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The structure of (theta, pyramid, 1-wheel, 3-wheel)-free graphs

Valerio Boncompagni ∗, Marko Radovanović † and Kristina Vušković ‡

August 4, 2018

Abstract

In this paper we study the class of graphs C defined by excluding the following structures as induced
subgraphs: thetas, pyramids, 1-wheels and 3-wheels. We describe the structure of graphs in C, and
we give a polynomial-time recognition algorithm for this class. We also prove that K4-free graphs in
C are 4-colorable. We remark that C includes the class of chordal graphs, as well as the class of line
graphs of triangle-free graphs.

Key words: structure, decomposition, clique cutsets, bisimplicial cutsets, 2-amalgams, recognition
algorithm, vertex coloring

AMS Classification (2010): 05C75, 05C85

1 Introduction

Throughout the paper all graphs are finite and simple. We say that a graph G contains a graph F , if
F is isomorphic to an induced subgraph of G, and it is F -free if it does not contain F . For a family of
graphs F we say that G is F-free if G is F -free for every F ∈ F . A hole in a graph is a chordless cycle
of length at least 4, and it is even or odd depending on the parity of its length.

In 1982 Truemper [18] gave a theorem that characterizes graphs whose edges can be labeled so that all
chordless cycles have prescribed parities. The characterization states that this can be done for a graph
G if an only if it can be done for all induced subgraphs of G that are of few specific types (depicted in
Figure 1, note that in all figures solid lines denote an edge and a dashed line denotes a chordless path
containing one or more edges), which we will call Truemper configurations, and will describe precisely
later. We observe that in Figure 1 we have depicted a wheel in which the center vertex has 4 neighbors
on the outer hole, but in general it can have any number of neighbors, greater than 2, on the outer hole.
Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite
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graphs that are signable to be balanced (i.e. bipartite graphs whose vertex-vertex adjacency matrices are
balanceable matrices, a class of matrices that have important polyhedral properties).

theta pyramid prism wheel K4

Figure 1: Truemper configurations and K4

The configurations that Truemper identified in his theorem later played an important role in understand-
ing the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable
matrices, perfect graphs, odd-hole-free and even-hole-free graphs (for a survey see [19]). All these classes
were studied using the decomposition method. In these decomposition theorems Truemper configurations
appear both as excluded structures that are convenient to work with, and as structures around which
the actual decomposition takes place.

In this paper we study the class C of (theta,pyramid, 1-wheel, 3-wheel)-free graphs, which we formally de-
fine in Section 1.2. Observe that this is a hereditary class of graphs defined by excluding only cyclic struc-
tures. This class contains all chordal graphs and all line graphs of triangle-free graphs (or equivalently,
(claw,diamond)-free graphs [10]). This class was first studied in [1] where it was shown that every graph
in C has a vertex whose neighborhood is a disjoint union of two (possibly empty) cliques, and furthermore
an ordering of such vertices can be found by LexBFS. A consequence of this is a linear-time algorithm
for the maximum weight clique problem on C, as well as a linear-time coloring algorithm that colors the
graph with at most 2ω(G) − 1 colors, where ω(G) denotes the size of the largest clique in G. Coloring
is NP-hard on line graphs of triangle-free graphs, and in fact it is NP-hard on (K4, claw,diamond)-free
graphs [11]. The complexity of the stable set problem on C is open, and in fact it is open even for the
subclass of K4-free graphs in C. On the other hand, stable set problem is polynomial-time solvable on line
graphs – one just computes the root graph using the linear algorithm from [13] and then uses Edmond’s
algorithm from [8] to find a maximal matching in the root graph.

In this paper we describe the structure of graphs in C, and as a consequence we obtain a series of
decomposition theorems that use cutsets that combine star cutsets and 2-joins in the simplest possible
ways. These theorems present a good setting for studying various problems, and in particular the stable
set problem restricted to the class C. Two much studied hereditary graph classes are even-hole-free
graphs and perfect graphs (see for example surveys [19] and [17]). The complexity of the stable set
problem on even-hole-free graphs is still not known, and also it is not known how to solve the stable
set problem in polynomial time for perfect graphs by a purely graph theoretic algorithm (it is known
that this problem can be solved in polynomial time for perfect graphs using the ellipsoid method [9]).
The known decomposition theorems for these classes use star cutsets and 2-joins, as well as different
generalizations of these. It is not clear how to make use of star cutsets for the stable set problem (and
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other problems), and therefore it would be of interest to understand how very structured star cutsets,
such as the ones used in this paper, behave in algorithms.

The paper is organized as follows. In Sections 1.1 and 1.2 we introduce the terminology and notation
that will be used throughout the paper. In Section 1.3 we give an overview of subclasses of C that
were studied in literature. In Section 1.4 we give an overview of the complexity of recognizing different
Truemper configurations, and in Section 2 we give two polynomial-time recognition algorithms for C. In
Section 1.5 we describe the structure of graphs in C, which we prove in Sections 3 and 4. In Section 5,
using the structure theorem for C, we prove that K4-free graphs in C are 4-colorable.

1.1 Terminology and notation

Let G be a graph. The vertex set of G is denoted by V (G). Sometimes, when clear from context, for
notational simplicity we will refer to V (G) with just G. For x ∈ V (G), N(x) is the set of all neighbors
of x in G, and N [x] = N(x) ∪ {x}. For S ⊆ V (G), G[S] denotes the subgraph of G induced by S,
G \ S = G[V (G) \ S], N(S) denotes the set of vertices in V (G) \ S with at least one neighbor in S, and
N [S] = N(S) ∪ S. Note that, if S is empty, then N(S) = N [S] = ∅.

Let A and B be two disjoint subsets of V (G). A is complete to B if every vertex of A is adjacent to
every vertex of B, and A is anticomplete to B if no vertex of A is adjacent to a vertex of B. Given a set
A ⊂ V (G) and a vertex u ∈ V (G) \A, we will also say that u is complete (resp. anticomplete) to A if it
is adjacent (resp. non-adjacent) to every vertex of A.

A path P is a sequence of distinct vertices x1, . . . , xk, k ≥ 1, such that xixi+1 is an edge for all 1 ≤ i < k.
These are called the edges of P . Vertices x1 and xk are the endpoints of the path. The vertices of P
that are not endpoints of P are called the interior vertices of P . Let xi and xj be two vertices of P such
that 1 ≤ i ≤ j ≤ k. The path xi, xi+1, . . . , xj is called the xixj-subpath of P , and is denoted by P xixj .
For a x1xk-path P and a subset S of the vertex set of P , we say that a vertex u ∈ S is closest to x1 if
V (P x1u)∩S = {u}. A cycle C is a sequence of vertices x1, . . . , xk, x1, k ≥ 3, such that vertices x1, . . . , xk
form a path and x1xk is an edge. The edges of the path x1, . . . , xk, together with the edge x1xk, are
called the edges of C. Let Q be a path or a cycle. The vertex set of Q is denoted by V (Q). The length
of Q is the number of edges in Q.

Given a path or a cycle Q in a graph G, any edge of G between vertices of Q that is not an edge of Q
is called a chord of Q. Q is chordless if no edge of G is a chord of Q. As mentioned earlier, a hole is a
chordless cycle of length at least 4. It is called a k-hole if it has k edges. A k-hole is even if k is even,
and it is odd otherwise.

In a graph G, a clique is a (possibly empty) subset of V (G) consisting of pairwise adjacent vertices. The
size of a largest clique in G is denoted by ω(G). A complete graph is a graph whose vertex set is a clique
in that graph. A complete graph on n vertices is denoted by Kn, and a K3 is also referred to as a triangle.

Given a graph G, a subset S of vertices and edges is a cutset if its removal results in a disconnected
graph. A cutset S is a clique cutset if S is a clique. Note that a graph with no clique cutset is connected.
A cutset S is a star cutset if, for some vertex x ∈ S, S ⊆ N [x].

A wheel (H,x) is a graph induced by a hole H, called the rim, and a vertex x, called the center, that has
at least three neighbors on H. A sector of a wheel is a subpath of the rim, of length at least 1, whose
endpoints are adjacent to the center, but whose interior vertices are not. A sector is said to be short if
it is of length 1, and long otherwise.

3



Throughout the paper, when we refer to a wheel (H,x), we will use the following associated terminology
and notation. Let x1, . . . , xn be the neighbors of x on H, appearing in this order when traversing H.
For every 1 ≤ i ≤ n, the sector of (H,x) with endpoints xi and xi+1 (we assume that xn+1 = x1) will
be denoted by Si (and throughout we will also assume that Sn+1 = S1). If Si is a long sector, then we
denote by x′i (resp. x

′
i+1) the neighbor of xi (resp. xi+1) in Si. (We observe that the wheels in the class

we will work with in this paper do not have consecutive long sectors, and hence x′i and x′i+1 are well
defined). Also, for a long sector Si, the hole induced by V (Si) ∪ {x} will be denoted by Hi.

A k-coloring of a graph G is a function c : V (G) → {1, . . . , k} such that c(u) 6= c(v) whenever uv ∈ E(G).
A graph G is k-colorable if there exists a k-coloring of G. The chromatic number of G, denoted by χ(G),
is the least k for which there exists a k-coloring of G.

1.2 Truemper configurations

The first three configurations in Figure 1 are referred to as 3-path-configurations (3PC’s). They are
structures induced by three paths P1, P2 and P3, in such a way that, for every i 6= j, the vertices
of Pi and Pj induce a hole. More specifically, a 3PC(x, y) is a structure induced by three paths that
connect two non-adjacent vertices x and y; a 3PC(x1x2x3, y), where x1x2x3 is a triangle, is a struc-
ture induced by three paths having endpoints x1, x2 and x3 respectively and a common endpoint y; a
3PC(x1x2x3, y1y2y3), where x1x2x3 and y1y2y3 are two vertex-disjoint triangles, is a structure induced
by three paths P1, P2 and P3 such that, for every 1 ≤ i ≤ 3, path Pi has endpoints xi and yi. We say that
a graph G contains a 3PC(·, ·) if it contains a 3PC(x, y) for some x, y ∈ V (G), a 3PC(△, ·) if it contains
a 3PC(x1x2x3, y) for some x1, x2, x3, y ∈ V (G), and a 3PC(△,△) if it contains a 3PC(x1x2x3, y1y2y3)
for some x1, x2, x3, y1, y2, y3 ∈ V (G). Note that the condition that the vertices of Pi and Pj , for i 6= j,
must induce a hole, implies that all paths of a 3PC(·, ·) have length greater than one, and at most one
path of a 3PC(△, ·) has length one. In literature a 3PC(·, ·) is also referred to as a theta, a 3PC(△, ·)
as a pyramid, and a 3PC(△,△) as a prism.

We refer to 3-path-configurations and wheels as Truemper configurations.

A wheel is a 1-wheel if for some consecutive vertices x, y, z of the rim, the center is adjacent to y, but not
to x and z. A wheel is a 2-wheel if for some consecutive vertices x, y, z of the rim, the center is adjacent
to x and y, but not to z. A wheel is a 3-wheel if for some consecutive vertices x, y, z of the rim, the
center is adjacent to x, y and z. Observe that a wheel can simultaneously be a 1-wheel, a 2-wheel and a
3-wheel, and that every wheel is a 1-wheel, a 2-wheel or a 3-wheel.

An alternating wheel is a wheel whose sectors alternate between short and long sectors. A line wheel is
an alternating wheel with exactly two long sectors and two short sectors. A long alternating wheel is an
alternating wheel that is not a line wheel.

From now on we will denote by C the class of (theta,pyramid, 1-wheel, 3-wheel)-free graphs. Note that
the only Truemper configurations that these graphs may contain are prisms and alternating wheels.

1.3 Some subclasses of C

The class C clearly contains all chordal graphs (i.e. hole-free graphs). We now describe some other
subclasses of C that were studied in literature.

Let G be a graph and x and y two non-adjacent vertices of G. The separability of x and y, is the minimum
cardinality of a set S ⊆ V (G) such that x and y are in different components of G \ S. The separability
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of G is the maximum over all separabilities of pairs of non-adjacent vertices of G (unless G is complete,
in which case it has separability 0). So the graphs of separability at most k are precisely the graphs in
which every two non-adjacent vertices can be separated by removing a set of at most k other vertices. By
Menger’s Theorem, the separability of G is equal to the maximum number of internally vertex-disjoint
paths connecting two non-adjacent vertices. Graphs of separability at most 2 were studied in [4] where
the following characterization is obtained, and a number of other properties of this class. K−

5 is the graph
obtained from a K5 by removing a single edge.

Theorem 1.1 (Cicalese and Milanič [4]) A graph G is of separability at most 2 if and only if it is
(K−

5 , theta, pyramid, prism,wheel )-free.

Let γ be a {0, 1}-vector whose entries are in one-to-one correspondence with the holes of a graph G. A
graph G is universally signable if for all choices of vector γ, there exists a subset F of the edge set of G
such that |F ∩H| ≡ γH (mod 2), for all holes H of G. By the above mentioned theorem of Truemper
[18], it is easy to obtain the following characterization of universally signable graphs in terms of forbidden
induced subgraphs.

Theorem 1.2 (Conforti, Cornuéjols, Kapoor and Vušković [5]) A graph is universally signable if
and only if it is (theta, pyramid, prism,wheel )-free.

This characterization of universally signable graphs is then used to obtain the following decomposition
theorem, which generalises the classical decomposition of chordal graphs with clique cutsets.

Theorem 1.3 (Conforti, Cornuéjols, Kapoor and Vušković [5]) A connected universally signable
graph is either a complete graph or a hole, or it admits a clique cutset.

Clique cutsets have been studied extensively in literature and it is well understood how to use them
in algorithms. So, in particular, Theorem 1.3 implies efficient algorithms for recognition of universally
signable graphs, and for coloring, maximum clique and maximum stable set problems on this class.

As already observed, the only Truemper configurations that graphs in C may contain are prisms and
alternating wheels. Graphs that may contain only prisms (and no other Truemper configuration) are
studied in [6] where the following decomposition theorem is obtained. Given a graph G, its line graph
L(G) is a graph such that each vertex of L(G) represents an edge in G and two vertices of L(G) are
adjacent if and only if their corresponding edges share a common endpoint in G. A graph is chordless if
all of its cycles are chordless.

Theorem 1.4 (Diot, Radovanović, Trotignon and Vušković [6]) If G is (theta, pyramid,wheel )-
free, then G is the line graph of a triangle-free chordless graph or it admits a clique cutset.

A claw is the complete bipartite graph with three vertices on one side of the bipartition and one vertex
on the other. A diamond is the graph on four vertices that has exactly one pair of non-adjacent vertices.
Note that the class of (claw,diamond)-free graphs is a subclass of C.

Theorem 1.5 (Harary and Holzmann [10], see also Lemma 3.19 in [16]) A graph is the line
graph of a triangle-free graph if and only if it is (claw, diamond )-free.
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By Theorem 1.5, the class of line graphs of triangle-free graphs is a subclass of C. The main result in
this paper is to show that graphs in C that are not line graphs of triangle-free graphs have a particular
structure.

1.4 Recognizing Truemper configurations

A natural question to ask is whether Truemper configurations can be recognized in polynomial time.
These questions in fact arose when studying how to recognize even-hole-free graphs and perfect graphs in
polynomial time. Observe that if a graph contains a prism or a theta, then it must contain an even hole,
and if it contains a pyramid, then it must contain an odd hole. In fact, the class of even-hole-free graphs
is included in the class of (theta, prism, even wheel)-free graphs (where an even wheel is a wheel with
an even number of sectors), and the class of odd-hole-free graphs, and hence perfect graphs, is included
in the class of (pyramid, odd wheel)-free graphs (where an odd wheel is a wheel with an odd number of
short sectors). We now briefly describe different general techniques that were developed when trying to
recognize whether a graph contains a particular Truemper configuration.

In [2] it is shown that detecting whether a graph contains a pyramid can be done in O(n9) time. This
algorithm is based on the shortest-paths detector technique developed by Chudnovsky and Seymour. The
idea of their algorithm is as follows. If G has a pyramid, then it has a pyramid Σ with fewest number
of vertices. The algorithm “guesses” some vertices of Σ, and then finds shortest paths in G between the
guessed vertices that are joined by a path in Σ. If the graph induced by the union of these paths is a
pyramid, then clearly G contains a pyramid. If it is not, then it turns out that G is pyramid-free.

Chudnovsky and Seymour [3] show that detecting whether a graph contains a theta can be done in O(n11)
time. For this detection problem, the shortest-paths detector technique does not work. The detection of
thetas relies on being able to solve a more general problem called the three-in-a-tree problem defined as
follows: given a graph G and three specified vertices a, b and c, the question is whether G contains a tree
that passes through a, b and c. It is shown in [3] that this problem can be solved in O(n4) time. What
is interesting is that the algorithm for the three-in-a-tree problem is based on an explicit construction of
the cases when the desired tree does not exist, and that this construction can be directly converted into
an algorithm. The three-in-a-tree algorithm is quite general, and can be used to solve different detection
problems, including the detection of a theta, and of a pyramid (the latter in O(n10) time).

Maffray and Trotignon show that detecting whether a graph contains a prism is NP-complete [14]. Also,
detecting whether a graph contains a wheel is NP-complete, as shown by Diot, Tavenas and Trotignon [7].
In fact they prove that the problem remains NP-complete even when restricted to bipartite graphs. Since
all wheels in bipartite graphs are 1-wheels, it follows that recognizing whether a graph is 1-wheel-free is
NP-complete. A number of other detection problems related to graph classes defined by excluding some
combination of Truemper configurations have been studied in literature. In Section 2 we will give two
polynomial-time recognition algorithms for C.

1.5 The structure of graphs in C

We say that a connected graph G is structured if there exists a partition

S = ({x},X1,X2,X3, Y1, Y2, Y3, C1, C2, C3, CX , CY )

of V (G) that satisfies the following:
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(i) For 1 ≤ i ≤ 2, Xi, Yi and Ci are all non-empty. There exist x1 ∈ X1, x2 ∈ X2 such that x1 is
complete to X2 ∪X3 and x2 is complete to X1 ∪X3, and y1 ∈ Y1, y2 ∈ Y2 such that y1 is complete
to Y2 ∪ Y3 and y2 is complete to Y1 ∪ Y3.

(ii) Let X = X1 ∪X2 ∪X3 and Y = Y1 ∪ Y2 ∪ Y3. Then x is complete to X ∪ Y and X is anticomplete
to Y . Also, for every 1 ≤ i, j ≤ 3, i 6= j, Xi ∪ Yi is anticomplete to Cj , and for 1 ≤ i ≤ 3 every
vertex of Xi ∪ Yi has a neighbor in Ci.

(iii) For every 1 ≤ i ≤ 3, Xi and Yi are both cliques, and X3 (resp. Y3) is complete to X1 ∪X2 (resp.
Y1 ∪ Y2).

(iv) C1, C2, C3, CX and CY are pairwise anticomplete to each other.

(v) N(CX) ⊆ X ∪ {x} and N(CY ) ⊆ Y ∪ {x}.

If G is structured, we also say that S is a structured partition of G. We prove the following theorem.

Theorem 1.6 If G ∈ C is not a line graph of a triangle-free graph and does not admit a clique cutset,
then it is structured.

The following decomposition theorems are immediate corollaries of Theorem 1.6.

A cutset S is a bisimplicial cutset if, for some vertex x ∈ S, S ⊆ N(x) ∪ {x} and S \ {x} is the disjoint
union of two cliques of size at least 2 that are anticomplete to each other.

A 2-amalgam (K,V1, V2) of a connected graph G is a partition of V (G) into subsets V1, V2 and K such
that, for every 1 ≤ i ≤ 2, Wi and Zi are disjoint non-empty subsets of Vi and the following hold:

• Vi \ (Wi ∪ Zi) 6= ∅ for every 1 ≤ i ≤ 2.

• W1 (resp. Z1) is complete to W2 (resp. Z2) and these are the only edges between V1 and V2.

• K is a clique that is complete to W1 ∪W2 ∪ Z1 ∪ Z2.

Note that the removal of K, together with the edges with one end in V1 and one in V2, disconnects G. A
2-amalgam is called special if K consists of a single vertex, Wi and Zi are cliques for every 1 ≤ i ≤ 2 and
W1 (resp. W2) is anticomplete to Z1 (resp. Z2). A 2-amalgam is small if it is special and |Wi| = |Zi| = 1
for every 1 ≤ i ≤ 2. Note that if G admits a special 2-amalgam, then it has a bisimplicial cutset, that
satisfies additional properties.

Theorem 1.7 If G ∈ C, then G is the line graph of a triangle-free graph or it admits a clique cutset or
a bisimplicial cutset.

Proof. If G is not the line graph of a triangle-free graph and does not admit a clique cutset then, by
Theorem 1.6, it is structured. First observe that, for 1 ≤ i ≤ 2, {x} ∪Xi ∪ Yi is a cutset of G separating
Ci from the rest of the graph. Now suppose that {x} ∪X1 ∪ Y1 is not a bisimplicial cutset. Then w.l.o.g.
|X1| = 1. If |Y1| = 1 or |Y2| = 1 then {x} ∪X1 ∪X2 ∪ Y1 ∪ Y2 is a bisimplicial cutset. So we may assume
that |Y1| ≥ 2 and |Y2| ≥ 2. But then {x} ∪X1 ∪X2 ∪ Y1 is a bisimplicial cutset. �

Theorem 1.8 If G ∈ C is a K4-free graph, then G is the line graph of a triangle-free graph or it admits
a clique cutset or a small 2-amalgam.
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Proof. Assume otherwise. By Theorem 1.6 we may assume that G is structured. If G is K4-free, then
|X1| = |X2| = |Y1| = |Y2| = 1 and X3 ∪ Y3 ∪ C3 = ∅. Also, since X and Y are both cliques and G does
not admit a clique cutset, CX = CY = ∅. Therefore, if we define K = {x}, W1 = {x1}, Z1 = {y1},
W2 = {x2}, Z2 = {y2}, V1 = W1 ∪Z1 ∪C1 and V2 = W2 ∪Z2 ∪C2, then (K,V1, V2) is a small 2-amalgam
of G, a contradiction. �

Theorem 1.9 If G ∈ C is a K−
5 -free graph, then G is the line graph of a triangle-free graph or it admits

a clique cutset or a special 2-amalgam.

Proof. Assume not. By Theorem 1.6 G is structured. When G is K−
5 -free, X and Y must both be

cliques and therefore CX = CY = ∅. So, if K = {x}, W1 = X1, Z1 = Y1, W2 = X2 ∪X3, Z2 = Y2 ∪ Y3,
V1 = W1 ∪ Z1 ∪ C1 and V2 = W2 ∪ Z2 ∪ C2 ∪ C3, then (K,V1, V2) is a special 2-amalgam of G, a
contradiction. �

As intermediate results, we also prove the following three theorems. Let (H,x) be a wheel of a graph
G ∈ C. Then we say that a chordless path P = p1, . . . , pk, k > 2, in G \ (V (H) ∪ {x}) is an appendix
of (H,x) that attaches to Si if, for some long sector Si of (H,x), N(p1) ∩ (V (H) ∪ {x}) = {x, xi},
N(pk) ∩ (V (H) ∪ {x}) = {xi, x

′
i} and N(pj) ∩ (V (H) ∪ {x}) ⊆ {xi} for every 1 < j < k.

Theorem 1.10 If G ∈ C does not contain a wheel with an appendix nor a long alternating wheel, then
G is the line graph of a triangle-free graph or it admits a clique cutset.

Theorem 1.11 If G ∈ C does not contain a wheel with an appendix, then G is the line graph of a
triangle-free graph, or it admits a clique cutset or a special 2-amalgam.

Theorem 1.12 If G ∈ C contains a wheel with an appendix or a long alternating wheel, then G admits
a clique cutset or G is structured.

Theorem 1.6 follows directly from Theorem 1.10 and Theorem 1.12. Theorem 1.10 is proved in Section
3, and Theorems 1.11 and 1.12 are proved in Section 4.

The following result is proved in Section 5.

Theorem 1.13 If G ∈ C is a K4-free graph, then G is 4-colorable.

2 Recognizing graphs in C

In this section we give two polynomial-time algorithms that decide whether an input graph G belongs to
C. The first algorithm is obtained by a direct search for certain Truemper configurations, so, although
it is slower than the second one, we believe that its intermediate steps are of independent interest. The
second algorithm has running time O(n5) and is based on the description of the local structure of graphs
in C that is obtained in [1]. (Throughout the section, for a graph G we let n = |V (G)| and m = |E(G)|).
Both of these algorithms do not use our main decomposition theorem for C (Theorem 1.7).

In [15], Maffray, Trotignon and Vušković give an O(n7)-time algorithm that decides whether a graph
contains a theta or a pyramid. Recall that deciding whether a graph contains a 1-wheel is NP-complete
[7]. In Lemma 2.1 we give an O(n6)-time algorithm that decides whether a graph contains a theta, a
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pyramid or a 1-wheel. In Lemma 2.2 we give an O(n6)-time algorithm that decides whether a graph
contains a 3-wheel. Together these two algorithms give our first recognition algorithm for C.

Lemma 2.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: YES if G contains a theta, a pyramid or a 1-wheel, and NO otherwise.

Running time: O(n4m+ n5).

Proof. Consider the following algorithm.

Step 1: Let L be the set of all 4-element subsets of V (G).

Step 2: If L = ∅, then return NO. Otherwise, take S ∈ L and remove S from L.

Step 3: If S does not induce a claw, go to Step 2. Otherwise, let S = {u, a, b, c} be such that u is
complete to {a, b, c}.

Step 4: If there exists a connected component C of G \N [u] such that a, b and c all have a neighbor
in C, then return YES. Otherwise, go to Step 2.

Since L has O(n4) elements, and Step 4 takes O(n + m) time, the running time of this algorithm is
O(n4m+ n5).

Let us now prove its correctness. First suppose that, for some connected component C of G \ N [u] (in
Step 4), all a, b and c have a neighbor in C, and let C ′ be a minimal connected subgraph of C such that
all a, b and c have a neighbor in C ′. Let P be a chordless ac-path in the graph induced by V (C ′)∪{a, c}.
If b has a neighbor in P , then V (P )∪{u, b} induces a theta or a 1-wheel. Otherwise, let Q be a chordless
bv-path of G[V (C ′)∪{b}] such that v has a neighbor in P \{a, c} and no vertex of Q\{v} has a neighbor in
P \{a, c}. By minimality of C ′, not both a and c can have a neighbor in Q, and v has one or two adjacent
neighbors in P . So w.l.o.g. N(c)∩V (Q) = ∅. Let H be the hole contained in G[(V (P )\{a})∪V (Q)∪{u}]
that contains Q, u and c. If a has at least three neighbors in H, then (H, a) is a 1-wheel. If a has exactly
two neighbors in H, then V (H) ∪ {a} induces a theta. So we may assume that a has no neighbors in
H \ {u}. But then the graph induced by V (P ) ∪ V (Q) ∪ {u} is a theta or a pyramid. It follows that the
algorithm correctly returns YES in Step 4.

So, let us assume that the output is NO, but that G contains a theta, pyramid or a 1-wheel D. Let
{u, a, b, c} induce a claw contained in D and let u be complete to {a, b, c}. Additionally, in case D is a
1-wheel, then w.l.o.g. we assume that b is its center. So, clearly a connected component of G \N [u] has
neighbors from all of a, b and c, and hence the algorithm returns YES in Step 4, a contradiction. �

Lemma 2.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: YES if G contains a 3-wheel, and NO otherwise.

Running time: O(n4m+ n5).
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Proof. Consider the following algorithm.

Step 1: Let L be the set of all 4-element subsets of V (G).

Step 2: If L = ∅, then return NO. Otherwise, take S ∈ L and remove S from L.

Step 3: If S does not induce a diamond, go to Step 2. Otherwise, let S = {a, b, x, y} be such that ab is
not an edge.

Step 4: Let Nx = N [x] \{a, b} and Ny = N [y] \{a, b}. If a and b are in the same connected component
of G \Nx or in the same component of G \Ny, then return YES. Otherwise, go to Step 2.

Since L has O(n4) elements, and Step 4 takes O(n + m) time, the running time of this algorithm is
O(n4m+ n5).

Let us now prove that the algorithm is correct. First, if the output is YES, then G contains a 3-wheel
with center x or y. Indeed, if a and b are in the same connected component C of G \ Nz, for some
z ∈ {x, y}, then a shortest path from a to b in C, together with {x, y}, induces a 3-wheel with center t,
where t ∈ {x, y} \ {z}.

So, let us assume that the output is NO, but that G contains a 3-wheel. Let (H,x) be this 3-wheel, and
let a, b, y ∈ V (H) ∩ N(x) be such that a and b are distinct neighbors of y. The vertex set {a, b, x, y}
induces a diamond and a and b are in the same connected component of G\Ny . Therefore, the algorithm
returns YES in Step 4, a contradiction. �

To describe our second algorithm, we first recall some definitions from [1]. Let F be a set of graphs.
A graph G is locally F-decomposable if for every vertex v of G, every F ∈ F contained in N(v) and
every connected component C of G \ N [v], there exists y ∈ F such that y has a non-neighbor in F
and no neighbors in C. A class of graphs G is locally F-decomposable if every graph G ∈ G is locally
F-decomposable.

Let S3 denote the stable graph on three vertices and P3 the path on three vertices. The following
theorem is the key for our second algorithm (we note that the class C is denoted by C4 in [1] – see also
Table 1 from the same paper).

Theorem 2.3 ([1]) The class C is exactly the class of locally {S3, P3}-decomposable graphs.

Theorem 2.4 There is an algorithm with the following specifications:

Input: A graph G.

Output: YES if G is in C, and NO otherwise.

Running time: O(n5).

Proof. Consider the following algorithm.

Step 1: Let L = V (G).

Step 2: If L = ∅, then return YES. Otherwise, take v ∈ L and remove v from L. Let Lv be the set of
all 3-element subsets of N(v) and Cv the set of all connected components of G \N [v].
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Step 3: If Lv = ∅, go to Step 2. Otherwise, take S ∈ Lv and remove S from Lv.

Step 4: If S does not induce S3 nor P3, go to Step 3. Otherwise, for every y ∈ S and every C ∈ Cv find
N(y) ∩ C and N(y) ∩ S. If the first set is empty and the second is not equal to S \ {y} for some
y ∈ S and C ∈ Cv, go to Step 3. Otherwise, return NO.

Let v ∈ L. The set Lv has O(n3) elements and Cv can be found in time O(n+m), so Step 2 takes O(n3)
time (for every v ∈ L). Step 4 takes O(n) time (since |

⋃

C∈Cv
C| < n and |S| = 3), so the running time

of the algorithm is O(n · n3 · n) = O(n5).
The correctness of the algorithm follows directly from Theorem 2.3. �

3 Proof of Theorem 1.10

The following easy observation will be used throughout the paper.

Lemma 3.1 Let G ∈ C and let H be a hole contained in G. If x ∈ V (G) \ V (H) has at least two
non-adjacent neighbors in H, then (H,x) is an alternating wheel.

Proof. If x has exactly two neighbors in H, and they are not adjacent, then G[V (H)∪{x}] is a theta. So
assume x has at least three neighbors in H. Then (H,x) is a wheel, and hence an alternating wheel. �

Theorem 1.10 immediately follows from Theorem 1.5 and from the two results below, whose proof is
postponed to Section 3.1 and Section 3.2, respectively.

Theorem 3.2 Assume that G ∈ C does not contain a wheel with an appendix. If G contains a diamond,
then it admits a clique cutset.

Theorem 3.3 Assume that G ∈ C is a diamond-free graph that does not contain a long alternating wheel.
If G contains a claw, then it admits a clique cutset.

3.1 Proof of Theorem 3.2

In order to prove Theorem 3.2, it is convenient to work with extended diamonds. Given a graph G, let
K = {v1, . . . , vℓ}, ℓ ≥ 2, be a clique of G of size ℓ. An extended diamond D = (K,x, y) of G is an
induced subgraph of G with vertex set V (D) given by the disjoint union of K and {x, y}, and such that
x and y are distinct, non-adjacent and both complete to K. We say that an extended diamond D of G
is maximum if G does not contain an extended diamond with more vertices. The above terminology and
notation will be used throughout. Note that D is a diamond when ℓ = 2.

Lemma 3.4 Let D = (K,x, y) be a maximum extended diamond of a graph G ∈ C. Then for every
vertex u ∈ V (G) \ V (D), N(u) ∩ V (D) is a clique of size at most ℓ+ 1.

Proof. Assume not. Then x, y ∈ N(u) ∩ V (D). Since, for every 1 ≤ i, j ≤ ℓ, i 6= j, {x, y, vi, vj , u}
cannot induce a 3-wheel, u is complete to V (D). Let K ′ = K∪{u}. Then the extended diamond induced
by K ′ ∪ {x, y} contradicts the maximality of D. �
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Proof of Theorem 3.2. Let D = (K,x, y) be a maximum extended diamond of G. We prove that
K is a clique cutset of G separating x from y. Assume not and let Q = q1, . . . , qr be a shortest path in
G \ V (D) such that q1 (resp. qr) is adjacent to x (resp. y). By Lemma 3.4, r ≥ 2. By minimality of Q,
Q is chordless, no vertex of Q \ {q1} is adjacent to x and no vertex of Q \ {qr} is adjacent to y, so that
N(qi) ∩ V (D) ⊆ K for every 1 < i < r.

Since the graph induced by V (Q) ∪ V (D) cannot contain a 3-wheel, vi has a neighbor in Q for every
1 ≤ i ≤ ℓ. Let qj be the vertex of Q with lowest index that has a neighbor in K. W.l.o.g. v1qj ∈ E(G).

(1) qj is not complete to K.

Proof of (1). Suppose it is. If j > 1, then V (Qq1qj ) ∪ {x, v2} induces a hole H and (H, v1) is a 3-wheel,
a contradiction. So, j = 1.

We now prove that q2 is complete to K. Assume otherwise and w.l.o.g. suppose that v2q2 is not an edge.
Since V (Q) ∪ {v1, v2, y} cannot induce a 3-wheel, v1 and v2 both have a neighbor in Qq2qr . Let qk (resp.
qh) be the vertex of Qq2qr with lowest index that is adjacent to v1 (resp. v2). If k = h then k > 2, and
hence V (Qq1qk)∪{v1, v2} induces a 3-wheel, a contradiction. So w.l.o.g. k < h. Let H be the hole induced
by V (Qq1qh) ∪ {v2}. Then, by Lemma 3.1, (H, v1) is an alternating wheel and hence v1 is not adjacent
to qh. Let qm be the neighbor of v1 in Qq1qh with highest index. Note that k < m < h. Suppose that
N(v1) ∩ V (Qqh+1qr) = ∅. Since, by Lemma 3.1, V (Qqmqr) ∪ {y, v1, v2} must induce an alternating wheel
with center v2, then h < r − 1 and v2 is adjacent to qh+1. It follows that the chordless path induced by
V (Qqh+1qr) ∪ {y} is an appendix of (H, v1), a contradiction. So, let qs be the neighbor of v1 in Qqh+1qr

with lowest index and let H ′ be the hole induced by V (Qqmqs) ∪ {v1}. By Lemma 3.1, (H ′, v2) is an
alternating wheel. Also, s > h + 2 and qh+1 and qs are both adjacent to v2. But then Qqh+1qs is an
appendix of (H, v1), a contradiction. So, q2 is complete to K.

Now let K ′ = K ∪ {q1}. Since q1 is complete to K, K ′ is a clique. Also, q2 is complete to K ′ and hence
the extended diamond induced by K ′ ∪ {x, q2} contradicts the maximality of D. �

By (1), w.l.o.g. v2qj /∈ E(G). Let qk be the neighbor of v2 in Qqj+1qr with lowest index. Then V (Qq1qk)∪
{x, v2} induces a hole H ′ and, by Lemma 3.1, (H ′, v1) is an alternating wheel. So, j > 1, k > j + 1 and
v1 is adjacent to qj+1 and not adjacent to qk. For some j + 1 ≤ h < k, let qh be the neighbor of v1 in Q
with highest index.

First suppose that v1 has no neighbors in Qqk+1qr . By Lemma 3.1, V (Qqhqr)∪ {y, v1, v2} must induce an
alternating wheel with center v2, and hence k < r− 1 and v2 is adjacent to qk+1. But then the chordless
path induced by V (Qqk+1qr) ∪ {y} is an appendix of (H ′, v1), a contradiction.

Therefore, let qm be the neighbor of v1 in Qqk+1qr with lowest index and let H ′′ be the hole induced by
V (Qqhqm) ∪ {v1}. By Lemma 3.1, (H ′′, v2) is an alternating wheel. So, m > k + 2 and qk+1 and qm are
both adjacent to v2. But then Qqk+1qm is an appendix of (H ′, v1), a contradiction. This concludes the
proof of Theorem 3.2. �

3.2 Proof of Theorem 3.3

In order to prove Theorem 3.3, we first need some preliminary results. Throughout this subsection we
assume that G is a diamond-free graph that belongs to C and does not contain a long alternating wheel.
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Extended triangles.

An extended triangle E = (K,S1, S2) of G is an induced subgraph of G defined as follows: K = {u, v1, v2}
is a clique of G of size 3, and S1 = x1, . . . , xn and S2 = y1, . . . , ym are vertex-disjoint chordless paths in
G \K such that

• N(x1) ∩ (V (S2) ∪K) = {u}, N(xn) ∩ (V (S2) ∪K) = {v1} and N(xi) ∩ (V (S2) ∪K) = ∅ for every
1 < i < n.

• N(y1) ∩ (V (S1) ∪K) = {u}, N(ym) ∩ (V (S1) ∪K) = {v2} and N(yi) ∩ (V (S1) ∪K) = ∅ for every
1 < i < m.

Note that it follows that m,n ≥ 2. For 1 ≤ i ≤ 2, let Hi be the hole induced by V (Si) ∪ {u, vi}. We say
that an extended triangle E of G is minimum if G does not contain an extended triangle with a smaller
number of vertices. This terminology and notation will be used in Lemma 3.5 and Lemma 3.6.

Lemma 3.5 Let E = (K,S1, S2) be a minimum extended triangle of G. For every vertex z ∈ V (G)\V (E),
either z has at most one neighbor in K or z is complete to K. Also, one of the following holds:

(i) N(z) ∩ V (E) is a clique of size at most 3.

(ii) N(z) ∩ V (E) = {vi, w1, w2}, where 1 ≤ i ≤ 2 and w1, w2 are adjacent vertices of S3−i.

Proof. Assume otherwise. Since G is diamond-free, either z has at most a single neighbor in K or z is
complete to K. W.l.o.g. we may assume that z has a neighbor in S1. Suppose that N(z)∩V (E) ⊆ V (H1).
Since (i) does not hold, by Lemma 3.1, (H1, z) is an alternating wheel. But then G[V (E)∪ {z}] contains
an extended triangle with fewer vertices than E, a contradiction. It follows that z has a neighbor in
H2 \ {u}.

Suppose that v2 ∈ N(z) ∩ V (E) ⊆ V (S1) ∪ K. If z has a single neighbor in H1, then such a neighbor
belongs to S1 and V (H1)∪{z, v2} induces a pyramid. So, since (ii) does not hold, by Lemma 3.1, (H1, z)
is an alternating wheel. Then z is complete to K, since otherwise the graph induced by V (H1) ∪ {z, v2}
contains a 3PC(uv1v2, z). Let xi be the neighbor of z in S1 with lowest index. Then (K \ {v1}) ∪
V (Sx1xi

1 ) ∪ V (S2) ∪ {z} induces an extended triangle that contradicts our choice of E.

Therefore z has a neighbor in both S1 and S2. Let xi (resp. yj) be the neighbor of z in S1 (resp. S2) with
highest index. Assume that zu is an edge but z is not complete to K. Then v1, v2 6∈ N(z), and hence
(by Lemma 3.1) x1, y1 ∈ N(z), and so {u, z, x1, y1} induces a diamond. If z is complete to K, then by
Lemma 3.1, (H1, z) and (H2, z) are both alternating wheels and (K \ {u}) ∪ V (Sxixn

1 ) ∪ V (S
yjym
2 ) ∪ {z}

induces an extended triangle with a smaller number of vertices. It follows that z is not adjacent to u. Let
xl (resp. yk) be the neighbor of z in S1 (resp. S2) with lowest index and let H = V (H1)∪V (Sy1yk

2 )∪{z}.
If V (H1) ∪ {z} induces an alternating wheel, then G[H] contains a 3PC(u, z). If z has two neighbors in
H1 and they are adjacent, then H induces a pyramid. So, by symmetry, xl and yk are the only neighbors
of z in E. If xl 6= x1, then H induces a 3PC(u, xl). If xl = x1, then V (H1) ∪ V (Sykym

2 ) ∪ {z, v2} induces
a 1-wheel with center u, a contradiction. �

Lemma 3.6 If G contains an extended triangle, then it admits a clique cutset.
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Proof. Let E = (K,S1, S2) be a minimum extended triangle of G, and let W be the set of vertices of
G \ V (E) that are complete to K. We prove that K ∪W is a clique cutset of G separating S1 from S2.
First consider the following claim.

(1) K ∪W is a clique of G.

Proof of (1). Assume not. Then there exist two vertices w1, w2 ∈ W , w1 6= w2, such that w1w2 is not an
edge. It follows that {v1, v2, w1, w2} induces a diamond, a contradiction. �

By (1), we only need to show that K ∪W is a cutset of G separating S1 from S2. Assume otherwise and
let Q = q1, . . . , qr be a shortest path in G \ (K ∪W ) such that q1 (resp. qr) has a neighbor in S1 (resp.
S2). By Lemma 3.5, r ≥ 2. By minimality of Q, Q is chordless and no vertex of Q \ {q1} (resp. Q \ {qr})
has a neighbor in S1 (resp. S2), and so N(qi) ∩ V (E) ⊂ K for every 1 < i < r. By Lemma 3.5, every
vertex of Q has at most one neighbor in K.

(2) q1 (resp. qr) has a single neighbor in S1 (resp. S2).

Proof of (2). Suppose that q1 has two adjacent neighbors in S1 and no other neighbors in H1. Let yi
be the neighbor of qr in S2 with lowest index. If u and v1 do not have a neighbor in Q \ {q1}, then
V (H1) ∪ V (Sy1yi

2 ) ∪ V (Q) induces a pyramid. So, for some 1 < j ≤ r, let qj be the vertex of Q with
lowest index that is adjacent to a vertex of {u, v1}. But then V (H1) ∪ V (Qq1qj) induces a pyramid, a
contradiction. By Lemma 3.5, it follows that q1 has a single neighbor in S1 and, by symmetry, qr has a
single neighbor in S2. �

By Lemma 3.5 and (2), N(q1) ∩ V (E) ⊂ V (H1) and N(qr) ∩ V (E) ⊂ V (H2) are both cliques of size at
most 2. Assume that K is not anticomplete to V (Q) and let qi (resp. qj) be the vertex of Q with lowest
(resp. highest) index that has a neighbor in K.

(3) qi and qj are adjacent to u.

Proof of (3). Suppose that qi is not adjacent to u. If qi is adjacent to v2, then i > 1, and by (2),
V (H1) ∪ V (Qq1qi) ∪ {v2} induces a pyramid, a contradiction. So, qi is adjacent to v1. If xnq1 is not an
edge then, by (2), V (H1)∪V (Qq1qi) induces a theta. So, q1 is adjacent to xn and has no other neighbors
in S1. Let R be the chordless uqi-path contained in the graph induced by V (S2) ∪ V (Qqiqr)∪ {u}. Then
V (H1)∪ V (Qq1qi)∪ V (R) induces a 1-wheel with center v1, a contradiction. It follows that qi is adjacent
to u and, by symmetry, so is qj. �

Note that N(q1) ∩ V (S1) = {x1}, since otherwise, by (2) and (3), V (H1) ∪ V (Qq1qi) induces a theta. By
symmetry, N(qr) ∩ V (S2) = {y1}. Also, i 6= j, since otherwise the vertex set V (E) ∪ V (Q) induces a
1-wheel with center u.

(4) {v1, v2} is anticomplete to V (Q).

Proof of (4). Assume not, w.l.o.g. suppose that v1 has a neighbor in the interior of Qqiqj and, for some
i < k < j, let qk be the vertex of Q with lowest index that is adjacent to v1. Then V (H1) ∪ V (Qq1qk)
induces a 1-wheel with center u, a contradiction. �

By (4), V (E) ∪ V (Q) induces a 1-wheel, a 3-wheel or a long alternating wheel with center u. It follows
that K is anticomplete to V (Q). By (2), q1 (resp. qr) has a single neighbor in E which belongs to S1

(resp. S2). If N(q1) ∩ V (S1) = {x1} and N(qr) ∩ V (S2) = {y1}, then V (S1) ∪ V (S2) ∪ V (Q) ∪ {v1, v2}
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induces a hole H and (H,u) is a 1-wheel. So w.l.o.g. x1 is not the neighbor of q1 in S1. But then the
graph induced by (V (E) \ {v2}) ∪ V (Q) contains a theta, a contradiction. �

Unichord cycles.

A unichord cycle U = (u, v, S1, S2) of G is an induced subgraph of G defined as follows: u and v are
adjacent vertices of G and, for some m,n ≥ 2, S1 = x1, . . . , xn and S2 = y1, . . . , ym are vertex-disjoint
chordless paths in G \ {u, v} such that

• N(x1)∩ (V (S2)∪ {u, v}) = {u}, N(xn)∩ (V (S2)∪ {u, v}) = {v} and N(xi) ∩ (V (S2)∪ {u, v}) = ∅
for every 1 < i < n.

• N(y1)∩ (V (S1)∪ {u, v}) = {u}, N(ym)∩ (V (S1)∪ {u, v}) = {v} and N(yi)∩ (V (S1)∪ {u, v}) = ∅
for every 1 < i < m.

For 1 ≤ i ≤ 2, let Hi be the hole induced by V (Si) ∪ {u, v}. We say that a unichord cycle U of G is
minimum if G does not contain a unichord cycle with a smaller number of vertices. This terminology
and notation will be used in Lemma 3.7 and Lemma 3.8.

Lemma 3.7 Let U = (u, v, S1, S2) be a minimum unichord cycle of G. For every vertex z ∈ V (G)\V (U),
one of the following holds:

(i) N(z) ∩ V (U) is a clique of size at most 2.

(ii) |N(z) ∩ V (U)| = 4, {u, v} ⊂ N(z) and (Hi, z) is a line wheel for some 1 ≤ i ≤ 2.

Proof. Assume otherwise. W.l.o.g. we may assume that z has a neighbor in S1. If z has non-adjacent
neighbors in H1 then, by Lemma 3.1, (H1, z) is a line wheel. Suppose that N(z)∩ V (U) ⊆ V (H1). Since
(i) and (ii) do not hold, V (H1) ∪ {z} induces a line wheel and z is not complete to {u, v}. But then
G[V (U) ∪ {z}] contains a unichord cycle that contradicts our choice of U .

It follows that z has a neighbor in both S1 and S2. Let xi (resp. yj) be the neighbor of z in S1 (resp.
S2) with highest index. If z is complete to {u, v}, then (H1, z) and (H2, z) are both line wheels and
V (Sxixn

1 ) ∪ V (S
yjym
2 ) ∪ {v, z} induces a unichord cycle with a smaller number of vertices. Therefore,

w.l.o.g. z is not adjacent to v. Let H = V (H1) ∪ V (S
yjym
2 ) ∪ {z}. Suppose that (H1, z) is a line wheel.

If j > 1 then G[H] contains a 3PC(v, z). So j = 1, and hence either G[H] contains a 3PC(uzy1, v) (if
zu is an edge) or G[V (H1) ∪ {y1, z}] contains a 3PC(u, z) (otherwise). Therefore, (H1, z) is not a line
wheel. If z has two neighbors in H1, then by Lemma 3.1 they are adjacent, and hence G[H] is a pyramid
(if j > 1) or G[V (H1) ∪ {y1, z}] is a pyramid (if j = 1 and z is not adjacent to u), or G[V (U) ∪ {z}] is
a 3-wheel with center u (otherwise). So by symmetry we may assume that N(z) ∩ V (U) = {xi, yj}. If
i = j = 1 (resp. i = n and j = m) then V (U) ∪ {z} induces a 1-wheel with center u (resp. v). If i < n
then either G[H] is a 3PC(v, xi) (if j > 1) or G[V (H1) ∪ {y1, z}] is a 3PC(u, xi) (otherwise). So i = n.
But then V (H1) ∪ V (S

y1yj
2 ) ∪ {z} induces a 3PC(u, xn), a contradiction. �

Lemma 3.8 If G contains a unichord cycle, then it admits a clique cutset.
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Proof. Assume not and let U = (u, v, S1, S2) be a minimum unichord cycle of G. By Lemma 3.6, G
does not contain an extended triangle. Since {u, v} is not a clique cutset of G separating S1 from S2, let
Q = q1, . . . , qr be a shortest path in G \ {u, v} such that q1 (resp. qr) has a neighbor in S1 (resp. S2).
By Lemma 3.7, r ≥ 2. By minimality of Q, Q is chordless and no vertex of Q \ {q1} (resp. Q \ {qr}) has
a neighbor in S1 (resp. S2), so that N(qi) ∩ V (U) ⊆ {u, v} for every 1 < i < r.

(1) No vertex of Q is complete to {u, v}.

Proof of (1). Assume not and let qi be such a vertex with lowest index. Suppose that a vertex of Qq1qi−1

has a neighbor in {u, v}, and let qj be such a vertex with highest index. Then V (H2)∪ V (Qqjqi) induces
an extended triangle, a contradiction. So, V (Qq1qi−1) is anticomplete to {u, v}. If i = 1 then by Lemma
3.7, G[V (U) ∪ {q1}] contains an extended triangle. So i > 1, and by symmetry i < r. Let xl be the
neighbor of q1 in S1 with lowest index. If l = n then V (H1)∪ V (Qq1qi) induces a pyramid. So l < n, and
hence, by Lemma 3.7, V (H2) ∪ V (Sx1xl

1 ) ∪ V (Qq1qi) induces an extended triangle, a contradiction. �

(2) {u, v} is anticomplete to V (Q).

Proof of (2). Assume not and let qi be the vertex of Q with lowest index that has a neighbor in {u, v}.
W.l.o.g. suppose that qi is adjacent to u. By (1), vqi is not an edge. If N(q1) ∩ V (S1) 6= {x1} then, by
Lemma 3.7, V (H1)∪V (Qq1qi) either induces a theta or a pyramid. So, q1 is adjacent to x1 and has no other
neighbors in S1. Let R be the chordless vqi-path contained in the graph induced by V (S2)∪V (Qqiqr)∪{v}.
Then by (1), V (H1) ∪ V (Qq1qi) ∪ V (R) induces a 1-wheel with center u, a contradiction. �

(3) q1 (resp. qr) has a single neighbor in S1 (resp. S2).

Proof of (3). Suppose that q1 has at least two neighbors in S1. Then, by Lemma 3.7 and (1), q1 has two
adjacent neighbors in S1 and no other neighbors in U . Let yi be the neighbor of qr in S2 with lowest
index. By (2), u and v do not have a neighbor in Q. W.l.o.g. we may assume that i < m. But then
V (H1) ∪ V (Sy1yi

2 ) ∪ V (Q) induces a pyramid, a contradiction. So by symmetry, (3) holds. �

By (2) and (3), N(q1) ∩ V (U) = {xi} for some 1 ≤ i ≤ n, N(qr) ∩ V (U) = {yj} for some 1 ≤ j ≤ m and
no interior vertex of Q has a neighbor in U . If either i = j = 1 or i = n and j = m, then the vertex
set V (U) ∪ V (Q) induces a 1-wheel with center u or v. So w.l.o.g. 1 < i ≤ n and 1 ≤ j < m. But then
V (H1) ∪ V (S

y1yj
2 ) ∪ V (Q) induces a 3PC(u, xi), a contradiction. �

Putting things together.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let C be a claw contained in G, with vertex set V (C) = {u, v1, v2, v3} and
edge set E(C) = {uv1, uv2, uv3}, and assume that G does not admit a clique cutset. Since u is not a cut
vertex of G, there exists a path Q = q1, . . . , qr in G \ {u, v1, v2, v3} such that q1 is adjacent to vi for some
1 ≤ i ≤ 3 and qr has a neighbor in {v1, v2, v3} \ {vi}. Assume that the claw and the path are chosen
so that Q is of shortest length, and w.l.o.g. suppose that q1 is adjacent to v1 and qr is adjacent to v2.
It follows that Q is chordless, no vertex of Q \ {q1} is adjacent to v1, no vertex of Q \ {qr} is adjacent
to v2, and v3 is anticomplete to V (Q) \ {q1, qr}. Also, G is diamond-free, so, by minimality of Q, u has
no neighbors in Q, and hence V (Q) ∪ {u, v1, v2} induces a hole H. If v3 is adjacent to q1 or qr, then
V (H) ∪ {v3} either induces a theta or a 1-wheel with center v3. So, v3 has no neighbors in Q.
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Since {u} is not a clique cutset of G, there exists a path T = t1, . . . , tℓ in G\(V (H)∪{v3}) such that t1 is
adjacent to v3 and tℓ has a neighbor in V (H) \{u}. In particular, let T be such a path of shortest length.
Then T is chordless, no vertex of T \ {t1} is adjacent to v3 and no vertex of T \ {tℓ} has a neighbor in
V (H) \ {u}. If tℓ has non-adjacent neighbors in H then, by Lemma 3.1, (H, tℓ) is a line wheel.

First assume that tℓ is not adjacent to u and let T ′ be the chordless utℓ-path contained in the graph
induced by V (T ) ∪ {u, v3}. Then tℓ must have a single neighbor in H, and this vertex must belong to
{v1, v2}, since otherwise the graph induced by V (H) ∪ V (T ′) contains a theta or a pyramid. But then
V (H) ∪ V (T ′) induces a unichord cycle, contradicting Lemma 3.8.

Therefore utℓ is an edge. Then N(tℓ) ∩ {v1, v2} 6= ∅, since otherwise V (H) ∪ {tℓ} either induces a theta
or a 1-wheel with center tℓ. W.l.o.g. let tℓ be adjacent to v1. Since G is diamond-free, it follows that v2tℓ
and v3tℓ are not edges and hence ℓ ≥ 2. If (H, tℓ) is a line wheel, then the claw induced by {u, tℓ, v2, v3}
and a proper subpath of Q contradict our choice of C and Q. So, N(tℓ) ∩ V (H) = {u, v1}. Since G
is diamond-free, u is not adjacent to tℓ−1 and hence the graph induced by V (H) ∪ V (T ) contains an
extended triangle, contradicting Lemma 3.6. This concludes the proof of Theorem 3.3. �

4 Proof of Theorem 1.12

Throughout this section we assume that G ∈ C contains a wheel with an appendix or a long alternating
wheel, but does not admit a clique cutset. We want to show that G is structured. By our assumptions,
w.l.o.g. G satisfies exactly one of the properties below, and we define a graph H⋆ depending on which
property is satisfied.

Property 1: G contains a wheel with an appendix. Let (H,x) be a wheel with an appendix of G with
shortest rim and let P = p1, . . . , pk be its appendix with shortest length. Assume that (H,x) has short
odd sectors and P is attached to S2, and let H⋆ = G[V (H) ∪ V (P ) ∪ {x}].

Property 2: G does not contain an alternating wheel with an appendix, but contains a long alternating
wheel. Let (H,x) be a long alternating wheel of G with shortest rim, assume that (H,x) has short odd
sectors and let H⋆ = G[V (H) ∪ {x}].

Suppose that Property 1 holds and let W be the hole induced by the vertex set (V (S2)\{x2})∪V (P )∪{x}.
Then we say that y ∈ V (G) \ (V (H)∪ V (P )∪ {x}) is a special vertex of G if it is complete to {x, x1, x2},
N(y) ∩ (V (H) \ {x1, x2}) = ∅ and {p1} ⊂ N(y) ∩ V (P ) in such a way that V (W ) ∪ {y} induces an
alternating wheel.

We prove Theorem 1.12 by the following sequence of lemmas.

Lemma 4.1 For every vertex y ∈ V (G) \ V (H⋆), either N(y) ∩ V (H⋆) is a clique of size at most 3, or
G satisfies Property 1 and y is special.

We postpone the proof of Lemma 4.1 to Section 4.2.

Now let M = V (H) \ (V (S2) ∪ {x1, x4}) and

N =

{

(V (S2) \ {x2, x3}) ∪ V (P ) if Property 1 holds,

V (S2) \ {x2, x3} if Property 2 holds.
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Also, we denote by A (resp. B) the set of vertices in V (G) \V (H⋆) that are complete to {x, x1, x2} (resp.
{x, x3, x4}). Note that, by Lemma 4.1, A∩B = ∅. In particular, if u ∈ A, either u is a special vertex of
G (when Property 1 holds) or N(u) ∩ V (H⋆) = {x, x1, x2}. If u ∈ B, then N(u) ∩ V (H⋆) = {x, x3, x4}.

Lemma 4.2 A ∪B ∪ {x, x1, x2, x3, x4} is a cutset of G that separates N from M .

Proof. Assume not. Then G \ (V (H⋆) ∪A ∪B) contains a chordless path T = t1, . . . , tm such that no
vertex in T \{t1, tm} has a neighbor inH⋆\{x, x1, x2, x3, x4}, t1 has a neighbor in N and tm has a neighbor
in M . By Lemma 4.1, m ≥ 2, N(t1) ∩ V (H⋆) ⊂ N ∪ {x, x2, x3} and N(tm) ∩ V (H⋆) ⊂ M ∪ {x, x1, x4}.

It suffices to consider the following two cases.

Case 1: (H,x) is a line wheel, and hence Property 1 holds.

We have N(tm)∩ V (H⋆) ⊂ V (S4). Let u (resp. v) be the neighbor of tm in S4 that is closest to x1 (resp.
x4). By Lemma 4.1, either u = v (and if that is the case, u /∈ {x1, x4}) or uv ∈ E(G).

(1) At least one of the sets {x1, x2}, {x3, x4} is anticomplete to V (T ) \ {t1, tm}.

Proof of (1). Assume otherwise. Then there exists a minimal subpath T titj of T \ {t1, tm} such that ti is
adjacent to a vertex of {x1, x2} and tj is adjacent to a vertex of {x3, x4}. Note that no interior vertex
of T titj has a neighbor in H. Also, by Lemma 4.1, i 6= j. So, since V (T titj ) ∪ V (H) cannot induce a
theta nor a pyramid, it follows that N(ti) ∩ V (H) = {x1, x2} and N(tj) ∩ V (H) = {x3, x4}, and hence
(by definition of T ) neither ti nor tj is adjacent to x. But then V (S4) ∪ V (T titj ) ∪ {x} either induces a
theta or a 1-wheel with center x, a contradiction. �

(2) x has a neighbor in T \ {t1, tm}.

Proof of (2). Assume not and let R be the chordless x1t1-path contained in the graph induced by the
ux1-subpath of S4 together with V (T ). First suppose that t1 is adjacent to x, so that, by Lemma 4.1,
N(t1)∩N = {p1}. If x2t1 is not an edge, let R′ be the chordless x2t1-path contained in the graph induced
by the ux2-subpath of H \ {x′2} together with V (T ). Then V (R′)∪ {p1} induces a hole H ′ and (H ′, x) is
a 3-wheel. So, N(t1) ∩ V (H⋆) = {x, x2, p1}. But then V (R) ∪ {x, x2} induces a 3-wheel with center x2.
It follows that t1 is not adjacent to x. Let D be the chordless t1p1-path contained in the graph induced
by N ∪{t1}. Then V (R)∪V (D)∪ {x} induces a hole H ′′ and (H ′′, x2) is a 3-wheel, a contradiction. �

By (2), let ti be the neighbor of x in T \ {t1, tm} with highest index.

(3) Either x1 or x4 is adjacent to ti.

Proof of (3). Assume otherwise. If x1 and x4 have no neighbors in T titm−1 , then V (S4) ∪ V (T titm)∪ {x}
either induces a theta or a pyramid. So, let tj be the vertex of T ti+1tm−1 with highest index that has
a neighbor in {x1, x4}. W.l.o.g. let tj be adjacent to x1, and hence, by Lemma 4.1, not adjacent to x4.
Then it must be that either u = x1 or u = v = x′1, since otherwise V (S4) ∪ V (T tjtm) ∪ {x} induces
a theta or a pyramid. Also, by (1), N(x4) ∩ V (T ti+1tj−1) = ∅. So, let H ′ be the hole induced by
(V (S4) \ {x1}) ∪ V (T titm) ∪ {x}. Then (H ′, x1) is a 1-wheel, a contradiction. �

(4) x1 is adjacent to ti.

Proof of (4). Assume not. Then, by (3), ti is adjacent to x4 and hence, since ti 6∈ B, not adjacent to
x3. By (1), x1 and x2 have no neighbors in the interior of T . Let R be a chordless x2t1-path contained
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in the graph induced by N ∪ {x2, t1}. If N(x4) ∩ V (T t2ti−1) 6= ∅, let tj be the neighbor of x4 in T t2ti−1

with lowest index. Then tj is adjacent to x, since otherwise V (S4) ∪ V (R) ∪ V (T t1tj ) ∪ {x} induces a
1-wheel with center x. So, x3tj is not an edge. Now let R′ be the chordless x3tj-path contained in the
graph induced by N ∪ V (T t1tj ) ∪ {x3}. It follows that V (R′) ∪ {x, x4} induces a 3-wheel with center x,
a contradiction. So, N(x4)∩ V (T t2ti−1) = ∅. If we denote by D the chordless x3ti-path contained in the
graph induced by N ∪ V (T t1ti) ∪ {x3}, then V (D) ∪ {x4} induces a hole H ′ and (H ′, x) is a 3-wheel, a
contradiction. �

(5) {x3, x4} is anticomplete to V (T ) \ {t1, tm}.

Proof of (5). It follows from (1) and (4). �

By (4), ti is adjacent to x1. Since ti 6∈ A, ti is not adjacent to x2. Let R be the chordless x3t1-path
contained in the graph induced by N ∪{x3, t1}. If N(x1)∩V (T t2ti−1) 6= ∅, let tj be the neighbor of x1 in
T t2ti−1 with lowest index. Then tj is adjacent to x, since otherwise, by (5), V (S4)∪V (R)∪V (T t1tj )∪{x}
induces a 1-wheel with center x. So, x2tj is not an edge. Now let R′ be a chordless x2tj-path contained
in the graph induced by N ∪ V (T t1tj ) ∪ {x2}. It follows that V (R′) ∪ {x, x1} induces a 3-wheel with
center x, a contradiction. So, x1 has no neighbors in T t2ti−1 . If we denote by D a chordless x2ti-path
contained in the graph induced by N ∪ V (T t1ti) ∪ {x2}, then V (D) ∪ {x1} induces a hole H ′ and (H ′, x)
is a 3-wheel, a contradiction.

Case 2: (H,x) is a long alternating wheel.

First assume that t1 has a neighbor in N \ V (P ), and let u (resp. v) be the neighbor of t1 in S2 that is
closest to x2 (resp. x3). By Lemma 4.1, t1 is not adjacent to x.

(6) A vertex of {x2, x3} has a neighbor in T \ {t1, tm}.

Proof of (6). Assume otherwise and let R be a chordless xt1-path contained in the graph induced by
M ∪V (T )∪{x}. If u = v, then u /∈ {x2, x3} and hence V (S2)∪V (R) induces a 3PC(x, u). So, by Lemma
4.1, uv is an edge. But then the same vertex set induces a 3PC(uvt1, x), a contradiction. �

By (6), let ti be the vertex of T \ {t1, tm} with highest index that has a neighbor in {x2, x3}. W.l.o.g. let
ti be adjacent to x2. Then, by Lemma 4.1, ti is anticomplete to {x3, x4}.

(7) ti is adjacent to x.

Proof of (7). The graph induced by (V (H) \ {x1})∪ V (T titm) contains a hole H ′ that contains x4, V (S2)
and ti. By Lemma 3.1, (H ′, x) is an alternating wheel, and hence (7) holds. �

By (7), Lemma 4.1 and definition of T , N(ti)∩ (V (H)∪{x}) = {x, x2}. Let R be the chordless x1ti-path
contained in the graph induced by M ∪ V (T titm)∪ {x1}. By our choice of ti, V (R)∪ {x2} induces a hole
H ′ and (H ′, x) is a 3-wheel, a contradiction.

So, N(t1) ∩N ⊆ V (P ). Let pj be the neighbor of t1 in P with highest index. Instead of T , consider the
chordless path induced by {pk, . . . , pj , t1, . . . , tm}, and the arguments above still apply. This concludes
the proof of Lemma 4.2. �

Attachments.
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Let u ∈ A∪B and let Q = q1, . . . , qr be a chordless path in G\(V (H⋆)∪A∪B) such that N(u)∩V (Q) =
{q1}, no vertex in Q \ {qr} has a neighbor in H⋆ \ {x, x1, x2, x3, x4} and qr has a neighbor in M . Then
we say that Q is an attachment of u to M . By Lemma 4.1, N(qr) ∩ V (H⋆) ⊂ M ∪ {x, x1, x4}. Also, let
X ′

1 ⊆ A (resp. Y ′
1 ⊆ B) be the set of vertices in A (resp. B) that have an attachment to M , and let

X1 = X ′
1 ∪ {x1} (resp. Y1 = Y ′

1 ∪ {x4}).

Lemma 4.3 Let u ∈ X ′
1 and Q = q1, . . . , qr be an attachment of u to M . Then the following hold:

(i) x2 and x3 have no neighbors in Q.

(ii) x4 has no neighbors in Q \ {qr}.

Proof. Let v (resp. w) be the neighbor of qr in H \ V (S2) that is closest to x1 (resp. x4). Since
N(qr) ∩ V (H⋆) ⊂ M ∪ {x, x1, x4}, the following hold.

(1) qr is anticomplete to {x2, x3}.

(2) x3 and x4 have no neighbors in Q \ {qr}. In particular, (ii) holds.

Proof of (2). Assume otherwise. Let qi be the lowest indexed vertex of Q \ {qr} that has a neighbor in
{x3, x4} and let R be the chordless x2qi-path contained in the graph induced by V (Qq1qi)∪{x2, u}. First
suppose that qi is adjacent to x4. Then the graph induced by (V (H) \ V (S2)) ∪ V (Qq1qi) ∪ {u} contains
a hole H ′ that contains V (H) \ V (S2) and qi. Also, by Lemma 3.1, (H ′, x) is an alternating wheel. So,
qi is adjacent to x. By definition of Q, qi is not adjacent to x3. But then V (S2)∪V (R)∪ {x, x4} induces
a 3-wheel with center x. It follows that qi is adjacent to x3 and not adjacent to x4. Then qi is adjacent
to x, since otherwise V (S2)∪V (R)∪{x} either induces a theta or a 1-wheel with center x. Furthermore,
the graph induced by the vertex set (V (H)\V (S2))∪V (Qq1qi)∪{x3, u} contains a hole H ′′ that contains
V (H) \ V (S2), x3 and qi. But then (H ′′, x) is a 3-wheel, a contradiction. �

(3) x2 has no neighbors in Q \ {qr}.

Proof of (3). Assume not and let qi be the highest indexed vertex of Q \ {qr} that is adjacent to x2.
Then qi must be adjacent to x, since otherwise, by (1) and (2), the x2w-subpath of H \ {x1}, together
with V (Qqiqr) ∪ {x}, induces a 1-wheel with center x. Let R be the chordless x1qi-path contained in the
graph induced by V (Qqiqr) together with the x1v-subpath of H \ {x2}. Since qi /∈ A, qi is not adjacent
to x1 and hence V (R) ∪ {x2} induces a hole H ′ that contains x1, x2 and qi, and (H ′, x) is a 3-wheel, a
contradiction. �

By (1), (2) and (3), (i) holds. �

Analogous arguments prove Lemma 4.4.

Lemma 4.4 Let u ∈ Y ′
1 and Q = q1, . . . , qr be an attachment of u to M . Then the following hold:

(i) x2 and x3 have no neighbors in Q.

(ii) x1 has no neighbors in Q \ {qr}.

Now let u ∈ A ∪ B be a vertex that is not special, and let Q = q1, . . . , qr be a chordless path in
G \ (V (H⋆) ∪ A ∪ B) such that N(u) ∩ V (Q) = {q1}, no vertex in Q \ {qr} has a neighbor in H⋆ \
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{x, x1, x2, x3, x4} and qr has a neighbor in N . Then we say that Q is an attachment of u to N . By
Lemma 4.1, N(qr) ∩ V (H⋆) ⊂ N ∪ {x, x2, x3}. Let X ′

2 ⊆ A be the set of vertices in A that are either
special or that have an attachment toN , let Y ′

2 ⊆ B be the set of vertices in B that have an attachment
toN , and let X2 = X ′

2 ∪ {x2} and Y2 = Y ′
2 ∪ {x3}.

Lemma 4.5 Let u ∈ X ′
2 be a vertex that is not special and let Q = q1, . . . , qr be an attachment of u to

N . Then the following hold:

(i) x1 and x4 have no neighbors in Q.

(ii) x3 has no neighbors in Q \ {qr}.

Proof. Since N(qr) ∩ V (H⋆) ⊂ N ∪ {x, x2, x3}, the following holds.

(1) qr is anticomplete to {x1, x4}.

(2) x3 and x4 have no neighbors in Q \ {qr}. In particular, (ii) holds.

Proof of (2). Assume otherwise. Let qi be the lowest indexed vertex of Q \ {qr} that has a neighbor in
{x3, x4} and let R be the chordless x1qi-path contained in the graph induced by V (Qq1qi)∪{x1, u}. First
suppose that qi is not adjacent to x4, so x3qi ∈ E(G). The graph induced by V (S2) ∪ V (Qq1qi) ∪ {u}
contains a hole H ′ that contains V (S2) and qi. By Lemma 3.1, (H ′, x) is an alternating wheel. So, qi
is adjacent to x and (V (H) \ V (S2)) ∪ V (R) ∪ {x, x3} induces a 3-wheel with center x, a contradiction.
So, x4qi is an edge. Then qi is adjacent to x, since otherwise (V (H) \ V (S2)) ∪ V (R) ∪ {x} induces a
1-wheel with center x or a theta. Since qi /∈ B, qi is not adjacent to x3. Therefore the graph induced
by V (S2) ∪ V (Qq1qi) ∪ {x4, u} contains a hole H ′′ that contains V (S2), x4 and qi. But then (H ′′, x) is a
3-wheel, a contradiction. �

(3) x1 has no neighbors in Q \ {qr}.

Proof of (3). Assume not and let qi be the highest indexed vertex of Q\{qr} that is adjacent to x1. First
suppose that qr has a neighbor in the interior of S2 and let v (resp. w) be the neighbor of qr in S2 that is
closest to x2 (resp. x3). Then qi must be adjacent to x, since otherwise, by (1) and (2), the x1w-subpath
of H \ {x2}, together with V (Qqiqr) ∪ {x}, induces a 1-wheel with center x. Let R be the chordless
x2qi-path contained in the graph induced by V (Qqiqr) together with the x2v-subpath of H \ {x1}. Since
qi /∈ A, qi is not adjacent to x2 and hence V (R)∪{x1} induces a hole H ′ that contains x1, x2 and qi, and
(H ′, x) is a 3-wheel, a contradiction. It follows that qr has no neighbors in the interior of S2 and therefore
N(qr) ∩ V (P ) 6= ∅. Let pj be the neighbor of qr in P with highest index and, by (1) and (2), let H ′′ be
the hole induced by the x′2x1-subpath of H \ {x2} together with V (Qqiqr) ∪ V (P pjpk). Then xqi ∈ E(G),
since otherwise (H ′′, x) is a 1-wheel. Since qi cannot be complete to {x, x1, x2}, then qi is not adjacent
to x2. Let R

′′ be the chordless x2qi-path contained in the graph induced by V (Qqiqr) ∪ V (P pjpk) ∪ {x2}.
Then V (R′′) ∪ {x, x1} induces a 3-wheel with center x, a contradiction. �

By (1), (2) and (3), (i) holds. �

Analogous arguments prove Lemma 4.6.

Lemma 4.6 Let u ∈ Y ′
2 and Q = q1, . . . , qr be an attachment of u to N . Then the following hold:

(i) x1 and x4 have no neighbors in Q.
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(ii) x2 has no neighbors in Q \ {qr}.

Note that, by Lemma 4.1, Xi ∩ Yj = ∅ for every 1 ≤ i, j ≤ 2. We also have the following.

Lemma 4.7 X1 ∩X2 = Y1 ∩ Y2 = ∅.

Proof. Assume that X1 ∩X2 6= ∅ and let u ∈ A be a vertex that is not special and has an attachment
Q = q1, . . . , qr to N and an attachment T = t1, . . . , tm to M . By Lemma 4.2, V (Q) ∩ V (T ) = ∅ and
V (Q) is anticomplete to V (T ). Let v be the neighbor of tm in H \ V (S2) that is closest to x4. Suppose
that qr has a neighbor in the interior of S2 and let w be the neighbor of qr in S2 that is closest to x3.

First assume that x is not adjacent to t1. By Lemma 4.5, x3 (resp. x4) has no neighbors in Q \ {qr}
(resp. Q), and, by Lemma 4.3, x4 (resp. x3) has no neighbors in T \ {tm} (resp. T ). So the vw-subpath
of H \V (S1), together with V (Q)∪V (T )∪{u}, induces a hole H ′ that contains x3, x4 and u. By Lemma
3.1, (H ′, x) is an alternating wheel and hence x is adjacent to q1. By Lemma 4.5, x1 has no neighbors
in Q, and therefore the x1w-subpath of H \ {x2}, together with V (Q) ∪ {x, u}, induces a 3-wheel with
center x, a contradiction. So, xt1 is an edge. By Lemma 4.3, x2 has no neighbors in T . It follows that the
x2v-subpath of H \ {x1}, together with V (T ) ∪ {x, u}, induces a 3-wheel with center x, a contradiction.

It follows that qr has no neighbors in the interior of S2 but has a neighbor in P . Instead of Q, consider
now the chordless pkq1-path contained in the graph induced by V (Qq1qr) ∪ V (P ), and the arguments
above still apply. The same approach works when u is a special vertex. This proves that X1 ∩X2 = ∅.
Analogously, it can be shown that Y1 ∩ Y2 = ∅. �

Lemma 4.8 X1, X2, Y1 and Y2 are all cliques of G.

Proof. Suppose that u, v ∈ X1, u 6= v and uv is not an edge, and let Q (resp. T ) be an attachment of u
(resp. v) to M . Let R be a chordless uv-path contained in the graph induced by M∪V (Q)∪V (T )∪{u, v}.
By Lemma 4.3, V (R)∪ {x2} induces a hole H ′ and hence (H ′, x) is a 3-wheel, a contradiction. So, X1 is
a clique. Analogous arguments show that X2, Y1 and Y2 are cliques too. �

Ears.

Let T = t1, . . . , tm be a chordless path inG\(V (H⋆)∪A∪B) such thatN(ti)∩(V (H⋆)\{x, x1, x2, x3, x4}) =
∅, for every 1 ≤ i ≤ m, and let u ∈ A and v ∈ B be such thatN(u)∩V (T ) = {t1} andN(v)∩V (T ) = {tm}.
Then we say that T is an ear of H⋆, while u and v are said to be the attachments of T . Let X3 (resp.
Y3) be the set of vertices of A \ (X1 ∪X2) (resp. B \ (Y1 ∪ Y2)) that are attachments of an ear of H⋆.

Lemma 4.9 If T = t1, . . . , tm is an ear of H⋆, then N(ti) ∩ V (H) = ∅ for every 1 ≤ i ≤ m.

Proof. By definition, N(ti) ∩ V (H) ⊆ {x1, x2, x3, x4} for every 1 ≤ i ≤ m. We now show that ti is
anticomplete to {x1, x2} for every 1 ≤ i ≤ m. Assume otherwise and let tj be the vertex of T with
highest index that is adjacent to a vertex of {x1, x2}, and let u ∈ A and v ∈ B be the attachments of T .
By Lemma 4.1, tj is anticomplete to {x3, x4}. Furthermore, let R (resp. R′) be the chordless tjx4-path
(resp. tjx3-path) contained in the graph induced by V (T tj tm) ∪ {x4, v} (resp. V (T tjtm) ∪ {x3, v}). First
suppose that tjx1 is an edge, and let H ′ be the hole induced by the x1x4-subpath of H \ {x2} together
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with R. Then by Lemma 3.1, (H ′, x) is an alternating wheel, and hence tj is adjacent to x. Since tj /∈ A,
it follows that tj is not adjacent to x2. Now let H ′′ be the hole induced by V (S2) ∪ V (R′) ∪ {x1}. Then
(H ′′, x) is a 3-wheel, a contradiction. Hence, tj is adjacent to x2 and not adjacent to x1. Also, tj is
adjacent to x, since otherwise V (S2) ∪ V (R′) ∪ {x} either induces a theta or a 1-wheel with center x.
Therefore the x2x4-subpath of H \ {x3}, together with V (R) ∪ {x}, induces a 3-wheel with center x, a
contradiction. So ti is anticomplete to {x1, x2} for every 1 ≤ i ≤ m. Analogously it can be shown that
ti is also anticomplete to {x3, x4} for every 1 ≤ i ≤ m. �

Lemma 4.10 X3 (resp. Y3) is a clique of G that is complete to X1 ∪X2 (resp. Y1 ∪ Y2).

Proof. We only prove that X3 is a clique of G and that it is complete to X1∪X2, since similar arguments
show that Y3 is a clique of G that is complete to Y1 ∪ Y2.

(1) X3 is a clique of G.

Proof of (1). Assume not and let u, v ∈ X3, u 6= v, be such that uv /∈ E(G). Let T = t1, . . . , tm (resp.
D = d1, . . . , dh) be an ear of H⋆ with attachments u ∈ A and w ∈ B (resp. v ∈ A and z ∈ B). Let R
be a chordless uv-path contained in the graph induced by V (T )∪V (D)∪{x3, u, v, w, z}. By Lemma 4.9,
V (R) ∪ {x1} induces a hole H ′, and (H ′, x) is a 3-wheel, a contradiction. �

(2) X3 is complete to X1 ∪X2.

Proof of (2). Assume that X3 is not complete to X2. Let u ∈ X3 and v ∈ X2 (v not special), be such that
uv /∈ E(G). Let Q be an attachment of v to N and let T be an ear of H⋆ with attachments u ∈ A and
w ∈ B. Let R be a chordless uv-path contained in the graph induced byN∪V (Q)∪V (T )∪{u, v, w, x3}. By
Lemma 4.5 and Lemma 4.9, V (R)∪{x1} induces a hole H ′. But then (H ′, x) is a 3-wheel, a contradiction.
A similar argument applies when v is special. So X3 is complete to X2. Analogously, it can be shown
that X3 is also complete to X1. �

This proves the lemma. �

Let X = X1 ∪X2 ∪X3 and Y = Y1 ∪ Y2 ∪ Y3.

Lemma 4.11 X and Y are disjoint and anticomplete.

Proof. Sets X and Y are disjoint by Lemma 4.1. Suppose that u ∈ X and v ∈ Y are such that uv
is an edge. Then V (S2) ∪ {x, u, v} induces a 3-wheel with center x, a contradiction. So, X and Y are
anticomplete to each other. �

Putting things together.

We are ready to conclude the proof of Theorem 1.12. Let S = {x} ∪X ∪ Y .

Lemma 4.12 S is a cutset of G that separates N from M .

Proof. Suppose that S is not a cutset of G that separates N from M . Then there exists a path
Q = q1, . . . , qr in G \ S, such that q1 (resp. qr) has a neighbor in N (resp. M), and let Q be chosen such
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that it has the shortest length. It follows that Q is chordless and no vertex of Q \ {q1, qr} has a neighbor
in H⋆ \{x, x1, x2, x3, x4}. By Lemma 4.2, V (Q)∩ (A∪B) 6= ∅. So, let qi be the vertex of V (Q)∩ (A∪B)
with the lowest index, and w.l.o.g. assume that qi ∈ A. But then either i = 1 and q1 is special, or i > 1
and Qq1qi−1 is an attachment of qi to N , and hence qi ∈ X2, a contradiction. �

Let C∗ be the set of all connected components of G\S. The sets C1, C2, C3, CX , CY are defined as follows:

• C1 (resp. C2) is the vertex set of the connected component from C∗ that contains M (resp. N);

• CX (resp. CY ) is the union of vertex sets of all C ∈ C∗, such that N(C) ⊆ {x} ∪X (resp. N(C) ⊆
{x} ∪ Y );

• C3 is the union of vertex sets of all C ∈ C∗ such that V (C) 6⊆ C1 ∪ C2 ∪ CX ∪ CY .

Lemma 4.13 CX ∩CY = ∅.

Proof. Assume otherwise. Then CX and CY are both non-empty and such that N(CX) ⊆ {x} and
N(CY ) ⊆ {x}. But then G admits a clique cutset, a contradiction. �

Lemma 4.14 If C ∈ C∗ is such that V (C) 6⊆ C1 ∪ CX ∪ CY , then x1 and x4 have no neighbors in C.

Proof. Consider first the following claim.

(1) x1 and x4 have no neighbors in C2.

Proof of (1). Assume otherwise and let Q = q1, . . . , qr be a shortest path in G[C2 \N ] such that q1 (resp.
qr) has a neighbor in {x1, x4} (resp. N). Note that (since qi 6∈ S for every 1 ≤ i ≤ r) qr is not special,
and hence by Lemma 4.1, r ≥ 2. By minimality of Q, Q is chordless, no vertex of Q \ {q1} is adjacent
to x1 or x4, and no vertex of Q \ {qr} has a neighbor in N . Also, by Lemma 4.12, no vertex of Q has a
neighbor in M .

W.l.o.g. suppose x1q1 ∈ E(G). Then, by our choice of Q and Lemma 4.1, x4 is anticomplete to V (Q).
Let R be the chordless x3q1-path contained in the graph induced by V (Q) ∪N ∪ {x3}. Then the x1x3-
subpath of H \ {x2}, together with V (R) ∪ {x}, induces a 1-wheel with center x, unless x is adjacent to
q1. So, xq1 ∈ E(G). If x2q1 is an edge, then Qq2qr is an attachment of q1 to N , and hence q1 ∈ X2, a
contradiction. So, x2q1 is not an edge. Now let R′ be a chordless x2q1-path contained in the graph induced
by V (Q)∪N ∪{x2}. Then V (R′)∪{x1} induces a hole H ′ and (H ′, x) is a 3-wheel, a contradiction. �

By (1), w.l.o.g. we may assume that x1 has a neighbor in C ′ ∈ C∗ such that V (C ′) 6⊆ C1 ∪C2 ∪CX ∪CY .
So, C ′ contains a chordless path T = t1, . . . , tm such that t1 is adjacent to x1, tm is adjacent to a vertex
of Y and N(ti) ∩ V (H⋆) ⊆ {x, x1, x2, x3, x4} for every 1 ≤ i ≤ m. Pick such a path of minimum length.
Then no vertex of T \ {t1} is adjacent to x1 and no vertex of T \ {tm} has a neighbor in Y .

(2) tm is anticomplete to {x3, x4}.

Proof of (2). Assume otherwise and let H ′ be the hole induced by (V (H) \ V (S2)) ∪ V (T ), together
with x3 if tm is not adjacent to x4. By Lemma 3.1, (H ′, x) is an alternating wheel. It follows that t1 is
adjacent to x. Suppose that x2t1 /∈ E(G), and let R be the chordless x2t1-path contained in the graph
induced by V (S2) ∪ V (T ), together with x4 if tm is not adjacent to x3. Then V (R) ∪ {x1} induces a
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hole H ′′ and (H ′′, x) is a 3-wheel, a contradiction. So, x2t1 ∈ E(G). Let R′ be the chordless x2tm-path
contained in G[V (T ) ∪ {x2}]. First suppose that tm is adjacent to x3. Then xtm is an edge, since
otherwise V (S2) ∪ V (R′) ∪ {x} induces a theta or a 1-wheel with center x. Also, if x4tm 6∈ E(G), then
(H ′, x) is a 3-wheel. It follows that x3tm ∈ E(G), and hence m > 2, since otherwise (H ′, x) is a 3-wheel.
But then T t2tm−1 is an ear of H⋆ with attachments t1 and tm, implying that t1 ∈ X and tm ∈ Y , a
contradiction. So x3tm 6∈ E(G) and x4tm ∈ E(G). Since (H ′, x) is an alternating wheel, xtm ∈ E(G).
But then V (S2) ∪ V (R′) ∪ {x, x4} induces a 3-wheel with center x, a contradiction. �

By (2), tm has a neighbor u ∈ Y \ {x3, x4}. Note that xt1 is an edge, since otherwise (V (H) \ V (S2)) ∪
V (T )∪ {x, u} induces a 1-wheel with center x. If m = 1 then (V (H) \ V (S2))∪ {u, t1} induces a hole H ′

and (H ′, x) is a 3-wheel. So m ≥ 2. If x2 is adjacent to t1, then T t2tm is an ear of H⋆, and hence t1 ∈ X,
a contradiction. So, t1 is not adjacent to x2. If R denotes the chordless x2t1-path contained in the graph
induced by V (S2)∪V (T )∪{u}, then V (R)∪{x, x1} induces a 3-wheel with center x, a contradiction. �

Analogous arguments prove the following lemma.

Lemma 4.15 If C ∈ C∗ is such that V (C) 6⊆ CX ∪CY ∪ C2, then x2 and x3 have no neighbors in C.

Lemma 4.16 X \Xi and Y \ Yi are anticomplete to Ci, for 1 ≤ i ≤ 2.

Proof. Suppose that u ∈ X \ (X1 ∪ {x2}) has a neighbor in C1. It follows that G[C1 \M ] contains a
chordless path Q = q1, . . . , qr such that q1 is adjacent to u and qr has a neighbor in M . By Lemma 4.12,
no vertex of Q has a neighbor in N . Also, if we choose Q to be of shortest length, then no vertex of
Q \ {q1} is adjacent to u and no vertex of Q \ {qr} has a neighbor in M . So, since u 6∈ X1 and hence Q
is not an attachment of u to M , V (Q) ∩ (A∪B) 6= ∅, contradicting Lemma 4.15. It follows that X \X1

is anticomplete to C1. Similar arguments show that Y \ Y1 is anticomplete to C1, and that X \X2 and
Y \ Y2 are anticomplete to C2. �

Lemma 4.17 Xi and Yi are anticomplete to C3, for 1 ≤ i ≤ 2.

Proof. By Lemma 4.14 and Lemma 4.15, {x1, x2, x3, x4} is anticomplete to C3. Suppose that u ∈
X1 \ {x1} has a neighbor in C3. Then C3 contains a chordless path T = t1, . . . , tm, such that t1 is
adjacent to u, tm is adjacent to a vertex v ∈ Y \ {x3, x4} and N(ti) ∩ V (H⋆) ⊆ {x}, for every 1 ≤ i ≤ m.
Pick such a path of minimum length. Then no vertex of T \ {t1} is adjacent to x1 and no vertex of
T \ {tm} has a neighbor in Y \ {x3, x4}. Note that T is an ear of H⋆, with attachments u and v. By
Lemma 4.11, uv is not an edge. Let D = d1, . . . , dh be an attachment of u to M . Since T and D
belong to different connected components of G \ S, V (T ) ∩ V (D) = ∅ and V (T ) is anticomplete to
V (D). Also, V (D) ∩ {v} = ∅. Now let R be the chordless uv-path contained in the graph induced by
M ∪V (D)∪{u, v, x4}. Then V (R)∪V (T ) induces a hole H ′ and, by Lemma 3.1, (H ′, x) is an alternating
wheel. If x is adjacent to d1 (note that x3u is not an edge by Lemma 4.1), let R′ be the chordless
x3u-path contained in the graph induced by M ∪V (D)∪{u, x3, x4}. Then, by Lemma 4.3, V (R′)∪V (S2)
induces a hole H ′′, and (H ′′, x) is a 3-wheel, a contradiction. Hence, x is adjacent to t1. But then
V (S2) ∪ V (T ) ∪ {x, u, v} induces a 3-wheel with center x, a contradiction. Therefore X1 is anticomplete
to C3 and, similarly, so is Y1. Analogous arguments show that X2 ∪ Y2 is anticomplete to C3. �

Proof of Theorem 1.12. By definitions, Lemma 4.7, Lemma 4.11, Lemma 4.12 and Lemma 4.13,
S = ({x},X1,X2,X3, Y1, Y2, Y3, C1, C2, CX , CY ) is a partition of V (G). Also, if we set y1 = x4 and
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y2 = x3, S satisfies (i) by the definition of sets Xi, Yi and Ci, for 1 ≤ i ≤ 2, and X3, Y3. By Lemma 4.11,
X is anticomplete to Y , by Lemma 4.16 and Lemma 4.17, Xi ∪ Yi is anticomplete to Cj if i 6= j, and by
definitions, x is complete to X ∪ Y and a vertex from Xi ∪ Yi has a neighbor in Ci, for 1 ≤ i ≤ 3. So,
S satisfies (ii). By Lemma 4.8 and Lemma 4.10, S satisfies (iii). Finally, properties (iv) and (v) follow
from definitions of sets C1, C2, C3, CX and CY , and Lemma 4.12. So G is structured. �

4.1 Proof of Theorem 1.11

In this subsection we prove Theorem 1.11, so we further assume that G ∈ C does not contain a wheel
with an appendix. By Theorem 1.10, it is enough to consider the case when G contains a long alternating
wheel, i.e. we may assume that G satisfies Property 2. So we keep the same notation as before, and prove
that the structured partition S of G, obtained in Theorem 1.12, has some additional properties (under
the assumption that G does not admit a clique cutset).

Lemma 4.18 Let u ∈ X ′
2 and Q = q1, . . . , qr be an attachment of u to N . Then:

(1) x is anticomplete to V (Q);

(2) if x2 is not adjacent to qr, then it is anticomplete to V (Q).

Proof. (1) Assume not. Let qi be the highest indexed vertex of Q that is adjacent to x and let v be the
neighbor of qr in S2 that is closest to x3. By Lemma 4.1 x is not adjacent to qr, and hence i < r.

First suppose x2v /∈ E(G). Then, by Lemma 4.1, x2 is not adjacent to qr, and x2 must have a neighbor
in Qqiqr−1 , since otherwise, by Lemma 4.1 and Lemma 4.5, V (S2) ∪ V (Qqiqr) ∪ {x} induces a theta or a
pyramid. If x2 has a neighbor in Qqi+1qr−1, then the graph induced by V (S2)∪V (Qqi+1qr)∪{x} contains
a theta or a pyramid. So, N(x2)∩V (Qqiqr) = {qi}. By Lemma 4.5, the vx1-subpath of H \{x2}, together
with V (Qqiqr)∪{x, x2}, induces a 3-wheel with center x, a contradiction. It follows that x2v ∈ E(G). By
Lemma 4.5, the vx3-subpath of S2, together with V (Qqiqr)∪ {x}, induces a hole H ′, and, by Lemma 3.1,
(H ′, x2) is an alternating wheel. So, i < r − 1 and x2 is adjacent to qi and qr. But then, by Lemma 4.5,
Qqiqr is an appendix of (H,x), a contradiction. �

(2) Assume not. Let qi be the highest indexed vertex of Q that is adjacent to x2 and let v be the neighbor
of qr in S2 that is closest to x3. By Lemma 4.5 and (1), the vx3-subpath of S2 together with V (Q)∪{x, u}
induces a hole H ′, and therefore x2v is not an edge, since otherwise (H ′, x2) is a 1-wheel. Now, by Lemma
4.1, Lemma 4.5 and (1), V (S2) ∪ V (Qqiqr) ∪ {x} induces a theta or a pyramid, a contradiction. �

Lemma 4.19 X1 (resp. Y1) is complete to X2 (resp. Y2).

Proof. Let u ∈ X1 and v ∈ X2, and suppose that uv is not an edge. Let Q = q1, . . . , qr (resp.
T = t1, . . . , tm) be an attachment of v (resp. u) to N (resp. M). By Lemma 4.2, V (Q) ∩ V (T ) = ∅ and
V (Q) is anticomplete to V (T ).

Denote by w (resp. z) the neighbor of qr (resp. tm) in S2 (resp. V (H) \V (S2)) that is closest to x3 (resp.
x4). First suppose x2w ∈ E(G). It follows that r > 1 and qr is adjacent to x2 since otherwise, by Lemma
4.5 and Lemma 4.18, the vertex set V (S2) ∪ V (Q) ∪ {x, v} induces a 1-wheel or a 3-wheel with center
x2. By Lemma 4.3, the x2z-subpath of H \ {x1}, together with V (T ) ∪ {u}, induces a hole H ′ and, by
Lemma 3.1, (H ′, x) is an alternating wheel. Furthermore, by Lemma 4.5 and Lemma 4.18, the chordless

26



path induced by V (Q) ∪ {v} is an appendix of (H ′, x), a contradiction. Therefore x2w is not an edge,
and hence, by Lemma 4.1, x2 is not adjacent to qr. But then by Lemma 4.3, Lemma 4.5 and Lemma
4.18, the wz-subpath of H \{x1}, together with V (Q)∪V (T )∪{x2, u, v}, induces a hole H ′′, and (H ′′, x)
is a 3-wheel, a contradiction. So X1 is complete to X2, and by symmetry Y1 is complete to Y2. �

Proof of Theorem 1.11. Let K = {x}, W1 = X1, Z1 = Y1, W2 = X2 ∪ X3, Z2 = Y2 ∪ Y3, V1 =
W1 ∪ Z1 ∪ C1 and V2 = W2 ∪ Z2 ∪ C2 ∪ C3. We now show that, if G does not admit a clique cutset,
then (K,V1, V2) is a special 2-amalgam of G. By Lemma 4.8, Lemma 4.10, and Lemma 4.19, the sets
X1 ∪ X2 ∪ X3 and Y1 ∪ Y2 ∪ Y3 are cliques, and hence so are the sets N(CX) and N(CY ). So, by our
assumptions, CX = CY = ∅, and hence (K,V1, V2) is a special 2-amalgam of G. �

4.2 Proof of Lemma 4.1

We prove Lemma 4.1 by considering Property 1 and Property 2 separately.

The following simple result will be used throughout.

Lemma 4.20 Let (H,x) be an alternating wheel of a graph G ∈ C, and let y ∈ V (G) \ (V (H) ∪ {x}) be
adjacent to x. If u and v are consecutive neighbors of y in H, then they cannot belong to the interior of
two different long sectors of (H,x).

Proof. Otherwise the uv-subpath of H that does not contain any other neighbor of y in H, together
with {x, y}, induces a 1-wheel with center x. �

Property 1 holds.

We first assume that G satisfies Property 1. The wheel (H,x), its appendix P and other associated
notation are as in the beginning of Section 4. Let y be a vertex of G \ (V (H) ∪ V (P ) ∪ {x}). We also
use the following notation in this part: N = V (S2) \ {x2, x3}, M = V (H) \ (V (S2) ∪ {x1, x4}) and
N ′ = N ∪ V (P ).

Lemma 4.21 If y is adjacent to x and not adjacent to p1, then N(y) ∩ V (P ) = ∅.

Proof. Assume otherwise and let pi be the neighbor of y in P with lowest index. If y is adjacent to
x2, then V (P p1pi) ∪ {x, x2, y} induces a 3-wheel with center x2. So, x2y is not an edge. By Lemma 3.1,
(W,y) is an alternating wheel, and so y is adjacent to x3. If i = k, then y is also adjacent to x′2 and
hence {x, x2, x

′
2, y, pk} induces a 3-wheel with center pk. So, i < k. Let y′ be the neighbor of y in S2 that

is closest to x2 and let R be the x2y
′-subpath of S2. First assume that y′ 6= x3. If N(pj) ∩ {x2} = ∅

for every 1 < j ≤ i, V (R) ∪ V (P p1pi) ∪ {x, y} induces a 3PC(xx2p1, y). Otherwise let T be a chordless
x2y-path contained in the graph induced by V (P p2pi)∪{x2, y}. It follows that V (T )∪V (R)∪{x} induces
a 3PC(x2, y). So, y′ = x3. If there exists a chordless x2y-path T contained in the graph induced by
V (P p2pi) ∪ {x2, y}, then V (S2) ∪ V (T ) ∪ {x} induces a 3PC(xx3y, x2). So x2 has no neighbors in P p2pi .
Let y′′ be the neighbor of y in H \{x2} that is closest to x1. Then the y′′x1-subpath of H \{x2}, together
with V (P p1pi) ∪ {x2, y}, induces a hole H ′ and (H ′, x) is a 3-wheel, a contradiction. �

Lemma 4.22 If y is adjacent to p1, then N(y) ∩ (V (H) ∪ {x}) ⊆ {x, x1, x2}.
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Proof. Assume that y is adjacent to p1, but N(y) ∩ (V (H) ∪ {x}) * {x, x1, x2}.

(1) y is adjacent to x2.

Proof of (1). Assume otherwise and let y′ be the neighbor of y in H \ {x2} that is closest to x1. If
y′ 6= x′2, then the y′x1-subpath of H \ {x2}, together with {x, x2, y, p1}, induces a 3-wheel with center x.
So, y′ = x′2. By Lemma 3.1, (W,y) is an alternating wheel, and hence y is adjacent to pk. Let H

′ be the
hole induced by {x2, x

′
2, y, p1}. Then (H ′, pk) is a 3-wheel, a contradiction. �

(2) y is adjacent to x.

Proof of (2). Assume not. By (1), x2y ∈ E(G). The graph induced by (V (H)\{x1, x2})∪{x, y} contains
a chordless xy-path R, V (R) ∪ {p1} induces a hole H ′ and (H ′, x2) is a 3-wheel, a contradiction. �

(3) y is adjacent to x1.

Proof of (3). Assume not. By (1) and (2), xy and x2y are both edges. Let y′ be the neighbor of y in
H \ {x2} that is closest to x1. First assume y′ 6= x′2, and let R be the y′x1-subpath of H \ {x2}. Then
V (R) ∪ {x2, y} induces a hole H ′ and (H ′, x) is a 3-wheel. So, y′ = x′2. Let H ′′ be the hole induced by
(V (S2) \ {x2}) ∪ {x, y}. Then (H ′′, x2) is a 3-wheel, a contradiction. �

By (1), (2) and (3), {x, x1, x2} ⊆ N(y) ∩ (V (H) ∪ {x}).

(4) y is anticomplete to {x3, . . . , xn}.

Proof of (4). y is not adjacent to x3 (resp. xn), since otherwise (H2, y) (resp. (Hn, y)) is a 3-wheel. Now
assume that y is adjacent to xi for some 3 < i < n. In particular, let xi be such a neighbor of y in H
with lowest index. By Lemma 3.1, (H, y) is an alternating wheel. If i is even, then (Hi, y) is a 3-wheel.
So, i is odd.

Let R be the x2xi-subpath of H \ {x1}. If y does not have a neighbor in R \ {x2, xi}, then V (R)∪ {x, y}
induces a 3-wheel with center x. So, y has a neighbor in R \ {x2, . . . , xi}. Such a neighbor cannot belong
to the interior of any long sector Sj for 2 < j < i − 1, since otherwise y and Hj contradict Lemma 3.1.
Also, by Lemma 4.20, y does not have a neighbor in the interior of both S2 and Si−1. W.l.o.g. assume
that y has a neighbor in the interior of Si−1. Then (Hi−1, y) is a wheel, and hence an alternating wheel,
with appendix given by the x2xi−2-subpath of R. Since |V (Hi−1)| < |V (H)|, our choice of (H,x) is
contradicted. �

(5) y has no neighbors in the interior of any long sector of (H,x) that is not S2.

Proof of (5). Assume otherwise. If y has a neighbor in the interior of a long sector Si of (H,x), for some
2 < i < n, then, by (4), y and Hi contradict Lemma 3.1. So y has a neighbor in the interior of Sn and
(Hn, y) is a wheel, and hence an alternating wheel, with rim shorter than H. By Lemma 4.20 and (4), y
is anticomplete to V (S2) \ {x2}, and hence N(y) ∩ V (H) ⊆ V (Sn) ∪ {x2}. If N(y) ∩ V (P ) = {p1}, then
(Hn, y) has an appendix induced by the x′2xn−1-subpath of H \ {x2} together with V (P ), contradicting
our choice of (H,x). So, y has a neighbor in P \ {p1} and let pj be such a neighbor with highest index.
Let y′ be the neighbor of y in the interior of Sn that is closest to xn on Sn. Then the x′2y

′-subpath of
H \ {x2}, together with V (P pjpk) ∪ {x, y}, induces a 1-wheel with center x, a contradiction. �

By (4) and (5), N(y) ∩ V (H) ⊆ (V (S2) \ {x3}) ∪ {x1} and, by our initial assumption, y has a neighbor
in the interior of S2. It follows that (H2, y) is a wheel and hence an alternating wheel. Let y′ be
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the neighbor of y in S2 that is closest to x3 and let R be the y′x1-subpath of H \ {x2}. Then the
vertex set V (R) ∪ {y} induces a hole H ′ and (H ′, x) is an alternating wheel with appendix induced by
(V (H) \ (V (R) ∪ {x2})) ∪ V (P ). Since |V (H ′)| < |V (H)|, our choice of (H,x) is contradicted. �

Lemma 4.23 y is anticomplete to at least one of N ′,M .

Proof. Suppose that y has a neighbor in both N ′ and M . It suffices to consider the following two cases.

Case 1: y has a neighbor in M and a neighbor in N .

(1) (H, y) is an alternating wheel.

Proof of (1). It follows from our assumptions and Lemma 3.1. �

(2) y is not adjacent to x.

Proof of (2). Assume it is. By Lemmas 4.21 and 4.22, N(y)∩V (P ) = ∅. Let u (resp. v) be the neighbor
of y in H \ {x2} that is closest to x′2 (resp. x1). By our assumptions, u ∈ N and v ∈ M ∪ {x1}. Let R
be the x2u-subpath of H \ {x1}. If y is not adjacent to x2, then the vx1-subpath of H \ {x2}, together
with V (R) ∪ {y}, induces a hole H ′. Also, (H ′, x) is a wheel, and hence an alternating wheel, with
appendix P and such that |V (H ′)| < |V (H)|, a contradiction. It follows that x2y is an edge. But then
V (P ) ∪ V (R) ∪ {x, y} induces a 3-wheel with center x2, a contradiction. �

(3) (H,x) is a long alternating wheel.

Proof of (3). Assume not. So, (H,x) is a line wheel. By (2), xy is not an edge. Let R be the chordless
xy-path contained in the graph induced by N ′∪{x, y}. If y has a single neighbor in S4, then this neighbor
belongs to the interior of S4, which contradicts (1). If y has two neighbors in S4, and these neighbors
are adjacent, then V (S4) ∪ V (R) induces a pyramid. It follows that y has non-adjacent neighbors in S4.
But then the graph induced by V (S4) ∪ V (R) contains a 3PC(x, y), a contradiction. �

By (2), y is not adjacent to x. By (3), the graph induced by M ∪ {x, y} contains a chordless xy-path R.
If y has non-adjacent neighbors in S2, then the graph induced by V (S2) ∪ V (R) contains a 3PC(x, y).
So, by (1), y has two neighbors in S2 and these neighbors are adjacent. But then V (S2) ∪ V (R) induces
a pyramid, a contradiction.

Case 2: y has a neighbor in M , a neighbor in P and no neighbors in N .

(4) y is not adjacent to x.

Proof of (4). Otherwise, by Lemma 4.21, yp1 is an edge, and so Lemma 4.22 is contradicted. �

By (4), xy is not an edge. Let pi be the neighbor of y in P with lowest index and let R be the chordless
xy-path induced by V (P p1pi) ∪ {x, y}.

(5) y has at least two neighbors in H \ V (S2).

Proof of (5). Suppose that y′ is the unique neighbor of y in H \ V (S2). Then y′ ∈ M and hence, by
Lemma 3.1, N(y) ∩ V (H) = {y′}. If y′ belongs to the interior of a long sector Si of (H,x), for some
4 ≤ i ≤ n, then V (Si) ∪ V (R) induces a 3PC(x, y′). So y′ = xj for some 4 < j ≤ n. First assume that j
is even. Let R′ be the chordless x2pi-path contained in the graph induced by V (P p1pi) ∪ {x2}. Then the
xjx2-subpath of H \ {x3}, together with V (R′)∪{y}, induces a hole H ′ and (H ′, x) is a 1-wheel. So, j is
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odd. Let pr be the neighbor of y in P with highest index. Then the x′2xj-subpath of H \ {x2}, together
with V (P prpk) ∪ {x, y}, induces a 1-wheel with center x, a contradiction. �

(6) y does not have non-adjacent neighbors in H \ V (S2).

Proof of (6). Otherwise the graph induced by the vertex set (V (H)\V (S2))∪V (R) contains a 3PC(x, y),
a contradiction. �

By (5) and (6), y has two neighbors in H \V (S2), say y′ and y′′, and y′y′′ is an edge. If they both belong
to the same long sector Si of (H,x), for some 4 ≤ i ≤ n, then V (Si)∪V (R) induces a 3PC(yy′y′′, x). So,
w.l.o.g. y′ = xj and y′′ = xj+1 for some 4 < j < n, j odd. By Lemma 3.1, y is not adjacent to x2. Let R

′

be the chordless x2pi-path contained in the graph induced by V (P p1pi)∪{x2}. Then the xj+1x2-subpath
of H \ {x3}, together with V (R′) ∪ {y}, induces a hole H ′ and (H ′, x) is a 1-wheel, a contradiction. �

Proof of Lemma 4.1 (under the assumption that Property 1 holds). Assume otherwise.

(1) y has no neighbors in M .

Proof of (1). Assume it does. By Lemma 4.23, y has no neighbors in N ′. First suppose that y has
non-adjacent neighbors in H \N . Let y′ (resp. y′′) be the one that is closest to x2 (resp. x3). Then the
y′x2-subpath of H \ N , together with the x3y

′′-subpath of H \ N and V (S2) ∪ {y}, induces a hole H ′.
By Lemma 3.1, (H ′, x) is an alternating wheel with appendix P . By Lemma 3.1, (H, y) is an alternating
wheel and hence |V (H ′)| < |V (H)|, so that (H ′, x) contradicts our choice of (H,x). So, y does not have
non-adjacent neighbors in H \N . It follows that y is adjacent to x and has a neighbor that belongs to the
interior of a long sector Si of (H,x), for some 4 ≤ i ≤ n. But then y and Hi contradict Lemma 3.1. �

(2) y is not adjacent to x1.

Proof of (2). Assume it is. By (1), y has no neighbors in M . Suppose that y has no neighbors in
V (H) \ {x1, x2}. It follows that y has a neighbor in P and let pi be such a neighbor with highest
index. Then y is adjacent to x, since otherwise (V (H) \ {x2}) ∪ V (P pipk) ∪ {x, y} induces a 1-wheel
with center x. So, by Lemma 4.21, yp1 is an edge. Since {x, x1, x2, y, p1} cannot induce a 3-wheel with
center x, y is adjacent to x2. Therefore, y is complete to {x, x1, x2, p1}. If N(y) ∩ V (P ) = {p1}, then
(V (H) \ {x2})∪ V (P )∪ {x, y} induces a 3-wheel with center x. It follows that {p1} ⊂ N(y)∩ V (P ). But
then, by Lemma 3.1 applied to W and y, y is a special vertex of G, a contradiction.

So, y has a neighbor in H \(M∪{x1, x2}). Let y
′ be such a neighbor that is closest to x4 and let H ′ be the

hole induced by the y′x1-subpath of H \ {x2} together with y. By Lemma 3.1, (H ′, x) is an alternating
wheel, and hence xy ∈ E(G) and y′ /∈ {x3, x4}. By Lemma 3.1, (H, y) is an alternating wheel, and so x2y
is an edge. By Lemma 3.1, (W,y) is an alternating wheel, and hence yp1 ∈ E(G), contradicting Lemma
4.22. �

(3) y is not adjacent to x4.

Proof of (3). Assume it is. By (1) and (2), y has no neighbors in M∪{x1}. Suppose that y has a neighbor
in P . Then, by Lemmas 4.21 and 4.22, y is not adjacent to x. Let R be a chordless x2y-path contained
in the graph induced by V (P )∪ {x2, y}, and let H ′ be the hole induced by (V (H) \ V (S2)) ∪ V (R). But
then (since xy is not an edge) (H ′, x) is a 1-wheel. Therefore y has no neighbors in P . Since N(y)∩V (H)
is not a clique, y must have a neighbor in S2 \ {x3}, and let y′ be such a neighbor closest to x2. Let
H ′′ be the hole induced by y together with the x4y

′-subpath of H \ {x3}. By Lemma 3.1, (H ′′, x) is an
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alternating wheel and hence y is adjacent to x and y′ 6= x2. Also, by Lemma 3.1, (H, y) is an alternating
wheel, and so |V (H ′′)| < |V (H)|. Note that P is an appendix of (H ′′, x), and hence our choice of (H,x)
is contradicted. �

(4) y is not adjacent to x2.

Proof of (4). Assume it is. By (1), (2) and (3), y has no neighbors in H \ V (S2). First suppose that y
has no neighbors in N . Then y is not adjacent to x3, since otherwise V (S2)∪ {x, y} induces a theta or a
3-wheel with center x. Now assume that xy is an edge. By our assumptions, y has a neighbor in P \{p1}.
Then, by Lemma 4.21, y is adjacent to p1. Let pi be the neighbor of y in P with highest index, and
note that i > 2 since, by Lemma 3.1, V (W ) ∪ {y} must induce an alternating wheel. It follows that the
chordless path induced by V (P pipk)∪{y} is an appendix of (H,x) that is shorter than P , a contradiction.

So, y is not adjacent to x and has a neighbor in P . Let pj (resp. pr) be the neighbor of y in P with lowest
(resp. highest) index. First suppose that j 6= r and pjpr is not an edge. By Lemma 3.1, (W,y) is an
alternating wheel, and so r > j + 3. Therefore the chordless path induced by V (P p1pj) ∪ V (P prpk)∪ {y}
is an appendix of (H,x) that is shorter than P , a contradiction. Now assume that pjpr is an edge. Since
N(y) ∩ (V (P ) ∪ {x2}) is not a clique of size 3, x2 is not adjacent to at least one of pj, pr and hence the
graph induced by V (P )∪{x2, y} contains a 1-wheel or a 3-wheel with center y. It follows that j = r and
x2pj is not an edge. But then the graph induced by V (P ) ∪ {x2, y} contains a theta, a contradiction.

So, y has a neighbor in N , and let y′ be the one that is closest to x3 on S2. First assume y′ = x′2. Then
y is anticomplete to {x, x3}, since otherwise V (S2) ∪ {x, y} induces a 1-wheel or a 3-wheel with center y.
So, by our assumptions, y has a neighbor in P \{pk} and let pℓ be the one with lowest index. By Lemma
3.1, (W,y) is an alternating wheel, and so ℓ < k − 1. By Lemma 4.22, ℓ > 1, and hence the chordless
path induced by V (P p1pℓ) ∪ {y} is an appendix of (H,x) that is shorter than P , a contradiction.

So, y′ 6= x′2 and V (S2) ∪ {x, y} induces an alternating wheel with center y. If y is adjacent to x, then
the y′x2-subpath of H \ {x′2}, together with {x, y}, induces a 3-wheel with center x. So, y is adjacent
to x′2 and not adjacent to x. Also, (W,y) is an alternating wheel and hence y is adjacent to pk. Let ps
be the neighbor of y in P with lowest index. By Lemma 4.22, s > 1. In particular, s > 2 and x2ps is
an edge, since otherwise the y′x3-subpath of S2, together with V (P p1ps) ∪ {x, x2, y}, induces a 1-wheel
or a 3-wheel with center x2. Let H ′ be the hole induced by the y′x2-subpath of H \ {x′2} together with
y. Then (H ′, x) is an alternating wheel with appendix P p1ps and such that |V (H ′)| < |V (H)|, which
contradicts our choice of (H,x). �

(5) y has no neighbors in V (S2) \ {x2}.

Proof of (5). Assume it does and let y′ be such a neighbor that is closest to x3. If y
′ = x′2, then y is not

adjacent to x (else V (S2) ∪ {x, y} induces a theta) and so, since N(y) ∩ (V (H) ∪ V (P ) ∪ {x}) is not a
clique, y has a neighbor in P \{pk}. This implies that the graph induced by V (S2)∪(V (P )\{pk})∪{x, y}
contains a 3PC(xx2p1, x

′
2). So, y′ 6= x′2. By (1), (2), (3) and (4), y is anticomplete to M ∪ {x1, x2, x4}.

Let R be the y′x2-subpath of H \ {x′2}. First suppose that N(y) ∩ V (P ) 6= ∅. Let pi (resp. pj) be the
neighbor of y in P with lowest (resp. highest) index. By Lemma 4.22, i > 1. Then, by Lemma 4.21, xy is
not an edge. If i 6= j and pipj is not an edge, then the graph induced by V (R)∪V (P p1pi)∪V (P pjpk)∪{y}
contains a 3PC(y, x2). Now assume that pipj is an edge. If x2 is not adjacent to both pi and pj, then
the graph induced by V (R) ∪ V (P ) ∪ {y} contains a 3PC(pipjy, x2). So, x2 is adjacent to both pi and
pj. Since (W,x2) is an alternating wheel, i > 2 and pi−1 is not adjacent to x2. It follows that the
y′x3-subpath of S2, together with V (P p1pi)∪{x, x2, y}, induces a 1-wheel with center x2, a contradiction.
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Therefore, i = j. By Lemma 3.1, (W,y) is an alternating wheel. So, N(y) ∩ V (P ) = {pk}, y is adjacent
to x′2 and x′2y

′ is not an edge. Then the y′x3-subpath of S2, together with {x, x2, x
′
2, y, pk}, induces a

3-wheel with center pk, a contradiction.

It follows that y has no neighbors in P . Let y′′ be the neighbor of y in V (S2) \ {x2} that is closest to x′2.
If y is adjacent to x then, by Lemma 3.1, (W,y) is an alternating wheel and hence y′ = x3, y

′ 6= y′′ and
y′y′′ is not an edge. So, the x′2y

′′-subpath of H \ {x2}, together with V (R) ∪ {x, y}, induces a 3-wheel
with center x. Therefore, y is not adjacent to x. Since N(y) ∩ (V (H) ∪ V (P ) ∪ {x}) is not a clique,
y′ 6= y′′, y′y′′ is not an edge and hence, by Lemma 3.1, (W,y) is an alternating wheel. It follows that the
x′2y

′′-subpath of H \ {x2}, together with V (R) ∪ {y}, induces a hole H ′ that is shorter than H. Also,
(H ′, x) is an alternating wheel with appendix P , a contradiction. �

By (1), (2), (3), (4) and (5), N(y)∩(V (H)∪V (P )∪{x}) ⊆ V (P )∪{x} and, sinceN(y)∩(V (H)∪V (P )∪{x})
is not a clique, by Lemma 3.1, (W,y) is an alternating wheel. If y is not adjacent to x, then the graph
induced by V (P ) ∪ {y} contains a chordless p1pk-path that contains y and is an appendix of (H,x) that
is shorter than P , a contradiction. So, y is adjacent to x and hence {p1} ⊂ N(y) ∩ V (P ). Let pi be the
neighbor of y in P with highest index. Then the graph induced by V (P pipk) ∪ {x, x2, y, p1} contains a
3-wheel with center p1, a contradiction. �

Property 2 holds.

We now assume that G satisfies Property 2. The wheel (H,x) and other associated notation are as in
the beginning of Section 4.

Proof of Lemma 4.1 (under the assumption that Property 2 holds). Let y ∈ V (G) \ (V (H)∪{x}) and
assume that N(y) ∩ (V (H) ∪ {x}) is not a clique. We consider the following two cases.

Case 1: y is adjacent to x.

(1) For every long sector Si of (H,x), either N(y) ∩ V (Si) ⊆ {xj} for i ≤ j ≤ i + 1 or (Hi, y) is a line
wheel.

Proof of (1). Note that y cannot be adjacent to both xi and xi+1, since otherwise (Hi, y) is a 3-wheel. If
y has a neighbor in the interior of Si then, by Lemma 3.1, (Hi, y) is an alternating wheel. In particular,
by our choice of (H,x), (Hi, y) is a line wheel and hence (1) holds. �

(2) y is complete to a short sector of (H,x).

Proof of (2). Assume otherwise. W.l.o.g. y has a neighbor in a long sector Si of (H,x). Therefore, by
(1), y has a neighbor in {xi, xi+1}. So w.l.o.g. assume that y is adjacent to xi. Let y

′ be the neighbor of
y in H \ {xi} that is closest to xi−1 (it exists since N(y)∩ (V (H)∪ {x}) is not a clique). By (1), y′ 6= x′i.
But then the y′xi-subpath of H that contains xi−1, together with {x, y}, induces a 3-wheel with center
x, a contradiction. �

By (2), w.l.o.g. we may assume that y is complete to S1. Also, by our assumptions, y has a neighbor in
H \ {x1, x2}.

(3) y has a neighbor in {x3, . . . , xn}.
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Proof of (3). Assume otherwise. Then y has a neighbor in the interior of a long sector of (H,x), say Si.
Note that i = 2 or i = n, since otherwise (1) is contradicted. W.l.o.g. i = 2 and let y′ be the neighbor of
y in the interior of S2 that is closest to x3 on S2. By (1), y′ 6= x′2. By Lemma 4.20, y has no neighbors in
the interior of Sn. But then the y′x1-subpath of H \{x2}, together with {x, y}, induces a long alternating
wheel with center x and rim shorter than H, a contradiction. �

(4) y is anticomplete to {x3, x4, xn−1, xn}.

Proof of (4). Assume not and w.l.o.g. suppose that y has a neighbor in {x3, x4}. By (1), x3y is not an edge.
But then the graph induced by V (S2) ∪ {x, x4, y} contains a 3-wheel with center x, a contradiction. �

By (3) and (4), y is adjacent to xi for some 4 < i < n − 1. W.l.o.g. assume that y has no neighbors in
{x3, x4, . . . , xi−1}.

(5) i is odd, and x2 and xi are not consecutive neighbors of y in H.

Proof of (5). Let R be the x2xi-subpath of H \ {x1} and let y′ be the neighbor of y in R \ {xi} that is
closest to xi on R. Let R′ be the y′xi-subpath of R. If i is even or y′ = x2, then V (R′) ∪ {x, y} induces
a 3-wheel with center x. Therefore, (5) holds. �

By (5), y has a neighbor in the interior of a long sector Sj of (H,x), for some 1 < j < i. By (1), j = 2
or j = i − 1. So, w.l.o.g. assume j = 2 and, by (1), let y′ and y′′ be the adjacent neighbors of y in the
interior of S2, where y′ is closer to x2 on S2. By Lemma 4.20, y′′ and xi are consecutive neighbors of
y in H. Also, since (H2, y) is a line wheel, y′ is not adjacent to x2. Let H ′ be the hole induced by the
y′′xi-subpath of H \ {x2} together with y. Then (H ′, x) is an alternating wheel with appendix given by
the x2y

′-subpath of S2, a contradiction.

Case 2: y is not adjacent to x.

(6) (H, y) is an alternating wheel.

Proof of (6). Since N(y) ∩ V (H) is not a clique, y has at least two non-adjacent neighbors in H and so,
by Lemma 3.1, (6) holds. �

W.l.o.g. assume that y has a neighbor is S2.

(7) N(y) ∩ V (H) ⊆ V (S2) ∪ {x1, x4}.

Proof of (7). Assume not. Then the graph induced by (V (H) \ (V (S2) ∪ {x1, x4})) ∪ {x, y} contains a
chordless xy-path R. If y has non-adjacent neighbors in S2, then the graph induced by V (S2) ∪ V (R)
contains a 3PC(x, y). If y has exactly two neighbors in S2 then, by Lemma 3.1 applied to y and H2, they
are adjacent and hence V (S2) ∪ V (R) induces a pyramid. Therefore y has a unique neighbor y′ in S2. If
y′ 6∈ {x2, x3} then V (S2) ∪ V (R) induces a 3PC(x, y′). So w.l.o.g. y′ = x2. Let y′′ be the neighbor of y
in H \ V (S2) that is closest to x4. Since y′′ 6= x1, the x2y

′′-subpath of H that contains x3, together with
{x, y}, induces a 1-wheel with center x, a contradiction. �

Let y′ (resp. y′′) be the neighbor of y in the path induced by V (S2) ∪ {x1, x4} that is closest to x1
(resp. x4). By (6) and (7), the y′y′′-subpath of H that contains x5, together with y, induces a hole H ′

that is shorter than H. By Lemma 3.1, (H ′, x) is an alternating wheel, thus contradicting our choice of
(H,x). �
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5 Proof of Theorem 1.13

Proof of Theorem 1.13. Our proof is by induction on |V (G)|. By Theorem 1.8, G is the line graph
of a triangle-free graph or it admits a clique cutset or a small 2-amalgam. Let us consider these three
cases.

Case 1: G is the line graph of a triangle-free graph.

By Vizing’s theorem, χ(G) ≤ ω(G) + 1 ≤ 4, which completes the proof.

Case 2: G admits a clique cutset.

Let K be a clique cutset of G, let C1, . . . , Ck, k ≥ 2, be the connected components of G \ K, and, for
every 1 ≤ i ≤ k, let Gi = G

[

V (Ci) ∪ K
]

. By induction, for every 1 ≤ i ≤ k, Gi is 4-colorable. For
1 ≤ i ≤ k, let ci be a 4-coloring of Gi. Since K is a clique, vertices of K must have different colors in
all of these colorings. So, we can permute the colors of ci’s so that they all agree on the colors of the
vertices of K, and by putting together such colorings we get a 4-coloring of G.

Case 3: G admits a small 2-amalgam.

Let ({x}, V1, V2) be a small 2-amalgam of G, and let W1 = {x1}, W2 = {x2}, Z1 = {x4} and Z2 = {x3}.
Let G1 = G[V1∪{x, x2, x3}] and G2 = G[V2∪{x, x1, x4}]. Since G is K4-free, ω(G) = ω(G1) = ω(G2) = 3.
Let c1 (resp. c2) be a 4-coloring of G1 (resp. G2). W.l.o.g. assume that c1 and c2 agree on {x, x1, x2}.
If they also agree on {x3, x4}, then we are done. So, consider the case where they do not agree. W.l.o.g.
suppose c1(x) = c2(x) = 1, c1(x1) = c2(x1) = 2 and c1(x2) = c2(x2) = 3.

If c1(x4) 6= c2(x3), then we can obtain a 4-coloring of G by coloring every vertex from V (G1) \ {x3} with
the same color as in the coloring c1, and by coloring every vertex from V (G2) \ {x4} with the same color
as in the coloring c2.

So, assume that c1(x4) = c2(x3). First suppose that c1(x4) ∈ {2, 3}. Then w.l.o.g. we may assume that
c1(x4) = 2. To obtain a 4-coloring c of G we first color every vertex from V (G1) \ {x3} with the same
color as in the coloring c1. Then, for a vertex v ∈ V2 we define c(v) in the following way: c(v) = c2(v) if
c2(v) ∈ {1, 3}, c(v) = 2 if c2(v) = 4, and c(v) = 4 if c2(v) = 2.

Finally, let c1(x4) = c2(x3) = 4. To obtain a 4-coloring c of G we first color every vertex from V (G1)\{x3}
with the same color as in the coloring c1. Then, for a vertex v ∈ V2 we define c(v) in the following way:
c(v) = c2(v) if c2(v) ∈ {1, 3}, c(v) = 2 if c2(v) = 4, and c(v) = 4 if c2(v) = 2. �
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