

This is a repository copy of Expanding Hermitian operators in a basis of projectors on coherent spin states.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/1354/

Article:

Weigert, S. orcid.org/0000-0002-6647-3252 (2004) Expanding Hermitian operators in a basis of projectors on coherent spin states. Journal of Optics B: Quantum and Semiclassical Optics. pp. 489-490. ISSN: 1464-4266

https://doi.org/10.1088/1464-4266/6/12/001

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Expanding Hermitean Operators in a Basis of Projectors on Coherent Spin States

Stefan Weigert
Institut de Physique, Université de Neuchâtel
Rue A.-L. Breguet 1, CH-2000 Neuchâtel, Switzerland
stefan.weigert@iph.unine.ch

July 1999

Abstract

The expectation values of a hermitean operator \widehat{A} in $(2s+1)^2$ specific coherent states of a spin are known to determine the operator unambiguously. As shown here, (almost) any other $(2s+1)^2$ coherent states also provide a basis for self-adjoint operators. This is proven by considering the determinant of the Gram matrix associated with the coherent state projectors as a Hamiltonian of a fictitious classical spin system.

State reconstruction [1] aims at parametrizing the density matrix $\hat{\rho}$ of a quantum system by the expectations of appropriately chosen observables, the quorum. For a spin s, the (unnormalized) density matrix has $N_s = (2s+1)^2$ independent real parameters; in [2], a particularly simple and non-redundant quorum consisting of precisely N_s projectors on coherent spin states $|\mathbf{n}\rangle$, satisfying $\mathbf{n} \cdot \hat{\mathbf{S}} |\mathbf{n}\rangle = \hbar s |\mathbf{n}\rangle$, has been identified.

Indeed, the density matrix $\hat{\rho}$ of a spin s is determined unambiguously if one performs appropriate measurements with a traditional Stern-Gerlach apparatus. Distribute N_s axes $\mathbf{n}_n, n = 1, \ldots, N_s$, over (2s+1) cones about the z axis with different opening angles in such a way that the set of the (2s+1) directions on each cone is invariant under a rotation about z by an angle $2\pi/(2s+1)$. Then, an (unnormalized) statistical operator $\hat{\rho}$ is fixed by measuring the $(2s+1)^2$ relative frequencies $p_s(\mathbf{n}_n) = \langle \mathbf{n}_n | \hat{\rho} | \mathbf{n}_n \rangle$, that is, by the expectation values of the statistical operator $\hat{\rho}$ in the coherent states $|\mathbf{n}_n\rangle$. In other words, a hermitean operator $\hat{A} \in \mathcal{A}_s$ (which is the space of linear operators acting in the Hilbert space \mathcal{H}_s of the spin) is fixed by the values of its Q-symbol, $Q_A(\mathbf{n}) = \text{Tr}[\hat{A}|\mathbf{n}\rangle\langle\mathbf{n}|] = \langle\mathbf{n}|\hat{A}|\mathbf{n}\rangle$ at N_s appropriately chosen points. For brevity, let us denote a set of N_s points (as well as the associated family of N_s unit vectors \mathbf{n}_n) as a 'constellation' \mathcal{N} or a 'hedgehog' \mathcal{N} with unit spikes \mathbf{n}_n . Independent reconstruction schemes for spin s do exist [3, 4].

For technical reasons, the spatial directions \mathbf{n}_n dealt with in [2] were restricted to a certain class of regular hedgehogs, \mathcal{N}_0 . The purpose here is to show that this restriction is not necessary: given a generic constellation \mathcal{M} , the N_s values of the Q-symbol $Q_A(\mathbf{n}_n)$ contain all the information about the operator \hat{A} . Let us put it differently: given any constellation \mathcal{M} of vectors \mathbf{m}_n , then either the numbers $Q_A(\mathbf{m}_n)$ determine \hat{A} , or there is an infinitesimally close constellation \mathcal{M}' such that the numbers $Q_A(\mathbf{m}'_n)$ do the job. Two hedgehogs \mathcal{M}' and \mathcal{M} are close if, for example, the number

$$d(\mathcal{M}', \mathcal{M}) = \sum_{n=1}^{N_s} |\mathbf{m}'_n - \mathbf{m}_n|, \qquad (1)$$

is small. To visualise this statement, consider the real vector space \mathbb{R}^3 : any three unit vectors form a basis provided they are neither co-planar nor co-linear. Among all possibilities, the exceptional constellations have measure zero. At the same time, it is obvious that arbitrarily small variations typically turn the three linearly dependent vectors into a basis of \mathbb{R}^3 .

The starting point of the proof are N_s projection operators on coherent states,

$$\hat{Q}_n = |\mathbf{n}_n\rangle\langle\mathbf{n}_n|, \quad \mathbf{n}_n \in \mathcal{N}^0, \qquad 1 \le n \le N_s,$$
 (2)

determined uniquely by the constellation \mathcal{N}_0 described. It will be shown now any other hedgehog \mathcal{M} (or an infinitesimally close one, \mathcal{M}') also will provide a basis of the space \mathcal{A}_s .

The N_s^2 elements of the *Gram matrix* $G_{nn'}$ [5] associated with a constellation \mathcal{M} are given by the scalar product of the projectors on coherent states:

$$\mathsf{G}_{nn'} = \operatorname{Tr} \left[\widehat{Q}_n \widehat{Q}_{n'} \right] = |\langle \mathbf{m}_n | \mathbf{m}_{n'} \rangle|^2 = \left(\frac{1 + \mathbf{m}_n \cdot \mathbf{m}_{n'}}{2} \right)^{2s}, \qquad 1 \le n, n' \le N_s.$$
 (3)

Thus, the scalar product of two coherent states is a polynomial in the components of the associated unit vectors \mathbf{m}_n and $\mathbf{m}_{n'}$. The result in [2] comes down to saying that the Gram matrix of the constellation \mathcal{N}_0 is invertible or, equivalently, its determinant does not vanish.

The determinant of the matrix G, if conceived as a function of the n-th vector, is infinitely often differentiable with respect to its components, according to (3). Upon keeping the vectors $\mathbf{n}_1, \ldots, \mathbf{n}_{n-1}$ and $\mathbf{n}_{n+1}, \ldots, \mathbf{n}_{N_s}$ fixed, it may be regarded as a fictitious time-independent $Hamiltonian\ function\ H$ of a single classical spin, \mathbf{n}_n :

$$\det \mathsf{G}(\mathbf{n}_n) = H(\mathbf{n}_n) \,. \tag{4}$$

It is different from zero if \mathbf{n}_n coincides with the *n*-th vector of the constellation \mathcal{N}_0 . This Hamiltonian describes an *integrable* system since there is just one degree of freedom accompanied by one constant of motion, the Hamiltonian itself [6]. The two-dimensional phase space S^2 is foliated entirely by one-dimensional tori of constant energy. In addition, a finite number of (elliptic or hyperbolic) fixed points and one-dimensional separatrices

will occur. This can be seen, for example, by looking at the flow on the unit sphere generated by the Hamiltonian $H(\mathbf{n}_n)$:

$$\frac{d\mathbf{n}_n}{dt} = \mathbf{n}_n \times \frac{\partial H}{\partial \mathbf{n}_n},\tag{5}$$

where $\partial/\partial \mathbf{n}_n$ is the gradient with respect to \mathbf{n}_n [7]. The right-hand-side is a (non-zero) polynomial in the components of \mathbf{n}_n , implying that the integral curves of the Hamiltonian are fixed points, separatrices, and closed orbits. This means that $H(\mathbf{n}_n)$ can take the value zero at a finite number of (open or closed) curves or points at most. Consequently, the determinant of $\mathbf{G}(\mathbf{n}_n)$ is different from zero for almost all choices of \mathbf{n}_n . Therefore, one can move the vector \mathbf{n}_n into any other vector, including \mathbf{m}_n , the n-th vector of the desired constellation \mathcal{M} , thereby passing possibly through points with det $\mathbf{G} = 0$. If, accidentally, \mathbf{m}_n corresponds to a point with vanishing energy (this happens with probability zero only), one can nevertheless approach it arbitrarily close by a vector \mathbf{m}'_n with $|\mathbf{m}'_n - \mathbf{m}_n| < \varepsilon/N_s$ since levels of constant energy have a co-dimension at most equal to one.

Working one's way from n=1 to N_s , one ends up with a constellation \mathcal{M}' which is guaranteed to be infinitesimally close to \mathcal{M} since $\sum_n |\mathbf{m}'_n - \mathbf{m}_n| < \varepsilon$ can be made arbitrarily small. With probability one, the constellation \mathcal{M} is obtained even exactly. Consequently, almost all hedgehogs \mathcal{M} of N_s projection operators \hat{Q}_n give rise to a basis in the space of linear operators on \mathcal{H}_s , the Hilbert space of a spin s. In turn, the values of the discrete Q-symbol related to a constellation \mathcal{M} are indeed sufficient to determine the operator \hat{A} .

In summary, it has been shown that (almost) any distribution of N_s points on the sphere S^2 gives rise to a non-orthogonal basis of coherent-state projectors \hat{Q}_n in the linear space \mathcal{A}_s of operators for a spin s. An independent proof of this result can be found in [8]. In addition, a discrete variant of the P-symbol is shown there to come along naturally with the discrete Q-symbol. The relation of the basis of projectors \hat{Q}_n to a symbolic calculus \hat{a} la Stratonovich-Weyl has been elaborated in [9].

Acknowledgements

The author acknowledges financial support by the Schweizerische Nationalfonds.

References

- [1] U. Leonhardt: Measuring the Quantum State of Light. Cambridge University Press: Cambridge 1997
- [2] J.-P. Amiet and St. Weigert: J. Phys. A 32 269 (=quant-ph/9903067)
- [3] V. I. Man'ko and O. V. Man'ko: J. Exp. Theor. Phys. 85 (1997) 430

- [4] G. S. Agarwal: Phys. Rev. A **57** (1998) 671
- [5] W. H. Greub: Linear Algebra. Springer: Berlin 1963
- [6] V. I. Arnold: Mathematical Methods of Classical Mechanics. Springer, New York, 1984
- [7] N. Srivastava, C. Kaufman, G. Müller, E. Magyari, R. Weber, and H. Thomas: J. Appl. Phys. 61 (1987) 4438
- [8] J.-P. Amiet and St. Weigert: Discrete Q- and P-symbols for a Spin s (=quant-ph/9906099)
- [9] St. Weigert: A Discrete Phase-Space Calculus for Quantum Spins based on a Reconstruction Method using Coherent States.
 Act. Phys. Slov. 49 (1999) 613-20 (=quant-ph/9904095)