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Abstract—A convolutional neural network (CNN) learning
structure is proposed, with added interpretability-oriented layers,
in the form of Fuzzy Logic-based rules. This is achieved by
creating a classification layer based on a Neural-Fuzzy classifier,
and integrating it into the overall learning mechanism within
the deep learning structure. Using this new structure, one could
extract linguistic Fuzzy Logic-based rules from the deep learning
structure directly, which enhances the interpretability of the
overall system. The classification layer is realised via a Radial
Basis Function (RBF) Neural-Network, that is a direct equivalent
of a class of Fuzzy Logic-based systems. In this work, the
development of the RBF neural-fuzzy system and its integration
into the deep-learning CNN is presented. The proposed hybrid
CNN RBF-NF structure can from a fundamental building block,
towards building more complex deep-learning structures with
Fuzzy Logic-based interpretability. Using simulation results on
a benchmark data-driven modelling and classification problem
(labelled handwriting digits, MNIST 70000 samples) we show
that the proposed learning structure maintains a good level
of forecasting/prediction accuracy (> 96% on unseen data)
compared to state-of-the-art CNN deep learning structures, while
providing linguistic interpretability to the classification layer.

Index Terms—Fuzzy Logic, Deep Learning, Convolutional
Neural Networks.

I. INTRODUCTION

In data-driven modelling systems and methods, machine

learning has received considerable attention in recent decades.

Machine Learning focuses on applied maths and computing al-

gorithms for creating ‘computational machines’ that can learn

to imitate system behaviours automatically [1]. As a subarea

of Artificial Intelligence (AI), using machine learning (ML)

one could also construct computer systems and algorithms

to improve performance based on what has already been ex-

perienced (empirical-based, learning from examples) [1], [2].

ML has emerged as a popular method for process modelling,

also used in natural language processing, speech recognition,

computer vision, robot control, and other applications [1]–[3].

Unlike traditional system modelling methods (physics-

based, numerical etc.), machine learning does not require a

dynamic process model but sufficient data, including input

data and output data of a specific system, hence a class

of machine learning algorithms can be considered as data-

driven modelling methods that are able to capture static or

dynamic process behaviour in areas such as manufacturing

and biomedical systems among others. Gong et al. introduced

a way to analysis time series signals and to create a human

body model using CNNs [4]. Segreto et al. evaluated the

correlation between wavelet processed time series signals and

the machining conditions using neural networks [5]. Based

on the type of modelling structures used, machine learning

could be broadly viewed in two parts with - to a certain

extent - unclear boundaries, which are statistical modelling and

learning, and neural and other hybrid network structures [2]. In

deep learning in particular [2], convolutional neural networks

(CNNs) have been widely used [6]–[8]. CNNs are a kind

of feedforward neural network using convolutional cores to

process data in multiple arrays. Multiple arrays could be in the

form of variable data modalities: 1D for time-domain signals,

2D for images, and 3D for videos [3].

Using CNN deep learning structures has been very success-

ful for certain class of applications, for example Szegedy et

al. proved a deep enough network can classify ImageNet [9]

efficiently [6], and He et al. provided a model structure

to build deep neural networks without considerable gradient

loss [10]. Simonyan and Zisserman show that CNNs could be

designed as even ‘deeper’ structures, and perform even better

in ImageNet classification problems [11]. Deep CNN networks

however, lack any significant interpretation, and act as ‘black

boxes’ that predict/classify data well, and this is understand-

able given their deep structure and overall complexity. There is

an opportunity therefore, to use the paradigm of Fuzzy Logic

(FL) theory, and attempt to add linguistic interpretability to

deep learning structures. Successful implementation would be

beneficial to a variety of problems, in particular in cases where

there is a need for human-machine interaction, such as in

decision support systems for critical applications (healthcare,
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biomedical, high-value manufacturing etc.). For example, one

could use FL theory to provide linguistic interpretation to

classification tasks performed by deep learning networks.

There are existing attempts in the literature to combine FL

with deep learning. Muniategui et al. designed a system in

spot welding monitoring [12]. In this approach the authors

use the deep learning network only as a method for data

pre-processing, followed by the FL classifier as a separate

process step. In an attempt to reduce data size without affect

monitoring performance, a system based on deep learning and

FL classification was introduced. Using a deep convolutional

autoencoder, an image could be compressed from resolution

of 120 × 120 to 15 × 15 without affecting the overall per-

formance of the fuzzy classification methodology. Deng et al.

introduced a FL-based deep neural network (FDNN) which

extracts information from both neural representation and FL

simultaneously [13]. It was shown that the FDNN has higher

classification accuracy than networks based on NN or FL

separately and then fusions the results from the two kinds of

networks. The current gap in the research literature is in that

the deep learning methodologies, when combined with FL, are

not integrated together as a single system.

In this research work, a CNN-based deep learning structure

is used as the fundamental building block of a data-driven

classification network. For the first time in the literature, a FL-

based layer (in the form of a hybrid Neural-Fuzzy network)

is introduced as an integral part of the overall CNN structure,

which acts as the main classification layer of the deep learning

structure. Consequently, one could extract directly from the

deep learning structure linguistic rules in the form of a FL

rule-base. Via simulation results based on a popular benchmark

problem/dataset we show that the proposed network structure

performs as well as state-of-the-art CNN-based structures,

hence there is no significant loss of performance by intro-

ducing the FL layer as part of the deep learning structure. In

addition, the robustness of the learning process is also assessed

by consecutively reducing the sample size.

II. RELATION TO EXISTING THEORIES AND WORK

A. Radial Basis Function Neural-Fuzzy layer

RBF networks were formulated in [14] as a learning net-

work structure. RBF networks can also be used efficiently as

as a kernel function for a variety of machine learning method-

ologies, for example in Support Vector Machines to solve

non-linear classification problems [15]. Similar to SVM, RBF

networks could be implemented as FL-based systems [16].

In this section, for the benefit of the reader, the RBF-

NF network is summarised (Fig. 1), and its relevance to the

deep learning structure is shown, while full details of the

fundamental RBF network as a data-driven model can be found

in [16], [17].

Equation (1) represents a multiple-input and single-output

(MISO) FL system with m system inputs and p number of

rules, where µij(xj) defined in (2) is the Gaussian membership

function of input xj belonging to the i-th rule and cij and σij

are the centre and width of the Gaussian membership function
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Fig. 1: RBF network structure

respectively [16]. The overall function z(~x) could be adjusted

to represent one of the following three forms of FL-based

systems:

• Singleton;

• Mamdani;

• Takagi-Sugeno.

In the proposed work, the overall system function z(~x) will

be considered as a Singleton model. Fig. 1 depicts the structure

of the RBF network, where Xn are the system’s inputs, mn

the membership function of each rule-input combination, zn
the Tagaki-Sugeno polynomial function for each rule, and y
the overall output of the system. Hence the output function

takes the mathematical form shown in (3).

y =

p
∑

i=1

zi

[

∏m

j=1
µij (xj)

∏p

i=1

∑m

j=1
µij (xj)

]

, (1)

=

p
∑

i=1

zigi(x),

µij(xj) = exp

(

−
(xj − cij)

2

σ2

ij

)

, (2)

zi =

p
∑

j=1

bijxj . (3)

Equation (2) could be expressed in vector form, as follows

(which is also the expression for a RBF in i dimensions):

mi (~x) = exp
(

−‖~x− ~ci‖
2
/~σ2

i

)

, (4)

thus this FL system could be written as:

y =

p
∑

i=1

zimi (x) /

p
∑

i=1

mi (x) , (5)

=

p
∑

i=1

zigi(x), (6)



where

gi =

[

∏m

j=1
µij (xj)

∏p

i=1

∑m

j=1
µij (xj)

]

,

= mi (x) /

p
∑

i=1

mi(x). (7)

A representative CNN structure for image classification

would contain several layers, grouped in a way to perform

specific tasks. Fig. 2 demonstrates a typical CNN architecture.

The first few layers would be multiple pairs of convolution lay-

ers and pooling layers. The size of these convolution windows

can be different, which ensure convolution layers can extract

features in different scales. The pooling layers are proposed to

subsample features into a smaller size, where a max pooling

method is generally used. Then, fully connected layers would

also be used, in which neurons are fully connected to all

outputs from the previous layer. These layers also convert

the data structure from a multiple-layer structure to a vector

form. Rectangular linear units (ReLUs) would normally be the

activation function of the convolution layers as well as in the

fully connected layers as these can provide non-linear proper-

ties to those layers and are also convenient for the calculation

of the error backpropagation [18]. To avoid exploding and

vanishing gradients in deep networks, batch normalisation can

also be applied in every layer [19]. CNNs are not considered

as convex functions, which means parametric optimisation for

CNNs is challenging, hence numerous optimisation strategies

have been developed [20], such as stochastic gradient descent

(SGD), Nesterov momentum [21], and adaptive subgradient

(Adagrad) methods [22].

Fig. 3 depicts the overall structure of the CNN deep

network. This model was designed to use 28× 28 pixel grey-

scale images as input. After two convolutional layers, a max

pooling layer was added. The dropout layers were applied

to avoid overfitting. The Flatten layer was added to convert

data structure into vectors, and two Dense layers are fully

connected layers. All activiation functions in this model were

ReLUs. The loss function of this model was cross entropy

loss function, which is widely used in CNNs [6], [7]. In the

proposed research work, the adaptive subgradient method was

applied to perform the learning task, to take advantage of its

fast convergence properties. In order to achieve a good balance

between training speed and avoidance of overfitting the batch

size was chosen as 128.

Table I shows the architecture of the designed CNN.

III. METHODOLOGY

Adding interpretability features in deep learning structures

could benefit certain applications of deep learning, where

interpretability can be of benefit. For example, in advanced

manufacturing systems, where understanding and modelling

images and videos of complex processes are critical tasks. A

process model (or classifier) based on CNNs could be devel-

oped to take advantage of processing data in array forms [3]

which has already been proven to be very effective [6], [23]

TABLE I: Basement CNN architecture

type patch size/stride output size parameters

convolution 3× 3/0 26× 26× 32 320
convolution 3× 3/0 24× 24× 64 18496
maxpooling 2× 2/0 12× 12× 64 0

dropout (25%) 12× 12× 64 0
flatten 9216 0
linear 64 589888

dropout (50%) 128 0
linear 10 1290

softmax 10 0

TABLE II: FL RBF-CNN architecture

type patch size/stride output size parameters

convolution 3× 3/0 26× 26× 32 320
convolution 3× 3/0 24× 24× 64 18496
maxpooling 2× 2/0 12× 12× 64 0

dropout (25%) 12× 12× 64 0
flatten 9216 0
linear 64 589888

dropout (50%) 64 0
RBF rule numbers 2×rule numbers

defuzzy 1 rule numbers

in a number of applications. Adding interpretability in a

CNN deep learning structure could be achieved by performing

the final classification task using a FL-based structure. In

this section, we describe the integration of a Radial-Basis-

Function Neural-Fuzzy layer into the deep learning structure,

that provides the mechanism to extract a linguistic rule base

from the CNN.

A. Convolutional neural network with an RBF fuzzy logic rule-

base classification layer

In this section, the main CNN structure is summarised, and

it is shown how the RBF-NF layer is integrated into the overall

network structure and learning methodology.

Fuzzy Logic RBF CNN: In [3], LeCun states the usage of

convolution layers of CNNs is to extract different scale fea-

tures. In this research work, it is proposed that a deep learning

network, which includes a convolution layered structure, and

for the first time in the literature include a FL layer (RBF) to

perform the classification task. An extra layer was proposed

here, which is an RBF layer to maintain the rulebase of the

system. To defuzzify the FL statements into crisp classification

labels, a normalised exponential function (softmax) is used.

Due to the addition of the FL layer one has to consider the

credit assignment and error backpropagation for these layers

which is not a trivial task.

Fig. 4 depicts the architecture of the FL RBF-CNN, and

Table II shows parameter setting of the FL RBF-CNN.

Similar to FL RBF networks, FL RBF-CNNs will also

be sensitive to initial conditions (initial model structure and

parameters) of the RBF and defuzzification layers. Therefore,

one has to establish some initial conditions for the FL rulebase

for successful model training. The overall training would rely

on a cross entropy loss function and it would be performed as

follows:



Fig. 2: Representative CNN structure

Fig. 3: basic CNN structure

a) RBF layer: Following from (4) and (7), the activation

function becomes:

ml
j = exp

(

−
∥

∥~xl−1 − ~ci
∥

∥

2

/~σ2

i

)

, (8)

glj = mj
j/

p
∑

j=1

ml
j , (9)

therefore,

glj = s
(

−
∥

∥~xl−1 − ~ci
∥

∥

2
)

/~σ2

i , (10)

Fig. 4: FL RBF-CNN structure

where s(x) is a softmax function.

b) Defuzzyfication layer: In defuzzy layer, using glk =
gl−1

j , there would be

yl = zl · gl. (11)

Noteworthily, the outputs of a RBF layer would be continuous

floating numbers rather than discrete integers. Rounding the



Fig. 5: Several examples from MNIST dataset

output of this layer to the nearest integer (based on a prede-

termined threshold) would give the integer class.

IV. SIMULATION RESULTS

Simulation results were created to assess the performance

of the developed deep learning structure. This is done in two

parts, first the learning performance on a popular benchmark

data set is assessed. This is achieved by comparing the

proposed learning structure against a classical and state-of-the

art CNN structure. On the second part, the robustness of the

learning ability of the proposed system is assessed by reducing

consecutively the sample size and evaluating the learning and

recall performance.

The modified National Institute of Standards and Technol-

ogy (MNIST) database was chosen as a case study; the MNIST

database is a labelled handwriting digits dataset containing

60000 training images and 10000 testing images. The MNIST

data set has a 60000-sample of training images and a 10000-

sample of testing images as showing in Fig. 5. The training

images were separated into two parts randomly in each model

training process, which were a 50000-sample training set and

a 10000-sample validation set.

A. MNIST training and testing simulation results: baseline

CNN

The presented results include the mean classification accu-

racy as well as the standard deviation in each case. Each set of

simulation results shows the loss function during training and

validation as well as the classification accuracy for training and

validation. This is presented for a number of different rules,

for the rulebase of the Fuzzy-Logic-based classification layer

(varying from 3 — simpler — to 15 rules — more complex).

The learning model makes use of an adaptive learning rate

method to optimise the model weights. The model is trained

for 50 epochs, but also includes an early stopping criterion,

to stop earlier if the validation performance is not improved,

with an improvement window of 10 epochs. As shown in

Fig. 6, the training of this network with 64 features converges

within the first 30 epochs. The mean training accuracy (for 10
repeats) of this model was 99.80%, and both the validation

and test accuracy of this model are at around 99% which

is comparable with other state-of-the-art CNN classification

structures. As an example comparison, LeNet-5 [8], which has

a similar structure, achieves an accuracy of 99%. A higher test

classification accuracy (99.77%) is achieved in [24], however
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Fig. 6: Origin CNN model with 64 features result using 10
MNIST data sets

this is achieved with a significantly more complex structure.

One can therefore conclude that the proposed structure does

not sacrifice significant performance in this case study, despite

the much simpler overall structure that aims at enhancing the

interpretability of the model rather than its accuracy.

B. Fuzzy logic RBF model results: with variable rules

While in some cases, the interpretability of models would

be the key part to understand the processing. For example in

real industrial/manufacturing processes, the conditions causing

faults and defects are eager for understanding.

The performance of this FL RBF-CNN is further assessed

via reducing the number of classification features from 64, to

32 and to 16. The same algorithmic approach was followed, as

presented in the previous section. Tables III, IV, and V were

generated with using the raw simulation results (10 repeats

per training case). In each of these three tables, there are

two columns whose values are average accuracy and standard

variance for training, validation, and test case respectively, and

every feature case were trained from 3 to 15 rules as listed

in with a reference CNN network result (labelled as REF).

As shown in Table III, the mean accuracy has a trend that

would reach the best performance when fuzzy rules equals to

5 or 7, and the standard deviation also shows a similar trend.

However, to a certain extent, despite of the good performance,

a model having 64 features may not be very interpretable,

hence models with 32 and 16 features were also simulated to

‘stress-test’ the performance of the proposed structure. When

the size of the classification features decreases, the neurons

of the last fully connected layers also gets reduced. It is

expected to observe a reduced classification power due to the

fewer model parameters available to capture the classification

problem. In general, the classification accuracy is reduced, as

demonstrated in Table IV and Table V. Similarly, as in the case

with 64 features, the best performance is observed between 5
and 7 rules . In the case of 32 features, the test accuracy of

93.11% could be considered as acceptable, however the test



TABLE III: Accuracy mean and standard deviation of the FL

RBF-CNN model using 64 features

Rule Training Validation Test

3 96.64% 1.63% 94.79% 1.71% 94.67% 1.59%
5 98.41% 0.97% 96.79% 1.03% 96.69% 1.00%
7 98.48% 1.47% 96.89% 1.46% 96.92% 1.52%
9 97.78% 3.20% 96.16% 3.05% 96.28% 3.05%

11 94.14% 8.76% 92.55% 8.63% 92.63% 8.52%
13 95.48% 4.39% 94.03% 4.30% 93.97% 4.40%
15 94.90% 5.00% 93.43% 4.96% 93.44% 4.84%

REF 99.75% 0.04% 98.97% 0.13% 99.06% 0.07%

TABLE IV: Accuracy means and standard variances of the FL

RBF-CNN model using 32 features

Rule Training Validation Test

3 87.17% 10.77% 85.54% 10.67% 85.76% 10.63%
5 94.50% 4.08% 92.91% 3.93% 93.11% 3.90%
7 92.19% 5.05% 90.81% 4.81% 91.02% 4.86%
9 91.48% 7.43% 90.12% 7.32% 90.33% 7.25%

11 90.90% 5.21% 89.58% 5.19% 89.67% 5.02%
13 86.38% 7.19% 85.00% 7.15% 85.32% 7.16%
15 73.84% 33.13% 72.72% 32.59% 73.01% 32.61%

REF 99.59% 0.07% 98.84% 0.12% 98.98% 0.08%

accuracy of 67.90% in the case with 16 features demonstrates

that there is a significant performance loss when the number

of features is very low.

C. Model Interpretability

With the fully connected layer of the CNN structure being a

Fuzzy Logic based layer, one can enhance the interpretability

of the classification task, by extracting Fuzzy Logic rules

directly from the classification layer. such information can be,

for example, further used to aid decision making, or to create

human-machine interfaces. Fig. 7, as an example, depicts

two different rules from the rulebase of the 32-feature FL

RBF-CNN model; just four inputs (features) and one output

(classification weight) are shown for simplicity. Rule 1 for

example, translates into the following Singleton-based Fuzzy

rule:

‘IF Feature 1 is A1, and Feature 2 is B1, and Feature 3 is

C1, and.. etc. THEN the Output class is O1.’

V. CONCLUSION

In this research work, an interpretability-oriented deep

learning network is presented, based on a CNN structure

TABLE V: Accuracy means and standard variances of the FL

RBF-CNN model using 16 features

Rule Training Validation Test

3 66.61% 8.60% 65.35% 8.35% 65.56% 8.52%
5 62.93% 12.82% 62.03% 12.64% 62.32% 12.61%
7 68.74% 9.12% 67.53% 8.72% 67.90% 8.76%
9 65.48% 9.60% 64.61% 9.49% 65.04% 9.19%

11 60.60% 5.91% 59.88% 5.90% 59.88% 5.70%
13 59.98% 18.73% 59.06% 18.41% 59.51% 18.50%
15 56.49% 24.31% 55.86% 23.96% 56.08% 24.09%

REF 99.27% 0.11% 98.56% 0.17% 98.66% 0.12%
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Fig. 7: Two of five rule bases of a FL RBF-CNN model with

32 features



combined with a Fuzzy Logic structure to perform the clas-

sification task and also provide the capability to linguistically

interpret the structure’s rulebase. By combining the good

feature extraction property of CNNs and the classification and

generalisation ability of FL based systems, a FL RBF-CNNs

was developed. The proposed structure relies on a Radial Basis

Function realisation of the Neural-Fuzzy network, which is

integrated into the CNN structure via an adaptive subgradient

method for the credit assignment and error backpropagation.

In simulation results (training, validation and testing/recall)

using a popular dataset often used for benchmarking (MNIST

70000 handwriting digit samples) it is shown that the proposed

network performs equally well when compared to state-of-

the-art CNN-based networks of similar complexity and size.

However, the advantage of the proposed structure, is that

due to the added classification layer in the form of a FL

rulebase, one could extract linguistic FL statements for the

overall model, which would enhance the interpretability of

the system. For example, in decision making applications, one

could extract autonomously linguistic rules to assist a human

user/operator. To further extend this research work, it would

be interesting to capture and visualise the connection between

features and predictions via FL RBF-CNN layers.
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