
This is a repository copy of Re-establishing communication in teams of mobile robots.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135485/

Version: Accepted Version

Proceedings Paper:
Vandermeulen, I., Groß, R. orcid.org/0000-0003-1826-1375 and Kolling, A. (2019)
Re-establishing communication in teams of mobile robots. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 01-05 Oct 2018, Madrid,
Spain. IEEE .

https://doi.org/10.1109/IROS.2018.8594460

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Re-establishing communication in teams of mobile robots

Isaac Vandermeulen1, Roderich Groß1, and Andreas Kolling2

Abstract— As communication is important for cooperation,
teams of mobile robots need a way to re-establish a wireless
connection if they get separated. We develop a method for
mobile robots to maintain a belief of each other’s positions
using locally available information. They can use their belief
to plan paths with high probabilities of reconnection. This
approach also works for subteams cooperatively searching for
a robot or group of robots that they would like to reconnect
with. The problem is formulated as a constrained optimization
problem which is solved using a branch-and-bound approach.
We present simulation results showing the effectiveness of this
strategy at reconnecting teams of up to five robots and compare
the results to two other strategies.

I. INTRODUCTION

Communication is essential for the successful completion

of most tasks performed by teams of mobile robots. In real

environments, robots often communicate over inexpensive

ad-hoc networks which have limited connectivity that is

affected by distance and line of sight [1]. The robots may lose

connectivity as they move throughout their environment. One

solution to this problem is to restrict robots’ motion to main-

tain connectivity, making them less effective at other tasks.

Another solution is to have the team separate temporarily

and meet occasionally to share information. Regular or pre-

planned meetings give robots some flexibility to separate,

but are inconvenient when tasks take unpredictable lengths

of time. If instead, the robots do not have a prearranged

meeting, they have to find each other without sharing any

common information. This problem can be described in one

of three ways depending on the target robot’s behavior.

Its behavior can be a) cooperative, b) adversarial, or c)

neutral. These problems are commonly known as rendezvous,

pursuit-evasion, and search. In practice, a searcher often does

not know whether its target is cooperative, adversarial, or

neutral and should use a strategy which can be effective

regardless of its target’s objectives.

In this paper, we design a flexible communication strategy

that can be used when completing a cooperative task. This

strategy allows for varying degrees of communication so

that robots can benefit from cooperation without wasting

excessive energy to communicate. We do not require robots

to communicate constantly or at fixed intervals. Without the

objective of constant communication, the team of robots will

in general be disconnected. If a robot wants to communicate

with a disconnected robot, it searches for that target robot

1 Isaac Vandermeulen and Roderich Groß are with the Department of Au-
tomatic Control and Systems Engineering, University of Sheffield, Sheffield,
UK {iavandermeulen1,r.gross}@sheffield.ac.uk

2 Andreas Kolling is with iRobot, Pasadena, California, USA
akolling@irobot.com

using its belief of the target’s position. This belief is es-

timated using a probabilistic model of the target’s motion.

This problem is unique because it explicitly considers the

communication structure of the environment. Reconnection

is successful if two robots are within a communication range,

which depends on the environment’s and robot’s, properties.

The robots do not need to be in the exact same location to

successfully reconnect.

A. Related work

When there is limited communication, a common ap-

proach is to enforce that connectivity be maintained at all

times. Connectivity can be enforced by following a gradient

ascent of the Fiedler eigenvalue [2], [3], by using a potential

field [4], or by cooperatively planning paths [5], [6]. Alterna-

tively, robots can meet periodically at a prearranged meeting

time and place [7] or at prearranged locations but not times

which results in some waiting [8].

Rendezvous can be symmetric or asymmetric depending

on if all the robots use the same strategy. In asymmetric

rendezvous, the optimal strategy is for a robot with a known

ID to remain still while the other robot visits every vertex

[9]. The symmetric version of this strategy is for each robot

to randomly choose to visit every vertex or wait for a fixed

length of time. Another symmetric approach is for robots

to move randomly between several unique vertices that they

have identified [10], [11], [12].

Search can involve a stationary or mobile target. For

a stationary target, search is equivalent to the traveling

salesman problem if the target is located on vertices [13]

or the Chinese postman problem if it is located on edges

[14]. A moving target can be modeled using a Markov model

with the searcher attempting to maximize the probability

of detection over a given time horizon [15]. For multiple

cooperative searchers, the optimization problem is exponen-

tial in the number of searchers but this complexity can be

reduced through implicit coordination [16]. Searchers who

only communicate occasionally can fuse their beliefs of a

target’s location to obtain a better combined belief when they

meet [17].

As a target’s behavior can have a significant effect on

the searcher’s strategy, approaches generally assume that the

target’s behavior is known. If its behavior is unknown, a

hybrid approach such as the rendezvous-evasion can be used

[18]. To the best of our knowledge no approaches exist

for the combination of cooperative rendezvous and target

tracking.

B. Notation

We will rely heavily on linear algebraic objects including

scalars, vectors, covectors, matrices, and tensors. Note that

all of objects can be described in a uniform way as tensors.

Any tensor space can be described as the tensor product

of vector spaces and their duals, covector spaces. V1 ⊗ V2

denotes the tensor product of (co)vector spaces V1 and V2.

V ∗ represents the dual vector space of V . We will write

tensors using the Einstein summation notation which implies

summation over pairs of superscripts and subscripts.

In this paper, (0, 0)-Tensors (i.e. scalars) are denoted by

lower case (non-bold) characters. (1, 0)-Tensors (i.e. vectors)

are denoted by lower case bold characters with subscripts

for basis vectors. (0, 1)-Tensors (i.e. covectors) are denoted

by lower case bold characters with superscripts for basis

covectors. (1, 1)-Tensors (i.e. matrices) are denoted by upper

case bold characters. Scalars, vectors, and matrices are all

written in an italic font. Higher order tensors are also denoted

by upper case bold characters, but they use an upright font.

Sets related to graph theory are denoted by script characters.

II. MULTI-ROBOT COORDINATION WITH

INTERMITTENT COMMUNICATION

A. Environment model

Consider a team of p robots moving in a known undirected

graph Ge = (V, Ee) with |V| = ne. This graph can be

constructed using an exact or approximate cellular decompo-

sition [19]. Let Ae ∈ Hom(Rne) be the adjacency matrix of

Ge where Hom(V) = V ⊗ V ∗ is the set of homomorphisms

(i.e. linear maps) on V . At time t ∈ Z≥0, the robots’

positions can be represented by an indicator matrix,

Q[t] = qvj [t]e
j
v ∈ R

ne ⊗ (Rp)∗

where R
ne ⊗ (Rp)∗ is the set of linear maps from R

p to R
ne

and ejv is a basis element which maps ej ∈ R
p to ev ∈ R

ne

and all other bases of R
p to 0 ∈ R

ne . The components of

Q[t] are defined as

qvj [t] =

{
1 if robot j is at vertex v at time t

0 otherwise.

As each robot is only located at one vertex, 1 appears exactly

once in each column. Therefore Q⊤[t]Q[t] = I ∈ Hom(Rp)
and so Q⊤[t] is a left inverse for Q[t].

B. Communication model

Two identical robots may or may not be able to communi-

cate depending on where they are located in the environment.

Their ability to communicate depends on their distance from

each other and any obstacles between them [20]. We use a

second graph Gc = (V, Ec) to describe when robots can com-

municate. This graph is based on the cellular decomposition

of the environment and shares the same vertex set, V , with

Ge. Its edge set, Ec, contains an edge (v1, v2) if and only if a

robot located at v1 can communicate with a robot located at

v2. This topological definition of communication can be used

to represent many different types of communication such as

line-of-site, distance limited, and full communication.

At any time t, the ad-hoc network formed by the robots,

Gr, depends on the communication properties of the envi-

ronment and on the robot positions. Let Ac ∈ Hom(Rne)
and Ar ∈ Hom(Rp) be the adjacency matrices of Gc and

Gr. These adjacency matrices are related by

Ar[t] = Q⊤[t]AcQ[t].

We can easily check if the robots are connected by looking

at λ2, the second smallest eigenvalue of the Laplacian Lr[t]
which can be computed from Ar[t] [21].

C. Reconnection objective

When robots are disconnected, they will eventually need

to reconnect. Each robot has one or more target robots. Its

individual objective is to find a path which maximizes the

probability of reconnecting with at least one of its targets.

If multiple robots are connected, they can plan their paths

together to maximize the probability of finding one of their

targets while remaining connected to each other.

The team objective determines which targets each robot

has at a given time. This objective depends on what other

tasks the robots are completing. If the only task is to connect

all robots, each robot might have all disconnected robots

as targets. This approach may result in livelock which can

be avoided by using an asymmetric strategy where different

robots have different targets. The target graph is a directed

graph with one vertex per robot and an edge from robot i to

robot j if robot j is one of robot i’s targets. Livelock can be

avoided by using a target graph which is weakly connected,

has no directed cycles, and has exactly one sink vertex. Once

a robot has no more targets, it stops moving. This approach

guarantees eventual connectedness of the team of robots.

Other applications may not require all robots to be search-

ing simultaneously. For example, in coverage, each robot is

assigned a list of tasks that it must complete independently.

As realistic tasks take variable times, some robots will

finish their tasks sooner than others. When a robot still has

tasks to complete, its objective is its own tasks but it may

communicate with other robots which happen to be nearby.

After it has finished its own tasks, a robot can be assigned all

disconnected robots as targets. Similarly, in monitoring tasks,

robots do not have targets while they are gathering data; once

a robot has gathered enough data, it can choose any robots

it wants share those data with as targets. As this paper is

not concerned with a specific application, we consider the

general problem where each individual robot can have any

set of targets.

III. ESTIMATION OF OTHER ROBOTS’ POSITIONS

Robots search for disconnected robots by following the

path which maximizes the probability of finding at least one

of their targets. This probability is computed from the belief

of the other robots’ position which is based on a model of a

target’s motion. This approach is general enough to account

for the robots moving and performing tasks at variable speeds

and stopping for indeterminate amounts of time.

Ge

=⇒

Ga

Fig. 1. Comparison of a graph, Ge, (left) and its augmented graph, Ga

(right)

A. Augmented graph

The probabilistic motion model we are using is based

on a cellular decomposition of the continuous real-world

environment. Each vertex of Ge represents a discrete region

of this environment. The edges describe which regions a

robot can move between. This graph does not, however,

provide a way to indicate that a robot is currently traveling

between two regions.

To explicitly allow for states representing travel, we create

a new graph with extra vertices. This augmented graph,

Ga = (Va, Ea), is directed and is obtained from Ge by

replacing each edge with two vertices and four directed

edges (Figure 1). Each new vertex represents one direction

of motion along the original edge. The augmented graph is

a larger graph. If the environment graph, Ge has ne vertices

and Ne edges, the augmented graph, Ga has na = ne +2Ne

vertices and Na = 4Ne edges. For an arbitrary environment

graph, there may be as many as
ne(ne−1)

2 edges; however

cellular decompositions generally result in planar graphs.

Euler’s characteristic relates the number of faces, edges, and

vertices of a convex polyhedron and can be used to establish

that Ne ≤ 3ne − 6 for planar graphs with n ≥ 3 [22].

Alternatively, if a decomposition results in a graph whose

vertices have maximum degree D which does not depend

on ne, then Ne ≤ D
2 ne. In both cases, Ne is O(ne) so na

is also O(ne) and the complexity of the algorithm does not

increase when using Ga instead of Ge.

B. Semi-Markov motion model

A semi-Markov process is characterized by a sequence of

states q1, q2, · · · ∈ Va and transition times s1 ≤ s2 ≤ · · · ∈ T

where Va is a finite set of states and T is a set of possible

transition times (usually Z≥0 or R≥0). During the interval

[si, si+1), the system is in state qi. At time si+1, the system

changes to state qi+1. Semi-Markov processes are related to

Markov processes as the sequence of states, q(s1), q(s2), . . .
is Markov. The advantage of using a semi-Markov model

instead of a Markov model as was done in [16], is that it

allows us to explicitly model variable task and transit times.

The time between transitions follows a distribution that only

depends on the current state. The state and time transition

distributions can be described by

µv1
(v2) = P(qi+1 = v2 | qi = v1) (1)

γv(∆t) = P(si+1 = t+∆t | si = t ∧ qi = v)

where µv1(v2) is the probability that the robot’s next state

is v2 given that its current state is v1 and γv(∆t) is the

probability that the next transition will happen once ∆t time

has passed.

The probability that a transition occurs between si+a and

si+ b is
∫ b

a
γv(dt). At si+∆t1, the probability that the next

transition will occur before si +∆t2 is

δv,∆t1(∆t2) =

∫∆t2

∆t1
γv(dt)∫∞

∆t1
γv(dt)

. (2)

Using µ and δ, we can update probability distributions using

the semi-Markov model.

We consider a discrete-time semi-Markov model with a

maximum holding time, ∆t = T . The state of any robot can

be described by a pair, (v,∆t) ∈ Va × {1, . . . , T}, which

completely determines its transition probabilities. Its position

is v and the time since its last transition is ∆t.

Suppose robot i is estimating the states of all other robots.

The belief of a single robot’s state is a probability distribution

over Va×{1, . . . , T}, which can be stored as a (2, 0)-tensor

in R
na ⊗ R

T . We aggregate all these distributions into a

(2, 1)-tensor, Q̂ ∈ R
na ⊗ R

T ⊗ (Rp)∗. Robot i’s belief of

robot j’s position is a slice, Q̂ej , of this tensor where ej ∈
R

p is the jth basis vector of Rp. This tensor can be expressed

in coordinates as

Q̂ = q
v,∆t
j ev ⊗ e∆t ⊗ ej

where ev , e∆t, and ej are basis (co)vectors for R
na , RT ,

and (Rp)∗. The coefficient is the probability that robot j has

been at vertex v for time ∆t and is defined as

q
v,∆t
j = P(q(j, t) = v ∧ s(j, t) = t−∆t | Ii[t])

where q(j, t) is the position of robot j at time t, s(j, t) is its

most recent transition time, and Ii[t] is robot i’s information

at time t.

As time progresses, robot i should update Q̂. To update

Q̂, we need an endomorphism on the space of (2, 1)-tensors.

This endomorphism is a (2, 2)-tensor F ∈ Hom(Rna ⊗R
T)

which encodes all the transitions of the semi-Markov model.

When F is multiplied by Q̂, the resulting product is a (2, 1)-
tensor. This idea is analogous to how an na × na matrix (a

(1, 1)-tensor) is a linear map from R
na to R

na but can also

be used as a map from R
na×p to R

na×p (which are also

(1, 1)-tensor spaces). It can be expressed as

F = f
v2,∆t2
v1,∆t1

ev2 ⊗ e∆t2 ⊗ ev1 ⊗ e∆t1

where

f
v2,∆t2
v1,∆t1

= P
(
q(· , t+ 1) = v2 ∧ s(· , t+ 1) = t+ 1−∆t2∣∣q(· , t) = v1 ∧ s(· , t) = t−∆t1

)
.

F can be constructed from the (1, 1)-tensors M = mv2
v1
ev1⊗

ev2 ∈ Hom(Rna) which encodes the Markovian state tran-

sition probabilities and D(v) = d∆t2
∆t1

(v)e∆t1 ⊗ e∆t2 ∈
Hom(RT) which encodes the distribution for the holding

time at vertex v. The coefficients for these tensors are

mv2

v1
= P(q(· , t+ 1) = v2 | q(· , t) = v1)

d∆t2
∆t1

(v) = P
(
s(· , t+ 1) = t+ 1−∆t2

|s(· , t) = t−∆t1 ∧ q(· , t) = v
)

which are related to the µ’s and δ’s defined in (1) and (2).

Trivially, mv2
v1

= µv1
(v2). There are two cases to consider to

understand how d relates to δ:

1) If a transition occurs at t, then ∆t2 = 1 and the previous

position must have had a holding time of ∆t1. Therefore

the transition probability is

d1∆t1
(v) = δv,∆t1(∆t1). (3)

2) If a transition does not occur at t, then ∆t2 = ∆t1+1.

As all other possible values of ∆t2 have a probability

of 0 and d1∆t1
(v) + d∆t1+1

∆t1
(v) = 1 so

d∆t1+1
∆t1

(v) = 1− δv,∆t1(∆t1). (4)

Therefore D(v) depends only on δv,1(1), . . . , δv,T (T) which

we will refer to as d1, . . . , dT . Then

D(v) =

d1 d2 d3 . . . dT
1− d1 0 0 . . . 0

0 1− d2 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1− dT−1 0

. (5)

The top row of D(v) represents transitions and the bottom

T − 1 rows represent holds. We can obtain the matrices that

represent these two parts by left multiplication with

Et = e11 and Eh =

T∑

∆t=2

e∆t
∆t.

Then EtD(v) has the same first row of D(v) and all other

rows are zero whereas EhD(v) is equal to the last T − 1
rows of D(v) with the first row equal to zero.

We can create (2, 2)-tensors which include information

on how the state changes by taking the tensor product of

EtD(v) and EhD(v) and tensors in Hom(Rna). When

transitions occur, we can use M ; when transitions do not

occur, we can use the identity tensor I ∈ Hom(Rna). As

D(v) depends on v, we must sum EtD(v) and EhD(v)
over all v ∈ Va. We take the tensor product with individual

columns of M which can be obtained by right multiplication

with E(v) = ev ⊗ ev . Then all transitions when the robot

moves can be described by

Ft =
∑

v∈Va

(ME(v))⊗ (EtD(v)) .

Similarly, all transitions when the robot stays still are de-

scribed by

Fh =
∑

v∈Va

(IE(v))⊗ (EhD(v)) .

The overall tensor is F = Ft+Fh. Robot i can use F and its

current belief to compute where it believes the other robot

will be at the next time step by

Q̂[t+ 1] = FQ̂[t]. (6)

As each slice of Q̂[t] is a probability tensor, its elements

sum to 1. The way that F is defined ensures that Q̂[t+ 1]’s
elements also sum to 1 so it is a valid probability tensor.

The semi-Markov model only depends on M and D(v),
as E(v), Et, and Eh are constant matrices that do not

depend on robot behavior. M is constructed using the

transition probabilities µv(w). D(v) is computed from (2),

(3), (4), and (5) and is completely determined by γv(∆t).
Therefore, the entire semi-Markov model can be created just

using µv(w) and γv(∆t), which characterize where a robot

will go after leaving v and how long it will stay at v.

The value of µv(w) is zero if (v, w) is not an edge of Ga.

The value of a non-zero µv(w) depends on the task that the

robots are performing. For example, in coverage, each robot

has a planned path and we use a large µv(w) if w follows v

in a path and a small µv(w) for other neighbors of v which

do not follow it on the path. These small values of µv(w)
represent the possibility that the robot changes its planned

path. Alternatively, if the robots are performing a repetitive

task, such as surveillance, historic path data will be available.

Then µv(w) equals the fraction of times where a robot at v

went to w next. The simplest model is µv(w) =
1

deg(v) for

every neighbor, w, of v which assumes a robot is equally

likely to move to any of its neighbors. While this model is

often unrealistic, by simply relying on its observations and

communication with other robots, it is possible to still have

good performance.

The values of γv(∆t) depend on the robot’s speed and the

decomposition of the environment. Each vertex corresponds

to a cell of the environmental decomposition which has a

defined geometry. We can use the cell diameter and robot

speed to compute minimum, mean, and maximum times for

the robot to traverse the cell. These values can be used to

construct a normal or uniform distribution of times that a

robot spends in one cell. If robots are performing specific

tasks at each vertex, γv(∆t) can be determined by the

distribution of times that the task at v takes.

If the searcher does not know if the target is cooperative

or neutral, (6) can be modified to account for this uncer-

tainty. As cooperative and neutral targets behave differently,

different semi-Markov models are needed for each behav-

ior. Suppose a robot behaves according to Fc when it is

cooperative and Fn when it is neutral. Then if a searcher

doesn’t know a target’s behavior, it can use the update

tensor, c[t]Fc + (1 − c[t])Fn where c[t] ∈ [0, 1] is the

searcher’s belief that the target is cooperative. As robots are

more likely to want to reconnect the longer they have been

disconnected, c[t] increases with time since the two robots

were most recently connected. This approach is similar to

the rendezvous-evasion approach of Alpern and Gal [18].

The semi-Markov model represents robot i’s belief about

how robot j moves; it does not need to reflect how robot j

actually moves. As long as the model accurately describes

ways that robot j could move, the resulting belief will

still be useful in the sense that robot i always has a non-

zero belief that robot j is in its actual position. For this

reason, it is possible to use a simple semi-Markov model

based only on robot j’s possible speeds and the topology

of the environment. The belief vector will also be updated

based on negative observations made by robot i which will

significantly improve its belief despite little knowledge of

how robot j decides where it will move.

C. Effects of observations

Two robots located at adjacent vertices in the commu-

nication graph Gc can communicate. Suppose that robot i

cannot communicate with robot j at time t. Then robot j

is not located at any of robot i’s neighbor vertices in Gc.

Therefore, all elements of Q̂iej corresponding to robot i’s

neighbors should be set to zero.

This update can be performed using R(v) ∈ Hom(Rna ⊗
R

T), a (2, 2)-tensor which sets elements corresponding to

vertices visible to v equal to zero. The observation tensor,

R(v) can be decomposed as R(v) ⊗ IT where R(v) ∈
Hom(Rna) is diagonal and IT ∈ Hom(RT) is the identity

matrix. The diagonal elements of R(v) are zero for neighbors

of v and one otherwise. Using R(v), the update law is

Q̂j [t+ 1] = ηR(qi[t+ 1])FQ̂j [t], (7)

where η is a normalization term.

If multiple searchers can communicate, they can share

information about where another robot is not presently

located. Then they can update their probability tensors using

(7) with R(v) replaced by the product of each connected

robot’s observation tensor.

D. Combining beliefs

When robots become connected, they can combine their

belief of another robot’s position into a shared, more accurate

belief. The shared belief will then be based on both robots’

most recent observations of the third robot and of vacant lo-

cations that they have seen since. To combine beliefs, robots

will need to send their versions of Q̂ across the network. A

conservative method of combining multiple distributions into

a more accurate one is to take the element-wise minimum

of the distributions [17]. While this approach has some nice

properties, simply using the minimum ignores information

from all but one of the distributions.

Suppose robots i and k both have belief of qj which we

denote by P(qj | Ii) and P(qj | Ik). Using these beliefs,

when the robots communicate, they would like to compute

P(qj | Ii, Ik). As the robots were not previously connected,

they did not iteratively compute P(qj | Ii, Ik) using (7) and

must compute it using only their existing beliefs P(qj , Ii)
and P(qj , Ik). Using Bayes’ theorem, we can write the

conditional probability as

P(qj | Ii, Ik) =
P(Ik | qj , Ii)P(qj | Ii)

P(Ik | Ii)
(8)

=
P(Ii | qj , Ik)P(qj | Ik)

P(Ii | Ik)
. (9)

Multiplying (8) by (9) and taking the square root yields

P(qj | Ii, Ik) = ηj,i,k

√
P(qj | Ii)P(qj | Ik)

where

ηj,i,k =

√
P(Ik | qj , Ii)P(Ii | qj , Ik)

P(Ik | Ii)P(Ii | Ik)
.

The denominator of ηj,i,k is a normalization term because it

does not depend on qj . The terms in the numerator of ηj,i,k
are the probabilities that one robot wouldn’t have seen the

target given the target’s current position and the fact that the

other robot has also not seen the target. We will assume that

there is a similarly probability of not observing the target

for any position in the environment and therefore ηj,i,k is

approximately constant.

Under this assumption, we will therefore use the element-

wise geometric mean of two distributions as their fused

distribution:

merge
(
Q̂i, Q̂k

)
∝

√
Q̂i ◦ Q̂k

where ◦ denotes the element-wise product. This operation

can be generalized to merging M ≥ 2 distributions by

multiplying them all together element-wise and then taking

the M th root. Similar to the element-wise minimum merge

operation [17], this merge operation has the properties that

merge(A,B) is 0 at a vertex if and only if A or B was 0 at

that vertex and that merge(A,A) = A. Furthermore, it uses

information from all distributions which results in a more

accurate merged distribution.

IV. OPTIMAL SEARCH TRAJECTORIES

When a robot decides it needs to find another robot, it

can use its position belief tensor, Q̂, to plan an optimal

path for reconnection. This path is the one which maximizes

the probability of connecting with a target over a prediction

horizon, Tp. Let P(v0, Tp) be the set of paths starting at v0
with length Tp. The optimal path is

p∗ = argmax
p∈P(v0,Tp)

{P(c(0, Tp) = 1 | p, Q̂i)}

where c : N × N → {0, 1} is an indicator with c(a, b) = 1
if the searcher and one of its targets are connected at some

t ∈ {a, . . . , b} and 0 otherwise. Once the robot computes

p∗, it implements the first move of p∗ and then computes a

new optimal path. As it is not always possible to find a path

that is guaranteed to find a target during the time horizon,

p∗ may have P(c(0, Tp) = 1 | p, Q̂i) < 1.

A. One searcher and one target

Suppose there is one searcher and one target, robot j.

Ct(p) is the probability that the target and searcher will be

connected at some point given the searcher’s belief of the

target’s position and its planned path p. A related function,

C ′
t(p) = 1 − Ct(p), is the probability that the searcher and

target are never connected.

The searcher’s belief of the target’s state at t = 0 is

q̂0 = Q̂iej . Let S∗ ∈ (Rna ⊗ R
T) be the (0, 2)-tensor

consisting entirely of ones. This tensor sums the elements

of a (2, 0)-tensor such as Q̂iej . As q̂0 is a probability

distribution, S∗q̂0 = 1. Moreover, at t = 0 the searcher

and target are guaranteed to be disconnected so C ′
0(p) = 1.

At t = 1, the searcher’s belief of the target’s new position

is Fq̂0. Its (v,∆t)th element is the probability that the target

will be in state (v,∆t). Let R(v1) be the observation tensor

at v1, the first vertex of p. If the target is visible from v1,

multiplication by R(v1) will set the corresponding element

of Fq̂0 to zero. Therefore, the (v,∆t)th element of q̂1 =
R(v1)Fq̂0 is the probability that the target will be in state

(v,∆t) and the target and searcher will be disconnected. By

summing over all states, the probability that the target and

searcher have never been connected is

C ′
1(p) = S∗q̂1.

Continuing in this way, the elements of q̂2 = R(v2)Fq̂1 are

the probability that the target is in a given state and has not

been connected up to t = 2. Summing over all states again,

we obtain C ′
2(p) = S∗q̂2. By induction, we can conclude that

C ′
t(p) = S∗q̂t where q̂t = R(vt)Fq̂t−1 and q̂0 = Q̂iej .

Rewriting this cost function, the cost of any path can be

computed as

CTp
(p) = 1− SFpQ̂i(0)ej (10)

where Fp =
[
R(vTp

)F
]
× · · · × [R(v2)F] [R(v1)F]. Note

that Fp is independent of Q̂i and only depends on p.

B. One searcher and multiple targets

If one searcher has several targets in the set Rt, the goal is

to maximize the probability of connecting with at least one

target. The probability of not connecting with a particular

target j ∈ Rt is

C ′
Tp,j

(p) = SFpQ̂i(0)ej .

The probability of not connecting with any targets in j is∏
j∈Rt

C ′
Tp,j

(p). The probability of connecting with at least

one target is

CTp
(p) = 1−

∏

j∈R

(SFp)
(
Q̂i(0)ej

)
.

Solving this function does not require significantly more

computation than (10). The most expensive step is the

computation of SFp which involves multiplying many (2, 2)-
tensors together. As SFp only depends on the path, it only

needs to be computed once. After computing SFp, it can

be multiplied by Q̂i(0)ej for each target robot, which is

faster as we are multiplying a (0, 2)-tensor by a (2, 0)-tensor.

As these computations are cheaper than computing SFp, the

overall complexity does not increase.

C. Multiple searchers

If multiple robots are cooperatively searching for the same

targets, the searchers stay connected and plan their paths to

maximize the collective probability of finding their target.

These searchers are searching for the tuple of paths, p∗ which

optimizes the probability that the team finds one of its targets

subject to a connectivity constraint. This optimization can be

performed by a single robot which plans all of the paths and

communicates the optimal paths to the other robots or using

a distributed optimization approach.

To account for observations from multiple robots, F p must

be defined with
∏

R(vt,i), where vt,i is the tth vertex of

robot i’s path, replacing the single R(vt) that defines F p.

The probability of finding a robot in the set of targets, Rt,

when the searchers execute a tuple of paths, p, is

CTp
(p) = 1−

∏

j∈Rt

(SFp)
(
Q̂c(0)ej

)
. (11)

The optimal tuple of paths maximizes CTp
subject to the

constraint that the searchers remain connected during the

entire search. At any time, we can check for connectivity

by computing

Λ2(p) =

Tp∏

i=1

λ2(p, t) (12)

where λ2(p, t) is the second smallest eigenvalue of the

Laplacian of the ad-hoc network formed by the searchers

at time t if they execute paths p. To ensure connectivity at

all times, we need Λ2(p) > 0.

Using (11) and (12), the optimal tuple of paths is:

p∗ = argmax
p∈P(Rs,Tp)

{
CTp

(p)
∣∣Λ2(p) > 0

}
.

Once we have found p∗, each searcher should implement the

first move of its path in p∗.

A brute force approach to optimizing this cost func-

tion would involve finding paths for kc robots which is

O(TpD
kcTp) and then evaluating Λ2(p) which is O(k3c) and

CTp
(p) which is O((n+2N)2T 3). The overall algorithm is

O(TpD
kcTp(k3c +(n+2N)2T 3)) which is exponential in the

number of connected robots and is generally not feasible for

more than 2 connected robots.

The computation speed can be drastically improved using

a branch and bound technique. The paths of p are generated

iteratively and grow longer as new vertices are added to the

shortest path. Once all robots have been assigned a vertex

at a time step, the connectivity of the network at that time

can be checked to see if that tuple of partial path is valid.

If the network is not connected, all paths beginning with

that partial path are not valid. By deleting the disconnected

tuple of partial path, none of these tuples of paths will

be considered. This approach bounds the number of paths

as branching happens, drastically reducing the number of

paths that CTp
(p) has to be calculated for. In general, the

team of robots stays close together, resulting in a connected

component which follows a single robot while maintaining

one of a few relative configurations. With this modification,

the number of connected paths for multiple robots is of the

same order as the number of paths for a single robot so the

algorithm is O(TpD
Tp(k3c + (n+ 2N)2T 3)).

V. COMPARISON WITH OTHER APPROACHES

The reconnection algorithm described in this paper can

be used to reconnect robots who are performing a variety

of tasks, such as search, coverage, surveillance, or delivery.

The approach is general in the sense that it can be used

with different types of robot motion as long as a model is

available. As this paper is not about a specific application,

we have applied the reconnection algorithm to the simple

problem of establishing a connected ad-hoc wireless network

in a team of robots that are initially disconnected.

The overall team objective is to create a connected network

containing all the robots as quickly as possible. A single

robot’s objective is to search for any disconnected robot.

If a robot’s connected component contains more than one

robot, they plan their paths cooperatively with the constraint

of maintaining connectivity in that connected component.

By planning cooperatively, the robots in the connected

component can spread out as much as the connectivity

constraint allows to improve their probability of finding

another connected component instead of following exactly

the same path. As robots stay together once connected, all

robots will eventually be connected achieving the overall

objective.

In this example, all robots search for each other simultane-

ously and choose their next vertex based on their own belief

of other robots’ positions. The semi-Markov motion model

represents the searcher’s belief of where its target will move.

As the searcher does not have access to its target’s belief of

other robots’ positions, we use a semi-Markov model with

broad distributions which is still useful for any belief vector.

In this simple model, the searchers believe that their target

robot has equal probability to move to any of its neighboring

vertices and takes a time uniformly chosen between 50%

and 150% of the edge’s travel time which is proportional

to its length. This model is valid in the sense that each

robot always has a non-zero belief that any other robot is

in its actual position. When combined with the effect of

observations, this model results in acceptable performance

despite its simplicity.

As this exact problem has not been considered in the

literature, we compared our approach against two simple

approaches:

1) Random: robots randomly choose to move to one of

their neighbor vertices whenever they are able to move.

Once two robots find each other, these choices are

constrained to ensure connectivity.

2) Persistent: robots randomly choose between neighbor

vertices which have not been visited recently which

causes the robots to move quickly through the envi-

ronment to new locations.

In each approach all robots are searching for each other

simultaneously and implement identical algorithms. Each

approach was evaluated using 50 simulations of 2, 3, 4, and

5 robots.

In each simulation, the environment had 150 vertices and

was randomly generated (Figure 2). The robots started far

apart with the first four robots placed in different corners of

the environment and the fifth placed in the center.

The robots know all other robots’ starting locations but

move randomly for the first 50 time steps so that they do not

have exact knowledge of each others’ positions when they

Fig. 2. Examples of randomly generated environments and robot starting
locations.

2 3 4 5
0

500

1,000

1,500

2,000

2,500

Number of robots

T
im

e

Random

Persistent

Semi-markov

Fig. 3. Completion times and means for re-establishing communication
using random (red), persistent (blue), and semi-Markov based (black)
searches. Individual reconnection times are shown by small dots. Mean
reconnection times are shown by large dots with 95% confidence intervals
indicated using error bars.

begin searching and must rely on their belief. After this initial

random motion, all robots start searching and use a time

horizon of 12 time steps to compute their paths. In all cases,

communication is limited to nearby vertices with robots only

able to communicate if they are at adjacent vertices.

To compare the results, we computed the average time

taken for the entire network to be connected for each

algorithm and number of robots (Figure 3). For each number

of robots, the completion times are much faster for the

semi-Markov based search than for either of the other two

searches. Using a Welch’s t-test, we reject the hypotheses

that the mean reconnection times for different algorithms are

equal at the 99% confidence level (Table I). Therefore, the

semi-Markov search presented in this paper is more effective

at reconnecting a team of mobile robots than the random or

persistent searches.

The accompanying video shows animations of the fastest,

median, and slowest trials for 5 robots re-establishing com-

munication using this algorithm [23]. In these animations,

translucent circles represent the probability distributions for

the red robot’s belief of other robots’ positions. The size of

the circle corresponds to the red robot’s belief that the robot

of the corresponding color is located at that vertex.

TABLE I

WELCH’S t-TEST RESULTS FOR THE HYPOTHESIS THAT THE MEAN

COMPLETION TIME FOR SEMI-MARKOV BASED SEARCH IS EQUAL TO

THE MEANS FOR THE RANDOM AND PERSISTENT SEARCHES.

p P(µr = µs) P(µp = µs)

2 1.63× 10−13 7.68× 10−9

3 1.84× 10−11 7.57× 10−6

4 2.06× 10−10 6.17× 10−8

5 5.65× 10−8 1.44× 10−7

VI. CONCLUSIONS

When robots cannot communicate over long ranges, a

team of robots may need to split up into multiple smaller

disconnected teams while completing their tasks. If the tasks

take variable lengths of time, it can be difficult to plan a

rendezvous time and place when they separate. Instead, they

can simply search for each other when they have information

to share and need to communicate.

In this paper, we presented an algorithm that disconnected

robots can use to find each other without making an explicit

plan for reconnection. Robots update their belief of the

positions of disconnected robots using a semi-Markov model

which incorporates variable task and transit times into a

Markov model. When two robots encounter each other, they

can update their beliefs of a third robot’s state using a merg-

ing algorithm that is based on an element-wise geometric

mean. Using the belief of a disconnected robot’s position,

small teams of robots can search for their target by solving

a constrained optimization problem. The objective function

is the probability that they will find their target and the

constraints ensure the team of searchers remains connected

during the search. A branch and bound technique is used

to reduce the computational complexity of the optimization

problem and ensure that the problem is tractable for teams

of multiple robots.

We compared our approach with two other algorithms—

a random search and a persistent search—for reconnecting

teams of 2, 3, 4, and 5 robots. In these simulations the

robots’ only objective was to establish a connected ad-hoc

network amongst all the robots. Our approach had better

average reconnection times than the other two approaches

at the 99% confidence level. It can therefore be used as a

component of other multi-robot algorithms where the robots

are not necessarily connected all the time.

REFERENCES

[1] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of
communication signal strength in robotic networks,” in International

Conference on Robotics and Automation (ICRA). IEEE, 2010, pp.
1946–1951.

[2] E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management
in mobile robot teams,” in International Conference on Robotics and

Automation (ICRA). IEEE, 2008, pp. 1525–1530.
[3] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed

control of multirobot systems with global connectivity maintenance,”
IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.

[4] M. C. De Gennaro and A. Jadbabaie, “Decentralized control of
connectivity for multi-agent systems,” in 45th Conference on Decision

and Control (CDC). IEEE, 2006, pp. 3628–3633.

[5] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient bous-
trophedon multi-robot coverage: An algorithmic approach,” Annals of

Mathematics and Artificial Intelligence, vol. 52, no. 2, pp. 109–142,
2008.

[6] Y. Pei, M. W. Mutka, and N. Xi, “Coordinated multi-robot real-
time exploration with connectivity and bandwidth awareness,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2010, pp. 5460–5465.

[7] G. A. Hollinger and S. Singh, “Multirobot coordination with peri-
odic connectivity: Theory and experiments,” IEEE Transactions on

Robotics, vol. 28, no. 4, pp. 967–973, 2012.
[8] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity

control of mobile robot networks,” IEEE Transactions on Automatic

Control, vol. 62, no. 7, pp. 3109–3121, 2017.
[9] E. J. Anderson and R. Weber, “The rendezvous problem on discrete

locations,” Journal of Applied Probability, vol. 27, no. 04, pp. 839–
851, 1990.

[10] A. Dessmark, P. Fraigniaud, and A. Pelc, “Deterministic rendezvous
in graphs,” in European Symposium on Algorithms. Springer, 2003,
pp. 184–195.

[11] J. Chalopin, S. Das, and P. Widmayer, “Deterministic symmetric
rendezvous in arbitrary graphs: Overcoming anonymity, failures and
uncertainty,” in Search Theory. Springer, 2013, pp. 175–195.

[12] G. Dudek and N. Roy, “Multi-robot rendezvous in unknown envi-
ronments, or, what to do when you’re lost at the zoo,” in National

Conference Workshop on Online Search. AAAI, 1997.
[13] H. Lau, S. Huang, and G. Dissanayake, “Optimal search for multi-

ple targets in a built environment,” in International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2005, pp. 3740–3745.
[14] A. Jotshi and R. Batta, “Search for an immobile entity on a network,”

European Journal of Operational Research, vol. 191, no. 2, pp. 347–
359, 2008.

[15] H. Lau, S. Huang, and G. Dissanayake, “Probabilistic search for a
moving target in an indoor environment,” in International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2006, pp. 3393–
3398.

[16] G. A. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient
multi-robot search for a moving target,” The International Journal of

Robotics Research, vol. 28, no. 2, pp. 201–219, 2009.
[17] G. A. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. S. Sukhatme,

“Distributed data fusion for multirobot search,” IEEE Transactions on

Robotics, vol. 31, no. 1, pp. 55–66, 2015.
[18] S. Alpern and S. Gal, “Searching for an agent who may or may not

want to be found,” Operations Research, vol. 50, no. 2, pp. 311–323,
2002.

[19] H. Choset, “Coverage for robotics–a survey of recent results,” Annals

of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[20] Y. Mostofi, A. Gonzalez-Ruiz, A. Gaffarkhah, and D. Li, “Character-
ization and modeling of wireless channels for networked robotic and
control systems-a comprehensive overview,” in International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2009, pp.
4849–4854.

[21] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-

matical Journal, vol. 23, no. 2, pp. 298–305, 1973.
[22] T. Nishizeki and N. Chiba, Planar graphs: Theory and algorithms.

Elsevier, 1988, vol. 32.
[23] I. Vandermeulen, “Establishing connection between dis-

connected robots using a semi-markov model,” Jul 2018,
doi:10.6084/m9.figshare.6854981.

http://dx.doi.org/10.6084/m9.figshare.6854981

	INTRODUCTION
	Related work
	Notation

	MULTI-ROBOT COORDINATION WITH INTERMITTENT COMMUNICATION
	Environment model
	Communication model
	Reconnection objective

	ESTIMATION OF OTHER ROBOTS' POSITIONS
	Augmented graph
	Semi-Markov motion model
	Effects of observations
	Combining beliefs

	OPTIMAL SEARCH TRAJECTORIES
	One searcher and one target
	One searcher and multiple targets
	Multiple searchers

	COMPARISON WITH OTHER APPROACHES
	CONCLUSIONS
	References

