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Food processing and its impact on phenolic
constituents in food
Idolo Ifie1,2 and Lisa J. Marshall1*

Abstract: Most food processing techniques involve a sequence of operations
bringing about the desired changes in the raw material, with each operation having
its impact on the food constituents. For bioactive compounds (phenolics) to exert
their positive health effect, they first have to withstand food processing conditions,
be released from the food matrix and be bioaccessible in the gastrointestinal tract,
undergo metabolism and reach the target tissue of interest. Because of their
possible biological effects in humans, it is necessary that changes in phenolic
compounds during processing should be evaluated to assess the dietary value of
the processed products. Data on the effect of processing on phenolic compounds
show that food processing plays a significant role in the bioaccessibility and bioa-
vailability of polyphenols. Consequently, food processing research should be tailored
towards optimisation of processing methods that have the potential of retaining,
releasing or at best transforming these compounds into more bioavailable forms.
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1. Introduction
Food processing can be defined as the methods and techniques employed to convert raw ingre-
dients into food or to transform food into other forms fit for consumption by humans or animals
either in the home or by the food industry.

The broad objectives of food processing are as follows: To extend the shelf life or the duration of
time in which the food is deemed to be wholesome, free of biochemical and microbiological
spoilage and nutritious to consumers; To make more bioaccessible nutrients required for health;
To spice-up the diet by introducing variety to the organoleptic properties (colour, texture, aroma
and flavour) of foods; To restore and/or raise nutrient levels in food; and To make a profit for food
companies and provide employment. Most food processing techniques involve a sequence of
operations to bring about the desired change in the raw material. Furthermore, each unit operation
has its own particular effect on the food constituents (nutrients, phytochemicals and organoleptic
properties), and the final product quality is determined by the combination of the effects from
each operation (Fellows, 2009). Bioactive compounds have to endure the impact of food proces-
sing, become bioaccessible in the gastrointestinal tract, and be metabolised into different forms
before being transported to the target tissue. Consequently, the role that food processing has on
plant bioactives is important, as it represents the first step in the challenging journey of bioactive
compounds reaching the target tissues. In addition, because of their possible biological effects in
humans, it is necessary that the changes in phenolic compounds during processing should be
evaluated to better assess the dietary value of the processed products (Skrede, Wrolstad, & Durst,
2000). In the light of the above-mentioned reasons, this review examines the existing data on the
impact of different processing techniques on phenolic compounds and for emphasis food sources
rich in these compounds are mentioned.

2. Phenolic compounds
Polyphenols constitute to one of the most common and widespread groups of substances in
flowering plants, occurring in all vegetative organs, as well as in flowers and fruits. They are
plant secondary metabolites engaged in the defence mechanism of plants against predators, UV
radiation, pathogens, oxidative stress and harsh climatic conditions (Ferrazzano et al., 2011). They
can be classified into the following groups, namely, hydroxybenzoic acids, hydroxycinnamic acids,
anthocyanins, proanthocyanidins, flavonols, flavones, flavanols, flavanones, isoflavones, stilbenes
and lignans (Manach et al., 2005) In the human body, polyphenols have been extensively reported
as possessing several biological properties such as anti-diabetic, anti-inflammatory, antihyperten-
sive and cardioprotective functions (Ganesan & Xu, 2017).

3. Effect of processing on phenolic compounds

3.1. Anthocyanins

3.1.1. Properties of anthocyanins
Anthocyanins are bioactive compounds that are present in fruits and vegetables. They differ with
respect to their anthocyanidin skeleton, type of sugars and potential aliphatic and aromatic acyl
moieties, and their substitution positions (Andersen & Jordheim, 2010). Although there are several
anthocyanidins occurring in nature (Table 1), the six most prevalent occurring in fruits and
vegetables are cyanidin 50%, pelargodinin 12%, peonidin 12%, delphinidin 12%, petunidin 12%
and malvidin 7%. Anthocyanindin stability is affected by the ring B substituents (Figure 1) and
additional methoxyl or hydroxyl groups attached to the B ring decreases its stability in neutral
media; this makes pelargodinin the most stable anthocyanidin. Glucose, galactose, rhamnose and
arabinose are the sugars mostly found, usually as 3-O-glycosides or 3,5-O-diglycosides. In addi-
tion, the presence of rutinosides (6-O-α-L-rhamnosyl-D-glucose), sambubiosides (β-D-xylosyl-
(1→2)-β-D-glucose), 3–7-diglycosides and 3-triosides do appear. Many anthocyanins are seen to
be acylated by aliphatic or aromatic acids, with the most frequent acyl groups being coumaric,
caffeic, ferulic, benzoic, synapic, malonic, acetic, succinic, oxalic and malic acids (Clifford, 2000).
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The most frequent acyl moiety occurring in about 25% of anthocyanins is malonic acid. The tertiary
structure adopted by anthocyanins in intact plant tissues offers them protection from nucleophilic
attack by water and produces the hyperchromic and bathochromic effects. However, once
detached from their primary environment and protection offered by co-pigmentation they become
unstable and breakdown easily.

3.1.2. Effect of processing on anthocyanins
The factors that influence its stability include the pH, oxygen, temperature, light, metal ions
enzymes and sugars (Clifford, 2000). With respect to pH, anthocyanins exist in four different
forms (Figure 2) depending on the pH. At pH 1, the flavylium cation (red colour) predominates
and is responsible for the purple red colours. When the pH is between 2 and 4, the quinoidal
blue species dominates. At pH 5 and 6, the colourless species which are the carbinolpseudo-
base and a chalcone exist together and when the pH is above 7, the anthocyanins degrade
depending on their substituent groups (Castañeda-Ovando, Pacheco-Hernández, Páez-
Hernández, Rodríguez, & Galán-Vidal, 2009). During processing operations like juice extrac-
tion, cutting and dicing, disruption of the cell arrangement occurs allowing for substrate and
the enzyme to mix together. In the process, enzyme hydrolysis occurs and the sugar at
position C3 is cleaved off, thereby exposing the resulting chalcone, which being unstable
breaks down to 2,4,6-trihydroxyphenylacetaldehyde and a benzoic acid. To slow down the
rate of the breakdown of the pigment, the enzyme can be inactivated by applying a mild
heating procedure known as blanching; this process has been shown to have a positive effect
on anthocyanin retention and stability (Skrede et al., 2000).

Figure 1. Flavonoid skeletal
carbon structure.

154

155

156

157

pH 6

pH 2
pH 3

pH 4pH 5

pH 1

Figure 2. Anthocyanins chemi-
cal form depending on pH and
degradation reaction for
anthocyanins. Where R1 = H or
a saccharide, R2 and R3 = H or
Methyl (Castañeda-Ovando
et al., 2009).
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Another factor that plays a major role in anthocyanin degradation either through direct oxida-
tive mechanism or through the action of polyphenol oxidases (PPO) is oxygen. Although the
anthocyanins are not substrates for PPO, those possessing a dihydroxyl B-group react with the
o-quinones derived from the oxidation of phenolic compounds by PPO to form brown condensation
products. The anthocyanins not having the dihydroxyl B-group form adducts with such quinones
(Clifford, 2000). The degradation products formed from these reactions are generally unstable and
degrade further to form colourless compounds. To overcome this, the addition of sulphur dioxide
as an antioxidant to fruits and vegetable is frequently employed as it has been reported to slow
down anthocyanin degradation (Bakker & Bridle, 1992). Thermal degradation of anthocyanins
during processing results in the production of different degradation products which vary according
to the heating temperature (Figure 3). The opening of the pyrylium ring and chalcone formation
has been suggested as the initial step for anthocyanin breakdown. In addition, the hydrolysis of
the sugar moiety and the aglycone probably due to the formation of cyclic adducts has also been
proposed as a possible initial mechanism for its degradation (Patras, Brunton, O’Donnell, & Tiwari,
2010). The terminal degradation products from the chalcone were identified to be phenolic acids
and phloroglucinaldehyde. The stability of anthocyanins can be enhanced by co-pigmentation. Co-
pigmentation is a phenomenon in which pigments and other non-coloured organic components
form molecular associations or complexes resulting in a brighter and more stable colour (Boulton,
2001). This occurrence is critical because colour remains a major quality criteria influencing
consumer acceptability of a product. Co-pigmentation and polymerisation reactions have been
reported to be responsible for the stability of wine colour.

3.2. Phenolic acids

3.2.1. Properties of phenolic acids
Hydroxybenzoic and hydroxycinnamic acid derivatives are major phenolic acids present in bound
form in plant cells where they play a vital role in plant defence, in the maturation processes and
development of fruit flavour quality (Fallico, Lanza, Maccarone, Asmundo, & Rapisarda, 1996). The
hydroxybenzoic acid derivatives are present as sugar derivatives and organic acids in plant foods
as well as present in lignins and hydrolysable tannins, while the trans-4-hydroxycinnamic acids (ρ-
coumaric, caffeic, ferulic and sinapic) occur in the form of esters and glycosides. Ellagic acid, ρ-
hydroxybenzoic and gallic acids have been reported to be the main phenolic acids present in the

Declycosylation
Cleavage

Declycosylation Cleavage

Pelargonidin-3-glucoside
Pelargonidin Protocatechuic acid

Cyanidin-3-glucoside acid Cyanidin-3-glucoside 4-hydroxybenzoic acid

Phloroglucinaldehyde

Figure 3. Proposed mechanism
for thermal degradation of
anthocyanins (modified from
Sadilova et al., 2007). The fig-
ure shows the hydrolysis of
sugar moiety and aglycone for-
mation as initial degradation
step possibly due to the forma-
tion of cyclic adducts which
later decomposes upon heating
into a chalcone structure, the
latter being further trans-
formed into a coumarin gluco-
side derivative with a loss of
the B-ring.
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berry (strawberry, raspberry and cloudberry) family Rosaceae (Häkkinen, Kärenlampi, Mykkänen,
Heinonen, & Törrönen, 2000; Veberic, Colaric, & Stampar, 2008). The main cinnamic compound
found in apples, pears and potatoes is chlorogenic acid (3-O-caffeoylquinic acid). In grapes,
caftaric acid (caffeoyltartaric) is most abundant, while ferulic acid esters are typical of citrus
fruit. For cereals, the most abundant hydroxycinnamic acid is ferulic acid and its oxidative pro-
ducts, diferulic acids, while other hydroxycinnamic acids (sinapic acid, ρ-coumaric acid and caffeic
acid) and benzoic acid derivatives also occur in small quantities in various grains and derived
products (Dao & Friedman, 1992; Fallico et al., 1996; Gallardo, Jiménez, & García-Conesa, 2006;
Nayak, Liu, & Tang, 2015).

3.2.2. Effect of processing on phenolic acids
The changes that occur in free and bound forms of phenolic acids during processing depends on
the type of fruit, vegetable, plant food and the processing technique employed (Nayak et al., 2015).
Furthermore, temperature, oxygen and enzymes are also major factors affecting the stability of
phenolic acids (Dewanto, Wu, Adom, & Liu, 2002). For instance, an increase in ellagic acid content
in strawberry fruit kept under modified atmosphere (5°C for 10 days) has been reported. The same
effect was also seen when strawberries were processed into puree juice and stored at 4°C
(Häkkinen et al., 2000; Oszmiański & Wojdyło, 2009). The increase in ellagic acid can be attributed
to the hydrolysis of ellagitannins during processing and ageing. In the same way, pressure cooking
of legumes resulted in improved bioaccessibility as the phenolic acids bound to the plant matrix
were released (Chen et al., 2015). Likewise, when orange juice were processed by pulsed electric
field and thermal pasteurisation, the contents of most of the phenolic acids in orange juice
increased with the exception of neoeriocitrin and syringic acid. (Agcam, Akyıldız, & Evrendilek,
2014). In addition, Morales-De La Pena, Salvia-Trujillo, Rojas-Graü, and Martín-Belloso (2011)
reported a similar trend and showed that after thermal processing or high intensity pulse electric
field treatment, the concentration of most of the individual phenolic acids (caffeic, coumaric and
ferulic) identified in the fruit juice-soya milk beverage increased except for sinapic and chlorogenic
acids. On the contrary, processing of blue berries into jams produced a 20% reduction in ellagic
acid levels, possibly due to the antioxidant activities of ellagic acid during the manufacturing
process (Häkkinen et al., 2000). Similarly, food processing involving heat has been shown to
decrease the chlorogenic acid content of potatoes. The decrease varied according to the type of
the heat applied, with oven-baked potatoes having the greatest reduction and microwaved-
treated retaining the highest amount (Dao & Friedman, 1992). The study also demonstrated that
the nature of heating influences final levels of chlorogenic acid and controlling processing tem-
peratures is critical in processing potato products. For ferulic acid esters, thermal processing and
storage of orange juice result in the hydrolysis of the esters and release of the free acids, which
may later undergo decarboxylation, leading to the formation of 4-vinyl guaiacol that imparts an
unpleasant odour to the final product. Subsequently, 4-vinyl guaiacol may undergo thermal
degradation to produce other phenolic compounds like vanillin, 4-ethyl or 4-methyl guaiacol
(Lee & Nagy, 1990). Therefore, monitoring the levels of these compounds is important from the
nutritional as well as organoleptic point of view.

In cereals, most of the phenolic acids occur in the bound form. However, during extrusion
processing of wheat, barley oat and rye (temperatures between 120–200°C), an increase of 200
to 300% in free forms of vanillic, syringic and ferulic acids was observed indicating that hydro-
thermal processing of cereal grains may release phenolic acids and their derivatives from the cell
wall (Zielinski, Kozlowska, & Lewczuk, 2001). In another separate study, the ferulic content in bread
supplemented with enzymatically treated bran was higher compared with native bran resulting in
increased bioaccessibility (Amaya Villalva et al., 2018). Bryngelsson, Dimberg, and Kamal-Eldin
(2002) demonstrated that autoclaving of oats increased the content of p-coumaric acid, vanillin
and ferulic acid but had a negative impact on caffeic acid.

Similarly during the fermentation of rye and wheat, increased levels of ferulic acid and other
phenolic acids were reported probably due to the activity of hydrolytic enzymes (Bhanja, Kumari, &
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Banerjee, 2009; Katina et al., 2007). Overall, processing tends to have both positive and detri-
mental effects on phenolic acids in foods depending on the plant matrix and the processing
method employed. Therefore, it is critical to determine not only optimal processing conditions
that extend the shelf life of products but also in addition reduce the degradation of bioactive
compounds present in them.

3.3. Flavonoids (flavonols flavan-3-ols, flavanone and isoflavones)

3.3.1. Properties of flavonols, flavan-3-ols, flavanone and isoflavones
Flavonols are flavones attached to a hydroxyl group at the 3-position (3-hydroxyflavones). They
are very common in higher plants and are mostly present in the leaves and outer parts of the
plant. Flavan-3-ols and their polymeric condensation products, the proanthocyanidins, are present
as ingredients in the formulation of beverages, whole and processed foods, and herbal supple-
ments. The food quality parameters most influenced by flavan-3-ols include the astringency and
bitterness. With respect to the isoflavonoids, the phenylchroman B-ring is linked to position three
instead of position two as in the other flavonoids (Corradini et al., 2011). Isoflavones are particu-
larly abundant in plants especially in soy beans, Glycine max (L.). In particular, soy may play a role
akin to phytoestrogens that bind to oestrogen receptors thereby interfering with the action of
oestrogen, which is an established risk factor for hormone-dependent cancers such as prostrate
and breast cancers (Ko et al., 2010).

3.3.2. Effect of processing on flavonols, flavanone, flavan-3-ols and isoflavones
There is growing evidence to support the cardioprotective effects of flavan-3-ols (present in tea
and cocoa), flavonols (quercetin found in onion and most leafy vegetables) and isoflavones,
present in soy (Curtis et al., 2012; Perez-Vizcaino & Duarte, 2010). However during processing,
these phenolic compounds undergo significant changes in their structure that may impact on their
biological activities. This is observed during black tea processing where catechins are acted upon
by the oxidative enzymes, polyphenol oxidase and peroxidase, to form theaflavins and thearubi-
gins during fermentation (Muthumani & Kumar, 2007). Furthermore, these oxidation products
along with catechin are responsible for the taste and astringent character of black tea. Similarly,
during the fermentation of cocoa beans, polyphenols undergo oxidation to condensed high
molecular weight insoluble tannins which results in decrease in both catechin and epicatechin
contents (Nazaruddin, Seng, Hassan, & Said, 2006; Wollgast & Anklam, 2000). The reverse occurs
during the roasting of cocoa bean where (-)-catechin levels increase when bean temperature
exceeds 70°C probably due to the epimerisation of (-)-epicatechin (Payne, Hurst, Miller, Rank, &
Stuart, 2010). Flavonols constitute an integral part of the human diet with onions and asparagus
being rich sources of quercetin 3, 4ʹ-O-diglucoside and quercetin 4ʹ-O-glucoside. The impact of
domestic processing (blanching, chopping, maceration and boiling) on flavonol content in onions
and asparagus was assessed: chopping caused a significant decrease in rutin content of asparagus
but did not affect the levels of quercetin 3,4ʹ-O-diglucoside and quercetin 4ʹ-O-glucoside in onions
(Makris & Rossiter, 2001). Boiling for 60 min produced the highest reduction in total flavonols,
indicating that the impact of thermal heating on flavonols in these plant sources cannot be
ignored. When broccoli was processed either by boiling or frying, the losses in quercetin derivatives
were similar, while steaming retained higher amount of quercetin derivatives (Rothwell et al.,
2015). The same authors also reported that with processed onions, irrespective of the processing
technique (boiling, frying, microwaving or blanching), reduction in quercetin was similar. On the
contrary, processing of tomatoes into juice and puree increased the levels of free quercetin in the
tomato-based products; this may be attributed to the hydrolysis of rutin and other quercetin
conjugates (Stewart et al., 2000). Similarly, there was no detrimental effect on the total flavanone
content or individual flavanone glycosides after treatment of oranges with pulse electric field
(Sánchez-Moreno et al., 2005). Furthermore, pasteurisation did not significantly affect the content
of flavanone-7-O-glycosides in citrus juices (Sentandreu, Navarro, & Sendra, 2007). For soy pro-
ducts, for example, defatted soy (minimal heat during processing), the major isoflavone present is
the malonylglucoside conjugates. When the processing temperature is increased to 100°C
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(manufacture of soy milk, tofu and soy molasses), the isoflavone β-glucosides are mostly present.
In the production of fermented soy foods (tempeh), the reduction of the malonylglucosides and
the concomitant increase of the unconjugated aglycones (genistein and daizein) are observed as
fermentation time increases (Barnes, Kirk, & Coward, 1994; Kwon, Daily Iii, Kim, & Park, 2010). In
conclusion, while heat processing produces diverse effects on these phenolic compounds, fermen-
tation does seem to have a positive effect in altering their structural composition, which in turn
may have an impact on the bioavailability and bioefficacy of these compounds.

4. Effect of processing on the bioavailability of phenolic compounds
The biological effects or bioefficacy of phenolic compounds is dependent on their bioavailability
once consumed (Rein et al., 2013; Scalbert & Williamson, 2000). The factors that play a major role
in the bioavailability of phenolic compounds include the concentration within the cell wall, varia-
tions in cell wall structure, location of glycosides in cells, molecular structure and the binding of
compounds within the food matrix (Parada & Aguilera, 2007). Most polyphenols present in food
substances occur as glycosides, esters or polymers which cannot be easily absorbed. Before
glycosylated polyphenols can be absorbed, it is necessary for the sugar moiety to be removed by
enzymes present in the gastrointestinal mucosa, or in the colonic microflora, or through food
processing (Scalbert & Williamson, 2000). The role food processing plays in altering the bioavail-
ability of glycosylated polyphenols is demonstrated in the manufacture of tomato puree, where
increased levels of free flavonols were reported due to hydrolysis and extraction from the food
matrix (Stewart et al., 2000). It has also been shown that absorption of flavonols is affected by the
attached sugars and the presence of fat, whereas epimerisation reactions occurring during pro-
cessing could affect the absorption of flavanols such as catechins (Scholz & Williamson, 2007).
Similarly, during fermentation of soy foods, the breakdown of glycosylated isoflavones by micro-
organisms into the aglycones may be beneficial, as it has been demonstrated that the isoflavone
aglycones of soymilk absorb more efficiently and in greater amounts than their glucosides in
humans (Kano, Takayanagi, Harada, Sawada, & Ishikawa, 2006). Furthermore, in cases where
polyphenols occur as esters bound to hemicellulose or as large molecular weight compounds
(proanthocyanidins or hydrolysable tannins), their bioavailability is reduced as these ester-linked
substitutions or polymerisation chain reactions have a marked effect on the biological properties of
the polyphenols (Scalbert & Williamson, 2000). Thermal processing might improve bioavailability
as observed in the release of ferulic acid during extrusion processing of cereal grains (Zielinski
et al., 2001), and in the breakdown of hydrolysable ellagitannins into ellagic acid during processing
of jam from strawberry (Häkkinen et al., 2000). Regarding the effect of processing on phenolic
compounds in vivo, there are a few authors who report this. For instance, the effect of the baking
process on the bioavailability of blueberry phenolic compounds (anthocyanins, procyanidins and
phenolic acids) was investigated after ingestion of a blueberry drink and a blueberry-baked
product; they found no difference in the bioavailability of overall phenolic compounds between
both products (Rodriguez-Mateos et al., 2014). In another separate study, cooking cherry tomato
provoked an increase in bioavailability of naringenin and caffeoylquinic acid (Bugianesi et al.,
2004). With respect to processing involving microorganism, the addition of α-amylase to extruded
sorghum improved procyanidin bioavailability in pigs (Gu, House, Rooney, & Prior, 2008). Similarly,
increased phenolic acids bioavailability and the production of 3-phenylpropionic acid, (end product
of the ferulic acid colonic metabolism) were observed after fermentation with hemicellulase
(xylanase), b-glucanase, a-amylase and ferulic acid esterase in wheat bran (Anson et al., 2011,
2009).

5. Future direction of food processing
Existing data on the effect of processing on phenolic compounds shows that food processing plays
a significant role when it comes to bioaccessibility and bioavailability of polyphenols. High tem-
perature processing which ensures food safety has both positive and detrimental effects on
phenolic compounds. The reviewed literature also suggests that if food processing is judiciously
applied, it can serve as a means of improving bioavailability of polyphenols through structural
modification or breakdown of the parent compound. Therefore, food processing research should be
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tailored towards optimisation of both thermal and non-thermal methods that have the potential of
retaining, releasing (bioaccessible) or at best transforming these compounds into more bioavail-
able forms.
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