system will
assist in combustion. co-firing and gasification research where these
intermediate char structures play an important role in conversion effi-
ciency.
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