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Abstract: A justification of the Basel liquidity formula for risk capital in the trading book is given1

under the assumption that market risk-factor changes form a Gaussian white noise process over2

10-day time steps and changes to P&L are linear in the risk-factor changes. A generalization of the3

formula is derived under the more general assumption that risk-factor changes are multivariate4

elliptical. It is shown that the Basel formula tends to be conservative when the elliptical distributions5

are from the heavier-tailed generalized hyperbolic family. As a by-product of the analysis a Fourier6

approach to calculating expected shortfall for general symmetric loss distributions is developed.7

Keywords: Basel Accords; liquidity risk; risk measures; expected shortfall; elliptical distributions;8

generalized hyperbolic distributions.9

1. Introduction10

As a result of the fundamental review of the trading book (FRTB) (Basel Committee on Banking11

Supervision 2013) a new minimum capital standard for the trading book has emerged (Basel12

Committee on Banking Supervision 2016). Under this standard, banks are now required to calculate13

a liquidity-adjusted expected shortfall risk measure on a daily basis. This calculation is carried out14

at both the level of the whole trading book and the level of individual desks using an aggregation15

formula that is based on the concepts of liquidity horizons and square-root-of-time scaling.16

The Basel liquidity formula uses the language of risk factors. These are the fundamental quantities17

such as asset prices, index values, interest rates and exchange rates that are required to value the18

various positions in the trading book at any point in time. In addition to prices and rates, the set of19

risk factors contains a number of market-observable parameters including implied volatilities, which20

are used as inputs to model-based formulas for the valuation of derivative securities such as options.21

Every risk factor is assigned to a unique liquidity bucket j associated with a liquidity horizon22

LHj which may be 10, 20, 40, 60 or 120 days. These horizons are conservative estimates of the amount23

of time that would be required to execute trades that would eliminate the portfolio’s sensitivity to24

changes in these risk factors during a period of market illiquidity. For example, risk factors describing25

the price risk of large-cap equities are assigned to the bucket with the shortest horizon of 10 days; risk26

factors describing volatility risk for derivatives involving large-cap equities are given a risk horizon of27

20 days; risk factors for structured credit instruments (e.g. CDOs) have the longest liquidity horizon of28

120 days.29

The liquidity formula requires that a series of expected shortfall charges are calculated with respect30

to ‘shocks’ to certain risk factors while other risk factors are held constant. The shocks are estimates of31
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the more extreme joint changes in risk-factor values that could occur over a fixed horizon of T days.32

For most banks, what this means in practice is that historical risk-factor changes for the selected risk33

factors over the horizon T are applied to the positions to obtain a so-called P&L or profit-and-loss34

distribution. While this P&L distribution can be obtained by full revaluation of the positions in the35

portfolio, most banks use a simpler approach in which they consider only the P&L resulting from36

first-order (delta) and possibly second-order (gamma) sensitivities to the risk-factor changes. Having37

obtained the distribution, the effect of the shock is computed by applying the expected shortfall risk38

measure.39

To make the calculation explicit, we give the formula and notation as published on page 52 of the40

revised capital standard (Basel Committee on Banking Supervision 2016).41

• let T = LH1 denote the so-called base liquidity horizon of 10 days.42

• Let EST(P) denote the expected shortfall at horizon T and a 97.5% confidence level for a portfolio43

P with respect to shocks to all risk factors to which the positions in the portfolio are exposed.44

• Let EST(P, j) denote the expected shortfall at horizon T and a 97.5% confidence level for a45

portfolio P with respect to shocks to the risk factors which have a liquidity horizon of length LHj46

or greater, with all other risk factors held fixed.47

The liquidity-adjusted expected shortfall is

ES =

√

√

√

√(EST(P))2 + ∑
j≥2

(

EST(P, j)

√

LHj − LHj−1

T

)2

. (1)

The bank computes the expected shortfall charges EST(P) and EST(P, j) and evaluates the right-hand48

side of (1). The resulting number ES is then an important determinant of the bank’s overall capital49

charge for trading activities. (There are a number of further adjustments and add-on charges that we50

will not go in to.)51

The formula is very mysterious at first glance but some rough intuition can be gained by observing52

that the squared capital charge ES2 is given by a sum of terms EST(P, j)2(LHj − LHj−1)/T for j =53

1, . . . , 5, where EST(P)2 corresponds to j = 1. The square root of each of these terms can be thought of54

as measuring the risk contribution arising from position liquidations between LHj−1 and LHj. The55

scaling factors
√

(LHj − LHj−1)/T take into account that EST(P, j) is an expected shortfall charge56

calculated over the interval [0, T]. They are an example of square-root-of-time scaling which is widely57

used in finance to translate certain measures of risk (e.g. volatility, value-at-risk and expected shortfall)58

calculated on shorter time intervals to longer time intervals.59

The first objective of this paper is to provide a principles-based derivation of this formula that60

relates it to the concept of expected shortfall as a risk measure applied to a loss distribution. Most61

practitioners know that an assumption of normality underlies the formula but exact details are not62

available in the main regulatory documents in the public domain. We make it precise that the formula63

can be justified by assuming that risk-factor changes over time steps equal to the base liquidity horizon64

form a multivariate Gaussian white noise with mean zero and portfolio losses are all attributable to65

first-order (delta) sensitivities to the risk-factor changes.66

The second and major objective of the paper is to extend the formula under the more general67

assumption that risk-factor changes have a multivariate elliptical distribution. This allows us to68

consider some particular cases with heavy tails and tail dependencies that might be considered more69

realistic models for market risk-factor changes.70

Many results in quantitative risk management (QRM) continue to hold when multivariate normal71

assumptions are generalized to multivariate elliptical assumptions. In particular, when losses are72

linear in a set of underlying elliptically-distributed risk factors, aggregation of risk measures across73

different business lines, desks or risk factors can generally be based on a common formulaic approach,74

regardless of the exact choice of elliptical distribution; see Chapter 8 of McNeil et al. (2015). The75
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difference in the current paper is that aggregation takes place, not only across risk factors, but also76

across time and therefore a ‘central limit effect’ takes place. This means that (1) does not hold in the77

general elliptical case.78

We derive a generalization of (1) that applies to all elliptical distributions. Using this generalization79

we consider, in particular, a number of the heavier-tailed distributions in the symmetric generalized80

hyperbolic family (a sub-family of the elliptical distributions). We infer that, for these distributions,81

the use of the standard aggregation rule in (1) would lead to a conservative capital charge in the sense82

that the resulting amount of capital ES is larger than is actually necessary to achieve the level of risk83

targeted by FRTB (expected shortfall at a 97.5% confidence level).84

As a by-product of our analyses we also demonstrate a new approach to calculating VaR and85

expected shortfall for symmetric distributions with a known characteristic function. This approach is86

particularly useful in cases where we take convolutions of elliptically distributed random vectors and87

often lose the ability to write simple closed-form expressions for their probability densities.88

We present all ideas in terms of the standard probabilistic approach to risk measures. Losses89

(or P&L variables) are represented by random variables L. Expected shortfall (ESα) and value-at-risk90

(VaRα) at level α are risk measures applied to L. If FL denotes the distribution function of L and F←L91

its generalized inverse, they are given by VaRα(L) = F←L (α) and ESα(L) = 1
1−α

∫ 1
α F←L (u)du. If FL is92

continuous then the formula ESα(L) = E(L | L ≥ VaRα(L)) also holds.93

2. Justifying and extending the Basel liquidity formula94

Let (Xt) be a d-dimensional time series of risk-factor changes for all relevant risk factors and95

assume that these are all defined in terms of simple differences or log-differences. We interpret Xt+1 as96

the vector of risk-factor changes over the time step [t, t + 1]. In practice this time step will be equal to97

the base liquidity horizon of 10 days.98

For h ∈ N, the risk factor changes over the time step [t, t + h] are given additively by

X[t,t+h] :=
h

∑
j=1

Xt+j . (2)

Without loss of generality let the risk calculation be made at time t = 0. We make the following99

assumptions.100

Assumption 1. (i) The risk-factor changes (Xt) form a stationary white noise process (a serially101

uncorrelated process) with mean zero and covariance matrix Σ.102

(ii) Each risk factor may be assigned to a unique liquidity bucket Bk defined by a liquidity horizon hk ∈ N,103

k = 1, . . . , n.104

(iii) In the event of a portfolio liquidation action the loss (or profit) attributable to risk factors in bucket Bk is105

given by b′kX[0,hk ]
where bk is a weight vector with zeros in any position that corresponds to a risk factor106

that is not in Bk.107

Assumption 1(iii) contains the linearity assumption and adopts the pessimistic view that the full108

liquidity horizon hk is required to remove the portfolio’s sensitivity to all the risk factors in liquidity109

bucket Bk.110

Under these assumptions we compute the portfolio loss L over the maximum time horizon hn,

which is the time required to remove the portfolio’s sensitivity to all risk factors. It follows from

Assumption 1(ii) and (iii) that

L =
n

∑
k=1

b
′
kX[0,hk ]

=
n

∑
k=1

k

∑
j=1

b
′
kX[hj−1,hj ]

=
n

∑
k=1

n

∑
j=k

b
′
jX[hk−1,hk ]

=
n

∑
k=1

β′kX[hk−1,hk ]
(3)
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where βk = ∑
n
j=k bj and h0 = 0. The vector βk contains the weights for all risk factors in the union of111

liquidity buckets Bk ∪ · · · ∪ Bn.112

Let us write Lk := β′kX[hk−1,hk ]
for k = 1, . . . , n for the summands in the final expression in (3).

These are uncorrelated by Assumption 1(i) and we may easily calculate that

var(L) =
n

∑
k=1

var(Lk) =
n

∑
k=1

β′k cov(X[hk−1,hk ]
)βk =

n

∑
k=1

(hk − hk−1)β′kΣβk (4)

where the final step follows because (2) implies that X[hk−1,hk ]
= ∑

hk−hk−1
j=1 Xhk−1+j.113

We now introduce random variables

L(k) = β′kX[0,h1]
(5)

for k = 1, . . . , n. These represent losses attributable to all risk factors in the union of liquidity buckets

Bk ∪ · · · ∪ Bn over the liquidity horizon h1. Note that the Lk and L(k) variables differ (unless k = 1).

Since var(L(k)) = h1β′kΣβk, we obtain from (4) the formula

sd(L) =

√

√

√

√

n

∑
k=1

(

√

hk − hk−1

h1
sd(L(k))

)2

. (6)

It may be noted that the presence of positive correlation between the variables Lk in (4), caused by114

serial correlation in the underlying risk-factor changes X[hk−1,hk ]
, would tend to lead to the left-hand115

side of (6) being larger than the right-hand side. Negative correlation would lead to it being smaller.116

2.1. The Gaussian case117

Suppose that (Xt) is a Gaussian process; in this case (Xt) is actually a strict white noise (a process

of independent and identically distributed vectors). It follows that Lk ∼ N(0, (hk − hk−1)β′kΣβk) and

the Lk are independent for all k. Thus, by the convolution property for independent normals,

L ∼ N

(

0,
n

∑
k=1

(hk − hk−1)β′kΣβk

)

. (7)

Moreover, we clearly have L(k) ∼ N(0, h1β′kΣβk).118

For any mean-zero normal random variable V it is easy to show that ESα(V) = cα sd(V) where

cα = φ(Φ−1(α))/(1 − α), φ denotes the density of the standard normal distribution and Φ−1(α)

denotes the α-quantile of the standard normal distribution function Φ (see McNeil et al. 2015, Chapter

2). It follows from (6) that

ESα(L) =

√

√

√

√

n

∑
k=1

(

√

hk − hk−1

h1
ESα(L(k))

)2

(8)

which is the proposed standard formula for the trading book (1) rewritten in our notation.119

2.2. An extension to the formula for elliptical distributions120

In this section we assume a centred elliptical distribution for the risk-factor changes, which121

subsumes the multivariate normal distribution as a special case. The class of elliptical distributions122

contains a number of particular distributions which are popular models for financial returns including123

the multivariate Student t and the symmetric generalized hyperbolic distributions. There is much124

empirical evidence that 10-day and even monthly risk-factor returns of different types are heavier125

tailed than Gaussian; see, for example, Section 6.2.4 of McNeil et al. (2015). Distributions in the126
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symmetric generalized hyperbolic family provide a superior fit, although they do not address the issue127

of asymmetry which is a feature of certain risk-factor returns such as equity returns.128

In simple terms, elliptical distributions are affine transformations of spherical distributions and129

spherical distributions can be thought of as distributions that are invariant under rotations. More130

formally, a random vector Yt is said to have a d-dimensional spherical distribution with characteristic131

generator ψ, written Yt ∼ Sd(ψ), if its characteristic function satisfies φ(s) = E(eis′Yt) = ψ(s′s) for a132

function of a scalar variable ψ. The covariance matrix of Yt is a scalar multiple of the d-dimensional133

identity matrix Id satisfying cov(Yt) = var(Y)Id where Y ∼ S1(ψ) denotes any component of the134

vector Yt.135

A random vector Xt is said to have a d-dimensional elliptical distribution with location vector µ,136

positive-definite dispersion matrix Ω and characteristic generator function ψ, written Xt ∼ Ed(µ, Ω, ψ)137

if Xt = µ + AYt for some matrix A ∈ Rd×d satisfying Ω = AA′ and some spherically distributed138

random vector Yt ∼ Sd(ψ). It follows that the covariance matrix of Xt is given by Σ = var(Y)Ω, which139

shows that the covariance matrix is in general a scalar multiple of Ω. See Fang et al. (1990) and McNeil140

et al. (2015) for further details of these distributions.141

In addition to Assumption 1 we assume that the following holds in this section.142

Assumption 2. (i) The process (Xt) is a multivariate strict white noise (an iid process).143

(ii) For every t, Xt ∼ Ed(0, Ω, ψ) where Ω is a positive-definite matrix.144

Assumption 2(i) may seem strong but in practice we assume that (Xt) is a process of 10-day145

returns so that the iid assumption, while unlikely to be true, is less problematic than for daily financial146

returns. The assumption is required in order to analyse convolutions of elliptically distributed random147

vectors with different characteristic generators.148

We need three key properties of an elliptical distribution for our calculation. Let X ∼ Ed(0, Ω, ψ)

and X̃ ∼ Ed(0, Ω, ψ̃) be independent elliptically-distributed variables with the same dispersion matrix

Ω and possibly different characteristic generators ψ and ψ̃.

β′X ∼ E1(0, β′Ωβ, ψ) for β ∈ R
d and β 6= 0. (9)

X ∼ Ed(0, cΩ, ψ(s/c)) for any c > 0. (10)

X + X̃ ∼ Ed(0, Ω, ψ∗) where ψ∗(s) = ψ(s)ψ̃(s). (11)

We will use (9) and (11) to find the characteristic functions of elliptical random vectors under linear149

combinations and convolutions respectively. The property in (10) shows that we have some discretion150

in how we represent the characteristic generator of an elliptical random variable in terms of its151

characteristic generator and its scaling.152

Theorem 1. Under Assumptions 1 and 2 the loss L in (3) is a univariate spherical random variable L ∼ S1(ψL)

with characteristic generator

ψL(s) =
n

∏
k=1

ψk(sβ′kΩβk), (12)

where ψk = ψhk−hk−1 is the (hk − hk−1)-fold product of ψ for k = 1, . . . , n.153

For α > 0.5 the expected shortfall of L is related to the expected shortfall of the variables L(k) in (5) by

ESα(L) =
cα,ψL

cα,ψ1

√

√

√

√

n

∑
k=1

(

√

hk − hk−1

h1
ESα(L(k))

)2

. (13)

where cα,ψL
represents the ratio of expected shortfall to standard deviation for L and cα,ψ1

is the equivalent ratio154

for a univariate spherical variable Z ∼ S1(ψ1).155
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Proof. We need to derive the distributions of

Lk = β′kX[hk−1,hk ]
, L =

n

∑
k=1

Lk and L(k) = β′kX[0,h1]
. (14)

First note that if Xt ∼ Ed(0, Ω, ψ) then it follows from (2) and (11) that X[hk−1,hk ]
∼ Ed(0, Ω, ψk) where

ψk = ψhk−hk−1 . Using (9) we have that

Lk ∼ E1

(

0, β′kΩβk, ψk

)

and L(k) ∼ E1(0, β′kΩβk, ψ1).

Using (10) we write the former as Lk ∼ E1

(

0, 1, ψk(sβ′kΩβk)
)

or Lk ∼ S1

(

ψk(sβ′kΩβk)
)

and then use156

the convolution property (11) to conclude that L ∼ S1(ψL) where ψL is given in (12).157

Now ESα(L(k)) =
√

β′kΩβk ESα(Z) and sd(L(k)) =
√

β′kΩβk sd(Z) where Z ∼ S1(ψ1). Hence it

follows that ESα(L(k)) = cα,ψ1
sd(L(k)) for all k and

ESα(L) = cα,ψL
sd(L) = cα,ψL

√

√

√

√

n

∑
k=1

(

√

hk − hk−1

h1
sd(L(k))

)2

= cα,ψL

√

√

√

√

n

∑
k=1

(

√

hk − hk−1

h1

ES(L(k))

cα,ψ1

)2

which yields (13).158

It may be easily verified that when ψ(s) = exp(−s/2) (the Gaussian case), the characteristic159

function φ(s) = ψL(s
2) implied by (12) is the characteristic function of the normal distribution in (7).160

In this case the constants cα,ψL
and cα,ψ1

are identical.161

When the risk factors have a heavier-tailed distribution than normal we expect that cα,ψL
≤ cα,ψ1

.162

This is because the aggregation across time periods that takes place in the definition of L should lead163

to a central limit effect whereby L is closer to Gaussian than the L(k) variables. In this case we expect164

that the standard Basel liquidity formula should give an upper bound on ESα(L).165

3. Calculating the scaling ratio in practice166

We turn to the problem of calculating the ratio rα := cα,ψL
/cα,ψ1

when the underlying risk factors167

have an elliptical distribution with generator ψ. To compute cα,ψ1
we calculate the ratio ESα(Z)/ sd(Z)168

for a univariate spherical random variable Z with characteristic generator ψ1 = ψh1 . To compute cα,ψL
169

we calculate the ratio ESα(L)/ sd(L) for a univariate spherical variable L with characteristic generator170

given by (12).171

The problem of calculating expected shortfall for linear portfolios of elliptically distributed172

risk factors is tackled in Kamdem (2005) and Dobrev et al. (2017). The proposed method relies on173

knowing the so-called density generator of the elliptical distribution. In our application the taking of174

convolutions means that the density generator required to calculate ESα(Z) and ESα(L) may not be175

available in a simple closed forms for the underlying distributions of Xt which interest us.176

However, the characteristic generator is always available in our application. In the following177

section we give results that can be used to compute expected shortfall directly from the characteristic178

function of a spherical random variable.179

3.1. Calculating expected shortfall by Fourier inversion180

A univariate spherical random variable Y ∼ S1(ψ) is symmetric about the origin with a181

real-valued even characteristic function given by φY(s) := ψ(s2). We give a general result that182

applies to univariate random variables that are symmetric about the origin.183
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Theorem 2. Let Y be symmetrically distributed about the origin with an integrable characteristic function

φY(s). Let −∞ < a < b < ∞. Then the following formulas hold:

fY(y) =
1

π

∫ ∞

0
cos(sy)φY(s)ds, (15)

FY(y) =
1

2
+

1

π

∫ ∞

0

sin(sy)

s
φY(s)ds, (16)

E(YI{a≤Y≤b}) =
1

π

∫ ∞

0

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2
φY(s)ds . (17)

Proof. The characteristic function φY(s) of a random variables that is symmetric about the origin is

real-valued and even. If φY is integrable then the density exists and the standard Fourier inversion

formula for the characteristic formula yields

fY(y) =
1

2π

∫ ∞

−∞
e−isyφY(s)ds =

1

π

∫ ∞

0
cos(sy)φY(s)ds.

The formula (16) for the distribution function is obtained from a well-known representation of the

distribution by Gil-Pelaez (1951). To derive (17) we observe that

∫ b

a
y fY(y) =

1

π

∫ b

a

∫ ∞

0
y cos(sy)φY(s)dsdy

=
1

π

∫ ∞

0

(

∫ b

a
y cos(sy)dy

)

φY(s)ds

by Fubini’s Theorem since |y cos(sy)φY(s)| ≤ |y||φY(s)| and the latter is integrable on [a, b]× [0, ∞).

The inner integral can be solved by parts to obtain

∫ b

a
y cos(sy)dy =

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2

and (17) follows.184

These formulas permit the accurate evaluation of VaRα(Y) and expected shortfall using

one-dimensional integration. Calculation of VaRα(Y) for α > 0.5 is accomplished by numerical

root finding using (16). If E|Y| < ∞ for the distribution in question, then expected shortfall is defined

and it can be calculated by setting a = VaRα(Y) and computing the limit

ESα(Y) = lim
b→∞

1

π(1− α)

∫ ∞

0

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2
φY(s)ds . (18)

Our experiments confirm that calculating the integral in (18) for increasing b does result in stable185

limiting values for ESα(Y) which agree to a high level of accuracy with theoretical values for186

well-known distributions such as Student t.187

3.2. The case of generalized hyperbolic distributions188

We will apply Theorem 2 to the family of symmetric generalized hyperbolic (GH) distributions.189

This is a very popular family for modelling financial returns and there are many useful sources for the190

properties of these distributions including Barndorff-Nielsen (1978), Barndorff-Nielsen and Blæsild191

(1981), Eberlein (2010) and McNeil et al. (2015). While some special cases of the GH family are known to192

be invariant under convolutions (Podgórski and Wallin 2016) the complicated aggregation of variables193

with different scaling that we undertake means that, even for these cases, we generally need to use (18)194

to compute expected shortfall for the aggregate loss L.195
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Let Y = (Y1, . . . , Yd)
′ have the stochastic representation Y =

√
WV where V = (V1, . . . , Vd)

′
196

is a vector of independent standard normal variables and W is an independent positive random197

variable with a so-called generalized inverse Gaussian (GIG) distribution W ∼ N−(λ, χ, κ); see198

formula (A1) in the Appendix for the density of this distribution. The vector Y has a spherical199

distribution Y ∼ Sd(ψ), and any component Y has a univariate spherical distribution Y ∼ S1(ψ),200

for a characteristic generator ψ that depends on the particular choice of the parameters λ, χ and201

κ. An elliptical model of the kind described in Assumption 2(ii) is obtained by taking X = AY for202

A ∈ Rd×d and satisfies X ∼ Ed(0, Ω, ψ) where Ω = AA′. X is said to have a d-dimensional symmetric203

generalized hyperbolic (GH) distribution.204

To carry out our calculations it suffices to consider the single component Y. The variance of Y205

satisfies var(Y) = E(W) and an explicit formula for the case where χ > 0 and κ > 0 is given in (A3).206

A formula for the characteristic function φY is given in (A4) and the characteristic generator of the207

elliptical family can be inferred from the identity ψ(s2) = φY(s).208

We consider four special one-parameter cases of this distribution resulting from particular choices209

of the parameters λ, χ and κ of the GIG distribution:210

1. The student t distribution with degree of freedom ν. This corresponds to the case where κ = 0,211

λ = −ν/2 and χ = ν or where W has an inverse gamma distribution W ∼ IG(ν/2, ν/2). In this212

case var(Y) = ν/(ν− 2), provided ν > 2, and the characteristic function is given by (A5) in the213

Appendix.214

2. The variance gamma (VG) distribution. This corresponds to the case where χ = 0 or where215

W has a gamma distribution W ∼ Ga(λ, κ/2). Without loss of generality we set the scaling216

parameter κ = 2 so that var(Y) = λ. The corresponding characteristic function is given by (A6).217

3. The normal-inverse-Gaussian (NIG) distribution. This corresponds to the case where λ = −1/2.218

The distribution can be reparameterized in terms of θ =
√

χκ and χ; the latter parameter can219

be treated as a scaling parameter and set to one. The variance is then var(Y) = θ−1 and the220

characteristic function is given by (A7).221

4. The hyperbolic (Hyp) distribution. This corresponds to the case where λ = 1. The distribution222

can be reparameterized in exactly the same way as the NIG distribution. The variance is223

var(Y) = θ−1K2(θ)/K1(θ) and the characteristic function is given by (A8).224

3.3. Summary of the steps in the calculation225

We return to the problem of calculating the scaling ratios rα = cα,ψL
/cα,ψ1

in (13) when the226

underlying risk-factor returns have symmetric distributions in the multivariate generalized hyperbolic227

family.228

We recall the basic components that are required for the calculation: Y ∼ S1(ψ) is spherically229

distributed with known standard deviation sd(Y) and known characteristic function φY(s) = ψ(s2);230

Z ∼ S1(ψ1) where ψ1 = ψh1 ; L ∼ S1(ψL) where ψL is given in (12). The steps are:231

1. Calculate ESα(Z) using (18) and φZ(s) = φ
h1
Y (s).232

2. Calculate sd(Z) =
√

h1 sd(Y).233

3. Hence calculate cα,ψ1
= ESα(Z)/ sd(Z).234

4. Calculate ESα(L) using (18) and the fact that

φL(s) =
n

∏
k=1

φ
hk−hk−1
Y

(

s
√

β′kΩβk

)

.

5. Calculate sd(L) using the formula

sd(L) = sd(Y)

√

n

∑
k=1

(hk − hk−1)β′kΩβk.

6. Hence calculate cα,ψL
= ESα(L)/ sd(L).235
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7. Hence calculate the ratio rα = cα,ψL
/cα,ψ1

.236

4. Results237

In the analyses of this section we make explicit choices of parametric distributions for the238

risk-factor changes in order to study the possible extent of risk overestimation that results from239

using the standard Basel liquidity formula. It is important to stress that most banks do not estimate240

parametric models for Xt in practice.241

The vast majority of banks employ resampling techniques known as historical simulation. This242

means, effectively, that they estimate their models non-parametrically. It is certainly possible to fit243

multivariate hyperbolic distributions to data, even in high dimensions, using variants of the EM244

algorithm (McNeil et al. 2015; Protassov 2004), but we are not aware of banks that do this.245

In the absence of data on the risk factors that affect a particular bank, we choose plausible values246

for the parameters of the generalized hyperbolic distributions by fitting univariate models to the broad247

market returns of the S&P500 index. We also choose illustrative values for the elements of the matrix248

Ω, since this matrix is not explicitly estimated by banks using the historical simulation method.249

The values of the vectors βk depend on the sensitivities of the trading book positions to the risk250

factors. These would be known to a bank in practice. In the absence of data, we again make simple251

stylized choices.252

4.1. Design of experiments253

In order to calibrate our distributions, we use 2132 observations of adjusted daily closing prices for254

the S&P500 index, from 17.7.2007 to 31.12.2015, which have been converted to two-weekly log-returns255

(conforming approximately to 10 trading days, the base liquidity horizon required under FRTB).256

We fit the various distributions discussed in Section 3.2 to the 10-day return data using the R257

package ghyp. Table 1 gives the estimated shape parameters for the distributions of interest; scale258

parameters are not required in our analysis. Note that we also confirm that the calculations for the259

Gaussian case yield a ratio of 1, as a check on our implementation.260

Table 1. Distribution parameters used in the calculation experiments. These have been derived

by fitting these distributions to two-weekly log-returns of the S&P500 index over the period from

17.07.2007 to 31.12.2015.

Distribution | Parameters λ θ Remarks

t -1.46 ν = −2λ
NIG -0.5 0.49 λ fixed
Hyp 1 0.11 λ fixed
VG 0.95 κ = 2

We carry out two experiments:261

• In the first, we consider two risk factors, one in B1 with a liquidity horizon of 10 days (h1 = 1)262

and the other in B2 with a liquidity horizon of 20 days (h2 = 2). The dispersion matrix Ω is either263

taken to be the identity Ω = I2 (no correlation) or a correlation matrix with correlation ρ = 0.5.264

• The second experiment follows in the same fashion but we assume there are 5 risk factors with265

liquidity horizons 10, 20, 40, 60 and 120 days (h1 = 1, h2 = 2, h3 = 4, h4 = 6, h5 = 12). We266

consider both the case where Ω = I5 and the case where Ω is an equicorrelation matrix with267

element ρ = 0.5.268

We present values of cα,ψ1
, cα,ψL

as well as the scaling ratio rα for various confidence levels α. The269

case of two risk factors is reported in Table 2 and the case of five risk factors is reported in Table 3.270
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4.2. Results271

In both tables it is clear that the scaling ratios are less than one for all non-Gaussian cases meaning272

that the Basel liquidity formula is indeed conservative when the risk factors have a multivariate273

elliptical distribution from one of the four generalized hyperbolic sub-families considered in Section 3.2274

and Table 1.275

The second experiment with five liquidity buckets leads in general to smaller values for the276

scaling ratios than the first experiment with two buckets. Thus the degree of conservatism of the277

formula increases with the number of liquidity buckets. This is in line with the increase in the central278

limit effect as we aggregate over more time periods.279

Introducing correlation leads to an increase in the constants cα,ψL
and hence an increase in the280

scaling ratio. In other words, the weaker the correlation, the more conservative the liquidity formula.281

To understand why this is the case, note that the constants cα,ψL
depend on the characteristic generator282

ψL in (12) and hence on the set of values {β′kΩβk, k = 1, . . . , n}. By considering formula (4) we can283

think of these as the relative weights attached to each of the n liquidity buckets. When ρ = 0 these284

weights are (5, 4, 3, 2, 1) but when ρ = 0.5 they are (15, 10, 6, 3, 1). The intuition is that, in the second285

case, the first few liquidity buckets dominate more in the convolution calculation and the central limit286

effect is mitigated.287

Considering the different generalized hyperbolic special cases we see that the ratios are usually288

largest for the t distribution followed by the other three distributions; the exact ordering depends on289

the confidence level α used in the calculation. In other words, use of the Basel liquidity formula is least290

conservative in the case of t and more conservative for the other distributions.291

When we look at the confidence level of α = 0.975 which is the level used in the new292

capital standard (Basel Committee on Banking Supervision 2016) the normal inverse Gaussian (NIG)293

distribution leads to the highest level of conservatism. This distribution is often a plausible model in294

market risk applications. The ratio in the case where n = 5 and ρ = 0 is 0.837 which means that the295

Basel liquidity formula would tend to overstate capital by around 19.4%.296

Table 2. Constants cα,ψ1 , cα,ψL and ratios rα in the experiment with 2 risk factors.

α 0.95 0.975 0.99

Model Quantity | ρ 0 0.5 0 0.5 0 0.5

Gauss cα,ψ1 2.063 2.063 2.338 2.338 2.665 2.665
cα,ψL 2.063 2.063 2.338 2.338 2.665 2.665
rα 1.000 1.000 1.000 1.000 1.000 1.000

t cα,ψ1 2.223 2.223 2.906 2.906 4.065 4.065
cα,ψL 2.212 2.169 2.831 2.671 3.868 3.486
rα 0.995 0.975 0.974 0.919 0.952 0.858

VG cα,ψ1 2.345 2.345 2.841 2.841 3.509 3.509
cα,ψL 2.247 2.132 2.670 2.468 3.225 2.891
rα 0.958 0.909 0.940 0.869 0.919 0.824

Hyp cα,ψ1 2.330 2.330 2.816 2.816 3.459 3.459
cα,ψL 2.237 2.128 2.653 2.459 3.194 2.877
rα 0.960 0.913 0.942 0.873 0.923 0.832

NIG cα,ψ1 2.374 2.374 2.976 2.976 3.832 3.832
cα,ψL 2.296 2.167 2.801 2.544 3.502 3.042
rα 0.967 0.913 0.941 0.855 0.914 0.794

It would be appealing to link the values of rα and the resulting levels of conservatism of the297

Basel formula to some parameter that describes the heavy-tailedness of the distributions under298

consideration, such as their tail index or kurtosis. However the only distribution in Tables 2 and 3299

which has a regularly varying tail, and thus a finite tail index, is the t distribution. Although the300

VG, hyperbolic and NIG distributions have infinite tail indices, they tend to give smaller ratios rα.301
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Table 3. Constants cα,ψ1 , cα,ψL and ratios rα in the experiment with 5 risk factors.

α 0.95 0.975 0.99

Model Quantity | ρ 0 0.5 0 0.5 0 0.5

Gauss cα,ψ1 2.063 2.063 2.338 2.338 2.665 2.665
cα,ψL 2.063 2.063 2.338 2.338 2.665 2.665
rα 1.000 1.000 1.000 1.000 1.000 1.000

t cα,ψ1 2.223 2.223 2.906 2.906 4.065 4.065
cα,ψL 2.160 2.169 2.637 2.671 3.402 3.486
rα 0.972 0.975 0.908 0.919 0.837 0.858

VG cα,ψ1 2.345 2.345 2.841 2.841 3.509 3.509
cα,ψL 2.112 2.132 2.429 2.468 2.824 2.891
rα 0.901 0.909 0.855 0.869 0.805 0.824

Hyp cα,ψ1 2.330 2.330 2.816 2.816 3.459 3.459
cα,ψL 2.108 2.128 2.423 2.459 2.814 2.877
rα 0.905 0.913 0.860 0.873 0.813 0.832

NIG cα,ψ1 2.374 2.374 2.976 2.976 3.832 3.832
cα,ψL 2.142 2.167 2.492 2.544 2.942 3.042
rα 0.902 0.913 0.837 0.855 0.768 0.794

Moreover the t distribution has infinite kurtosis while the other distributions have finite kurtosis. It302

would seem that there is a more complex story behind the precise ordering of the rα values. However,303

the results are sufficient to show that a range of differing heavy-tailed distributions all lead to ratios304

less than one.305

5. Conclusion306

We have presented evidence that the Basel liquidity formula tends to lead to conservative capital307

charges when financial risk factors come from heavier-tailed elliptical distributions.308

The Basel formula is clearly a heavily stylized formula and makes a number of crude assumptions.309

We have concentrated on the effect of changing the underlying distribution of the risk factors when310

portfolio sensitivities are linear. However, there are other important effects we have not considered311

which will have an influence on the ability of the formula to capture risk. In particular, the true effect of312

risk-factor changes on portfolio risk is likely to be highly non-linear over the kind of time horizons we313

consider. Moreover, as we have already noted, positive serial correlation between losses over different314

sub-intervals [hk−1, hk] of the overall liquidity horizon [0, hn] will tend to lead to a tendency towards315

underestimation which may counteract the central limit effect.316

We note that our assumption that risk-factor changes are elliptically distributed implies that317

their marginal distributions are symmetric. This is clearly a limiting assumption and it would be of318

interest to see if the liquidity formula could be further generalized to classes of distribution that admit319

skewness, such as the full generalized hyperbolic family.320

In writing about inherent conservatism in the liquidity formula we are well aware that there are321

many further layers of conservatism built into the new system of risk charges for the trading book,322

such as the requirement to calibrate the model to stress periods and the requirement to adjust the323

calculation to understate the possible diversification effects across risk factors. These other features324

may have greater impact than the issue we address.325

Nonetheless it is important to be clear about the workings of the formula and the extent to which326

it may be interpreted as a principles-based approach to the measurement of market risk. Our study327

should be understood as a contribution to the clarification of this issue.328
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Appendix331

A standardized univariate generalized hyperbolic random variable Y has the stochastic

representation Y =
√

WV where V is a standard normal variable and W is an independent positive

random variable with a generalized-inverse-Gaussian (GIG) distribution. The density of the latter is

fW(w) =
χ−λ(

√
χκ)λ

2Kλ(
√

χκ)
wλ−1 exp(− 1

2 (χw−1 + κw)),















χ > 0, κ ≥ 0 if λ < 0

χ > 0, κ > 0 if λ = 0

χ ≥ 0, κ > 0 if λ > 0

(A1)

where Kλ denotes a Bessel function of the third kind. The characteristic function of Y is given by

φY(s) = E

(

E

(

exp(is
√

WV) |W
))

= E

(

exp(− 1
2 s2W)

)

=
∫ ∞

0
e−

1
2 s2w fW(w)dw (A2)

and the variance by var(Y) = E(W).332

We first consider the case where χ > 0 and κ > 0. In this case the variance of Y is

var(Y) =
(χ

κ

)1/2 Kλ+1(
√

χκ)

Kλ(
√

χκ)
(A3)

and the characteristic function is

φY(s) =
∫ ∞

0
e−

1
2 (χw−1+(s2+κ)w) χ−λ (χκ)λ/2

2Kλ

(√
χκ
) xλ−1dw

=

(

κ

s2 + κ

)λ/2 Kλ

(

√

χ(s2 + κ)
)

Kλ

(√
χκ
) . (A4)

We next consider the case of a Student t distribution which corresponds to κ = 0, λ = −ν/2 and

χ = ν. In this case W has an inverse gamma distribution W ∼ IG(ν/2, ν/2) and var(Y) = E(W) =

ν/(ν− 2), provided ν > 2. The characteristic function should be interpreted as the limit of (A4) as

κ → 0. Substituting the density of an inverse gamma distribution into (A2) yields

φY(s) =
∫ ∞

0
e−

1
2 s2w ( 1

2 ν)ν/2

Γ( 1
2 ν)

w−
ν
2−1e−

1
2 νw−1

dw

=
(νs2)ν/4

2ν/2−1Γ( 1
2 ν)

Kν/2(
√

νs2). (A5)

The special case of variance gamma (VG) corresponds to χ = 0; without loss of generality

we set the scaling parameter κ = 2. In this case W has a gamma distribution W ∼ Ga(λ, 1) and

var(Y) = E(W) = λ. The characteristic function in this case should be interpreted as the limit of (A4)

as χ→ 0. Substituting the density of a gamma distribution W ∼ Ga(λ, 1) for fW in (A2) we obtain

φY(s) =
∫ ∞

0
e−

1
2 s2w wλ−1e−w

Γ(λ)
dw

=
(

1 + 1
2 s2
)−λ

. (A6)

Two further special cases are the normal inverse Gaussian (NIG) and hyperbolic distributions. In333

both cases we fix the parameter λ and reparameterize the GH distribution in terms of θ =
√

χκ and κ;334

the latter then appears only as a scaling parameter and can be set to one.335
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For the NIG distribution λ = −1/2 and var(Y) = θ−1. The identity Kλ(x) = K−λ(x) can be used

to infer that

φY(s) =

(√
θ2 + s2

θ

)1/2 K1/2

(√
θ2 + s2

)

K1/2 (θ)
. (A7)

For the hyperbolic (Hyp) distribution λ = 1 and var(Y) = θ−1K2(θ)/K1(θ). The characteristic function

is

φY(s) =

(

θ√
θ2 + s2

) K1

(√
θ2 + s2

)

K1 (θ)
. (A8)
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