
This is a repository copy of Optimisation of a Molecular Dynamics Simulation of
Chromosome Condensation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135317/

Version: Accepted Version

Proceedings Paper:
Law, Timothy R., Hancox, Jonny, Cheng, Tammy M.K. et al. (4 more authors) (2016)
Optimisation of a Molecular Dynamics Simulation of Chromosome Condensation. In:
Proceedings - 28th IEEE International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD 2016. 28th IEEE International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 2016, 26-28 Oct
2016 IEEE Computer Society , USA , pp. 126-133.

https://doi.org/10.1109/SBAC-PAD.2016.24

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Optimisation of a Molecular Dynamics Simulation

of Chromosome Condensation

Timothy R. Law , Jonny Hancoxy, Tammy M. K. Chengz , Raphaël A. G. Chaleilz ,

Steven A. Wright , Paul A. Batesz and Stephen A. Jarvis

 Department of Computer Science, University of Warwick, Coventry, UK
yHealth and Life Sciences Team, Intel Corporation, St. Clare House, London, UK

z Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK

Email: timothy.law@warwick.ac.uk

Abstract—We present optimisations applied to a bespoke bio-
physical molecular dynamics simulation designed to investigate
chromosome condensation. Our pr imary focus is on domain-
specific algor ithmic improvements to determining shor t-range
interaction forces between par ticles, as cer tain qualities of the
simulation render traditional methods less effective. We im-
plement tuned versions of the code for both traditional CPU
architectures and the modern many-core architecture found in
the Intel Xeon Phi coprocessor and compare their effectiveness.
We achieve speed-ups star ting at a factor of 10 over the or iginal
code, facilitating more detailed and larger-scale exper iments.

I. INTRODUCTION

Genomes can be large—the DNA comprising the human

genome is approximately 2 m long when stretched out. In

order to fit inside the nucleus of each cell, the DNA is wrapped

around many bundles of proteins to form packaging units

called nucleosomes, collectively comprising a structure called

chromatin. Chromatin’s structure varies with the cell cycle;

when the time comes for the cell to divide, it moves from the

loose conformation of nucleosomes and DNA linkers (often

likened to “beads on a string”) to a more tightly compacted

version typically associated with chromosomes. This process

is known as chromosome condensation, and it is thought to be

affected by protein complexes known as condensins, although

exactly how it happens is currently not well understood.

Current research looks to leverage computational techniques

to answer this question. In this paper we discuss optimisations

applied to one such biophysical molecular dynamics simula-

tion, developed recently by Cheng et al. [1]. The simulation

is used to study the effects of different models of condensin

interaction on the condensation of conformations of nucleo-

somes and linker DNA determined via in vitro methods (see

Figure 1). In this paper we present optimisations that make it

feasible to run the lengthy simulations required.

The contributions presented in this paper are:

 Development of projection sorting, an improvement to

the computation of short-range interaction forces between

particles under certain organisational conditions;

 Analysis and implementation of the most effective thread

and vector parallelism strategies for both the above and

for other kernels in this simulation, leading to overall

speedups starting at 10 and increasing with dataset size;

 Investigation of the resulting performance on the In-

tel Xeon and Xeon Phi platforms, and discussion of

characteristics that make some kernels more suitable for

execution on the coprocessor.

Section II discusses related work and provides a brief

overview of the simulation and its component parts. In Sec-

tion III we discuss the computation of repulsion forces, our

algorithm for computing them, and important implementation

details. Similarly, Section IV deals with condensin binding site

interactions. Section V presents an analysis of the resulting

performance and the work concludes in Section VI.

II. BACKGROUND

A. Related work

Computational simulations are widely used in the life sciences,

spanning a variety of domains of investigation from protein

structures to cell pathways, with numerous software packages

available. Perhaps the most well known molecular dynamics

program applicable to biological research is NAMD [2],

which has been heavily optimised for a variety of highly

parallel systems over the last 20 years [3], [4], [5]. Other

well known molecular dynamics codes include LAMMPS [6],

DL POLY [7] and GROMACS [8].

As clock-speeds drop off, exploiting the increasing amounts

of available parallelism at the vector and on-chip levels

becomes more and more important. Modern many-core ar-

chitectures such as Intel’s Knights Corner (KNC) and the

upcoming Knights Landing, and Nvidia’s Kepler and Maxwell

GPU architectures, demand much more from implementations

in order to extract maximum performance. Significant work

has gone into optimising molecular dynamics applications for

such architectures [9], [10], [11].

Fig. 1: A visualisation of one of the datasets used—a confor-

mation of yeast DNA dotted with nucleosomes.

− −

The primary focus of this paper is optimisation of a pairwise

short-range force calculation, where interactions take place

between all pairs of particles within a cut-off radius, rc , of each

other. Owing to their computational expense and widespread

applicability, forces such as these have received significant

attention in the MD literature. Many modern MD codes,

including NAMD and LAMMPS, use a combination of cell

lists [12], [13] and Verlet lists [14].

Cell lists are constructed by discretising the simulation

space into cubic partitions and binning particles according

to the partition they reside in. This reduces the number of

distance checks that must be performed to only a small

neighbourhood of partitions. This was the approach used by

Cheng et al. [1].

The cell lists can further be used to cheaply construct a

Verlet list for each particle, containing all other particles within

distance rv = rc + krs , where rc is the cut-off radius for the

force, outside which its magnitude is zero, and rs is the skin

distance of the simulation, chosen such that no particle may

move further in a single timestep. The Verlet lists may then be

used to efficiently calculate forces for up to k timesteps, after

which the lists must be rebuilt. k should be chosen to strike

a balance between increasing the size of the Verlet lists, and

decreasing the frequency of the rebuilds.

Another class of optimisations involves reordering stored

particles such that those local to each other in three dimen-

sional simulation space are also local in the computer’s mem-

ory (a one dimensional space). Spatial locality is important

in contemporary computer architectures, whose performance

often depends on being able to work around memory latency

by means of reuse within multiple layers of cache, and the

ability to predict and prefetch data likely to be needed in the

near future. Yao et al. discuss sorting particles along an axis

of the simulation domain [15]. Anderson et al. demonstrate

a successful application of a more sophisticated approach,

whereby particles are ordered according to their distance along

a space-filling Hilbert curve [9]. The Hilbert curve is chosen

due to its locality preserving properties [16].

This simulation has the advantage that, due to the tension

forces enacted by DNA linkers between each nucleosome, two

nucleosomes that are next to each other in memory can never

stray far from each other; this is in contrast to liquid or gas

MD simulations. The string can however wrap around on itself

leading to interactions between distant nucleosomes.

B. Simulation

The simulation treats the nucleosomes as uniform particles

in a molecular dynamics simulation, with radius 5 nm. The

DNA linkers are modelled as ideal springs following Hooke’s

law, connecting each nucleosome to the next. Nucleosomes are

free to move according to Brownian motion, subject to certain

constraints:

 Tension forces exerted by DNA linkers (modelled as ideal

springs);

 Repulsion forces between nucleosomes that are intersect-

ing, or very close to each other;

 Angular tendencies between adjacent DNA linkers;

 Interactions between “condensin binding sites” spaced

along the string;

 Boundary conditions—nucleosomes may not exit a cylin-

drical or ellipsoidal bounding volume.

In the original implementation, the vast majority (95%)

of the runtime is spent computing the repulsion forces that

prevent particles from overlapping. As such, the majority of

this paper (see Section III) focuses on improving the perfor-

mance of this kernel, both through algorithmic changes and

micro-optimisation. Of secondary importance is the condensin

interaction kernel (see Section IV), which consumed 2% of

the original simulation runtime. Increasing the dataset size

has a greater proportional impact on the performance of this

kernel, which therefore is of increasing importance as the code

scales.

III. REPULSION FORCE

Two nucleosomes cannot occupy the same area in space at the

same time. In order to enforce this in the simulation, a force is

included that repels pairs of nucleosomes whose centres come

very close to each other. 15 nm is the cut-off radius rc outside

which no repulsion forces apply between two nucleosomes,

and is equal to twice the nucleosome radius of 5 nm plus an

extra 5 nm to deter possible collisions on the next timestep.

The traditional combination of cell lists and Verlet lists

are not effective for this calculation, primarily because the

timestep ∆ t is large, and the particles move far enough at

each step that rebuilds are necessarily frequent and the lists

are large. We now present projection sorting as an alternative

method and contrast it with Verlet lists in Section III-C.

A. Projection sorting

Given the linear nature of the datasets and the small cut-off

radius, we present an alternative approach to cell lists and

Verlet lists, henceforth referred to as projection sorting. It is

easy to see that when two particles are separated by a distance

greater than rc along any single axis (or any unit vector v̂),

the Euclidean distance between them cannot possibly be less

than rc . This is formalised for two particle position vectors a

and b and an arbitrary v̂ in Equation 1. It follows that if one

were to order the particles by their scalar projection onto such

a vector, then for each particle there would exist a contiguous

block of particles extending either side within rc along v̂. Only

particles within this block could possibly be within rc in space

(subject to a full distance check). Outside of this block all

particles could be disregarded. In order for this approach to

be effective the span of the set of particles along v̂ should

greatly exceed that of the span along vectors orthogonal to v̂,

or many spurious checks must still be carried out.

Our algorithm using this fact is as follows:

1) Selecting v̂: An ideal choice for v̂ is along a line of

best fit through the set of particles, for example, the

v v8^;a;b 2 R3; j(a b) ^j ∥a b∥ (1)

−

−

−

−

ordinary least squares or orthogonal distance regression

lines, but this is expensive to calculate. In our case, we

have a static, fairly tight, cylindrical/ellipsoidal bounding

volume which defines the primary axis along which the

string extends. We can reduce the overhead of computing
^ by using the major axis of this volume, which here

serves as a good approximation to a line of best fit.

2) Par ticle sor t: The particles are then sorted by their

sorting by projection in a related context [17]. Efficient

sorting is key to good performance with this method.

3) Force sweep: For each particle i, loop over all particles

j , where j is bounded by k lo and khi, the first particles

below and above i respectively for which the difference

between the scalar projections of j and i onto v̂ exceeds

rc . It is guaranteed by Equation 1 that no particle outside

this set will be within rc in space. The search space

can be further reduced to particles j , where i < j <

khi by using Newton’s Third Law (N3), at the expense

of additional synchronised writes on every inner loop

iteration.

B. Implementation

We now discuss the implementation of the two performance-

critical components of the projection sorting algorithm—the

force sweep and the global particle sort.

The Structure-of-Arrays (SoA) data layout (where each

particle facet is laid out independently and contiguously in

memory) is used throughout the code for position and force

arrays to facilitate vectorisation. As a result, the compiler

is able to auto-vectorise the simpler kernels (the entropic,

tension and angular forces, and the integration), with minimal

help in the form of #pr agma directives. Those that do not

auto-vectorise, including the projection sorting implementa-

tion, have been hand-vectorised using both AVX2 and KNC

intrinsics (depending on whether the code is being built for

CPU or the coprocessor respectively).

1) Force sweep: Due to the nature of vectorisation, all

instructions within a branch must be executed if any of the

lanes trigger the condition. This introduces inefficiency, as

the scalar version only executes the inner branch on a per-

particle basis as necessary. The actual inefficiency depends on

the proportion of particles that are within the cut-off distance.

For a SIMD width of W , up to W 1 of the force computations

carried out inside the branch could be unnecessary.

Inefficiency also comes from padding to a multiple of

the vector width at the end of each force sweep, and from

redundant computation due to alignment requirements at the

start of each force sweep. Each sweep must continue until all

beads in the vector fail the projection cut-off check, which

implies a maximum wastage of 2W 2. The worst case for

wastage due to alignment is W 1, so for a bidirectional

pair of sweeps, the maximum wastage is 6W 6. The longer

the sweep, the smaller a fraction of the total number of

particles processed this will account for, leading to better

vector efficiency. With real datasets, the sweeps are quite short

so the inefficiency can be significant. We explore the empirical

values for these inefficiencies in detail in Section III-C.

In addition to inefficiency arising from simply performing

unnecessary computation, it is also necessary to ensure that

the results of these computations are not stored. This requires

2 extra comparison operations on both the CPU and the

coprocessor, 3 extra blend operations on the CPU, and the

addition of masking to the final triplet of fused multiply-add

instructions used to accumulate forces on the coprocessor.

The force sweep is very cache friendly as all accesses are

contiguous. Hardware counter analysis for a representative

run reveals that 99.8% of loads issued hit L1 cache. This

minimises delays in getting data into the vector registers.

2) Sorting: The other computationally intensive component

of the projection sorting approach is the global particle sort.

Each thread uses a tuned in-place Quicksort to sort the

particles under its control. We can exploit the partially ordered

conformation at each step to accelerate the sort somewhat.

Pairs of sorted blocks are then merged iteratively using the

balanced asynchronous parallel merging algorithm described

by Francis and Mathieson [18]. This ensures that each thread

merges an even portion of the input sequences. For P threads,

log2 P layers of merging are required.

The sort operates on the data in SoA format, which is sub-

optimal as extraneous data is transferred and takes up cache

space, in an already bandwidth intensive operation. Each

particle consists of five pieces of information—the value of

its scalar projection, its (x ;y;z) coordinates in space, and its

index in the unsorted conformation. The cost of transposing

these five arrays to and from Array-of-Structures (AoS) format

(where particle facets are packed in memory) was determined

to be significantly more expensive than the overhead incurred

by leaving the data as SoA.

Using the SoA format enables the use of vectorised in-

register sorting techniques. Bitonic sorting networks [19] are

frequently applied here in the literature, as they fit well with

existing SIMD ISAs. We use the in-register sorting/merging

scheme described by Chhugani et al. [20], implemented with

SSE 4.2, AVX2 and KNC intrinsics. Although the size of

these networks scales poorly with the SIMD width W we

see reasonable speedups of 1.30 , 2.02 and 1.31 for the

SSE, AVX2 and KNC implementations respectively, when

applying them to sorting a single array. When scaling up to 5

arrays however, the code is much slower than the unvectorised

version, peaking at 0.31 . This is due in part to increased

register pressure—five times as many arrays requires five

times as many registers, and any overflow must be stored on

the program stack. However the bigger issue is instruction

pressure. The bitonic networks are implemented using shuffle

instructions, which for the most part can only be issued to

a single execution unit. Analysis using the Intel Architecture

Code Analyser (IACA) tool shows huge queues of shuffles

lining up against one port, which harms performance greatly

as there is no instruction-level parallelism. For this reason we

opt not to vectorise the projection sort.

v

^.vscalar projections onto Gonnet discusses particle

−

C. Projection sorting vs. Verlet lists

As discussed in Section II, Verlet lists are the de facto

standard approach to short-range n -body force computation.

In this section we investigate how the performance of the

projection sorting approach compares. Verlet list rebuilds and

force computation using Verlet lists were hand-vectorised as

described by Pennycook et al. [11].

To fairly compare the two, we need to choose values for

the skin distance rs and rebuild period k that maximise the

performance of the Verlet list approach while still computing

correct results. The values rs = 40 and k = 2 were determined

by tracking the maximum distance moved by any particle over

an experiment using the projection sorting method, and setting

rs to just greater than that, ensuring that the results are correct.

k was then chosen to maximise performance.
1) Distance check counts: A “distance check” is a calcu-

lation of the distance between a pair of particles, necessary

to determine whether we need to calculate the force between

them. The number of distance checks performed by an algo-

rithm is a good predictor of its performance [21]. Table I shows

the average number of distance checks performed using each

method, with N3 on and off, as well as the SIMD inefficiency

for AVX2 and KNC intrinsic implementations (i.e. the number

of distance checks that were unnecessary, and only performed

as a result of SIMD limitations).

Projection sorting performs fewer distance checks overall,

but is affected more by SIMD inefficiencies. As discussed

above, when N3 is not used projection sorting requires two

force sweeps. There is SIMD inefficiency at the end of both

of these sweeps, and also at the beginning of the sweep

due to alignment requirements. Verlet lists only require one

sweep regardless of N3, and have no alignment requirements

as they are allocated on a cache line boundary. As we scale

up to wider SIMD, we see the projection sorting technique

approaching the operation of Verlet lists in terms of the

number of distance checks performed. At current SIMD widths

however, projection sorting still requires the fewest checks in

all cases.
2) Verlet rebuild vs. sorting performance: A key part of the

Verlet list algorithm is the use of cell lists to accelerate the

list build phase. The simulation space is discretised into cubes

of side rv (the Verlet radius, rv = rc + krs) and particles are

binned accordingly. While this step is necessary (construction

of the Verlet lists takes time quadratic in the number of

particles otherwise) the cell lists consume a very large amount

of memory. Typically this is avoided by computing the cell

lists in a distributed fashion, but in our case we wish to run

on a single node, and must find an alternative approach.

As the conformation is concentrated in a small portion of

simulation space, we implement the construction using a lock-

free hash table, where cell lists are only allocated when a

particle actually needs to be added. Once an allocation has

occurred we do not free the memory until the end of the

simulation, to avoid the large overhead of continually freeing

and reallocating memory that is likely to be reused anyway.

Using atomic operations rather than mutexes ensures internal

consistency with minimal performance penalties. This method

is slower than simply allocating all bins at the start, but uses

orders of magnitude less memory, and as such is feasible for

larger datasets.

Figure 2a compares the costs of Verlet list rebuilds using this

scheme and the global particle sort required by the projection

sorting algorithm. The sort is clearly cheaper than the Verlet

list rebuild, even though it is performed 4 times as often.

3) Sweep performance: Finally, we compare the cost of

the force sweeps. Vectorisation is a major consideration, and

Table II shows the empirical values for the inefficiency arising

from wasted computation inside the force calculation branch.

As discussed in Section III-B, we see very high fractions

here due to the low rate of interactions

between particles (brought on by the small cut-off distance).

This impacts the overall SIMD speedup as the width increases.

Verlet lists have slightly lower inefficiencies as they preserve

the order of beads better than projection sorting.

Figure 2b shows the full sweep comparison. Interestingly,

the fastest option here is projection sorting with N3 disabled.

Even though N3 cuts the number of distance checks in half,

the additional cost of atomic operations on the force array

outweigh this benefit. The gap is especially pronounced on

Xeon Phi, as it is running 15 as many threads. Conversely,

N3 improves performance for Verlet lists.

In conclusion, projection sorting wins on all fronts in these

tests, exhibiting the lowest number of distance checks, the

cheapest periodic costs, and the fastest force sweeps. The

high value for rs is the primary reason that Verlet lists are

ineffective for this simulation, as this forces the rebuild period

lower, and increases the list sizes. Nonetheless it is clear that,

projection sorting can be an effective alternative. The primary

factors to consider when choosing an algorithm are (roughly

in order of importance):

 Geometry of the simulation (the set of particles having a

long axis favours projection sorting),

 Average movement of particles per timestep (lower allows

for a smaller rs),

 Projection sorting uses memory bandwidth more effec-

tively,

 Higher SIMD width favours Verlet lists.

IV. CONDENSIN FORCE

The other computationally intensive force calculation per-

tains to the interactions between “condensin binding sites”—

modelled as special nucleosomes occurring along the length

of the string at irregular intervals, with an average separa-

tion of 48 nucleosomes. These sites can interact when they

come close, and become stuck together for extended periods,

prompting the condensation of the string over time.

Sites whose centres come within 40 nm of each other expe-

rience attractive forces, up to a limited number of interactions

per site, per timestep (typically capped at 1 or 2). There

is also a stochastic component—for each interaction, and

each timestep there is a small configurable probability that

interacting sites will dissociate from each other. When this

approaching W
W

1

−

−

T
im

e
(s

)

−

−

T
im

e
(s

)

Algor ithm N3? Mean # checks Mean AVX2 ineff. (#/%) Mean KNC ineff. (#/%)

Projection sorting

Verlet lists

N 64.73 10.15 (13.55%) 22.03 (25.39%)
Y 32.41 6.00 (15.54%) 13.98 (30.13%)
N 91.74 1.42 (1.52%) 3.54 (3.72%)
Y 45.83 1.57 (3.31%) 3.60 (7.27%)

TABLE I: Mean number of distance checks performed per particle, and the number of unnecessary checks performed as a

result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 128;000

nucleosomes, with rs = 40 and k = 2.

Algor ithm N3? Mean # calcs. Mean AVX2 ineff. (#/%) Mean KNC ineff. (#/%)

Projection sorting

Verlet lists

N 1.68 4.74 (73.83%) 10.51 (86.21%)
Y 0.84 2.38 (73.91%) 5.47 (86.69%)
N 1.68 3.53 (67.75%) 7.80 (82.28%)
Y 0.84 2.05 (70.93%) 4.69 (84.81%)

TABLE II: Mean number of full neighbour force calculations performed per particle, and the number of unnecessary calculations

performed as a result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained

128;000 nucleosomes, with rs = 40 and k = 2.

2

2

29

26

23

20

3

6

212 213 214 215 216 217 218 219

particles

(a)

2

2

29

26

23

20

3

6

212 213 214 215 216 217 218 219

particles

(b)

Fig. 2: Breakdown of performance differences between: (a) Verlet list rebuilds vs. projection sorts, and (b) force sweep based

on Verlet lists and force sweep based on projection sorting, over different dataset sizes. The CPU is running 16 threads and

the coprocessor 244. Only the “N3” lines are shown for projection sorting in (a), as this setting doesn’t affect the sort.

happens they enter a cooldown period of 3 timesteps during

which they cannot form any bonds, giving them time to move

apart.

There are two primary steps to computing the forces on

each site, referred to henceforth as the binning step and the

interaction step respectively:

1) List other sites within the 40 nm cut-off radius,

2) Determine whether to apply forces, dissociate, or ad-

vance cooldown period, depending on the number of

close pairs and their interaction history.

This is another short-range interaction of the type discussed

in Section III, although with different properties. The cut-

off radius is larger, 40 nm compared to 15 nm. The force

between a pair of sites is more expensive to calculate, but

the number of sites is an order of magnitude smaller than the

number of nucleosomes. For a given site, we must determine

all other close sites before we can compute any forces, rather

than accumulating them per interaction as in the repulsion

kernel. The cooldown mechanic also introduces additional

state between timesteps, which complicates matters. Projection

CPU PS N3 CPU PS no N3 CPU VL N3 CPU VL no N3

Coproc. PS N3 Coproc. PS no N3 Coproc. VL N3 Coproc. VL no N3

sorting can be used during the binning step, although careful

attention must be paid to correctly mapping from sorted

binding sites to the inter-timestep state.

A. Implementation

1) Storage: It is necessary to store the cooldown status

for every pair of binding sites—a flag indicating whether a

site’s interaction with another bead is currently in cooldown

mode, and the number of timesteps remaining before it is

free to interact again. While the two can be combined into

a single field (with 0 representing no cooldown mode, and

any other number representing the remaining count), the na ̈ve

storage requirement is still quadratic in the number of sites.

This becomes a problem with larger datasets.

As dissociation events are uncommon, the matrix of

cooldown state is very sparse. Taking advantage of this fact,

we implement the same technique used to reduce the storage

requirement for cell lists in Section III-C, and replace the

matrix with a lock-free hash table. For a large number of

binding sites, say 100;000, this approach requires over 2300

less space, 4:1 MB instead of 9:3 GB.

2) Vectorisation: Meaningful vectorisation is infeasible for

both the binning and interaction steps. The binning step

requires access to the cooldown status of each bead. As these

are stored non-contiguously regardless of the storage strategy

used, we are faced with an expensive gather operation. In the

case of the hash table, current SIMD ISAs do not support

atomic gathers [22], necessitating performing the memory ac-

cesses and register insertions manually. More crucially though,

the average binding site sweep length is slightly under 2,

which negates any benefit due to the large overhead. For

the interaction step the algorithm dictates that each site is

processed individually based on the contents of a very short

list of neighbour sites.

V. RESULTS

We now discuss in more detail the experimental setup for

the runs performed, and present both the overall runtime

characteristics and comparisons between performance on the

CPU and coprocessor.

A. Experimental setup

All experiments use the projection sorting method without

N3, as discussed in Section III-C. Per kernel timing was

implemented using the r dt s c hardware counter in order to

achieve high accuracy with minimal overhead.

1) Datasets: The initial dataset described by

Cheng et al. [1] was derived from a budding yeast cell

and contains 2000 nucleosomes. As no larger real datasets

were available while this work was being undertaken, we

generated extended versions of the original using probabilistic

methods. We defined three normal distributions, each

parameterised using the mean and standard deviation of the

deltas between each nucleosome for the x , y and z axes

respectively. We then generated new conformations of length

N particles by sampling these distributions to perform an

Xeon E5-2630v3 Xeon Phi 7120P

Sockets Cores Threads 2 8 2 1 61 4
Clock (GHz) 2.40 1.24
L1f i,dg / L2 / L3 Cache (KB) 32 / 256 / 12288 32 / 512 / N/A
Memory (GB) 64 16
SIMD ISA AVX2 KNC

TABLE III: Machine configuration

N step random walk. Condensin binding sites were placed

randomly on average every 48 nucleosomes. After generation

we advanced the conformation by 100;000 timesteps to

reach a relatively stable state, free of artefacts caused by

the random walk process. Synthetic datasets were generated

for the following values of N : 4000, 8000, 16;000, 32;000,

64;000, 128;000, 256;000 and 512;000.

2) Machine specifications: The machine used for experi-

ments was fitted with dual Intel Xeon E5-2630 8-core CPUs

for a total of 16 cores. 64 GB of RAM was available. The

coprocessor was an Intel Xeon Phi 7120P, with 61 cores

and 16 GB of RAM. See Table III for details. All code was

compiled using the Intel C++ compiler, v15.0.4.

B. Overall performance

Relative to the original code, we see single-threaded speedups

starting at over 10 on the CPU for 2000 beads (see Figure 4

for a per-kernel breakdown), and increasing as the dataset size

goes up due to better algorithmic scaling. We would note

that this is not a fair comparison of algorithmic approaches

(previously presented in Section III-C), as the original cell

list implementation is not heavily optimised. The slowdown

to the entropic kernel is due to switching to a more robustly

thread-safe random number generator. We observe speedups

in all other kernels. This decreases the time taken to perform

a typical experimental run, consisting of 40 million timesteps,

from 90 hours to 9 hours on our hardware. When factoring

in the effects of parallelisation the improvement is much

greater.

Figure 3 shows a breakdown of each optimised kernel’s

performance over a range of dataset sizes for both the CPU

and coprocessor. On the CPU, the repulsion sweep is the most

expensive, followed closely by the condensin interactions and

the sort. The entropic, tension and attraction forces (grouped

under “other”) are comparatively cheap. The point where

the integration falls out of last-level cache (LLC) is clearly

visible between 128;000 and 256;000. The barrier costs are

fairly low throughout, but increase sharply for the largest

dataset, possibly due to non-uniform memory access (NUMA)

problems.

On the coprocessor, the sort is most expensive, primarily

as it is not vectorised at all (see discussion in Section III-B).

Vectorisation is more crucial to performance on the Xeon Phi

than on the CPU so this is expected. The repulsion sweep

is cheaper on the Xeon Phi, as it vectorises very well and

does not require any barriers. Interestingly, the condensin

interactions are also cheaper to compute, despite not being

−

−

−T
im

e
(s

)

−

−

−T
im

e
(s

)

Ent
ro

pi
c

Lin
ea

r

C
on

de
ns

in

R
ep

ul
si
on

In
te

gr
at

io
n

T
im

e
(s

)

2

2

2

26

23

20

3

6

9

212 213 214 215 216 217 218 219

particles

(a)

2

2

2

26

23

20

3

6

9

212 213 214 215 216 217 218 219

particles

(b)

Fig. 3: Breakdown of kernel times when running on the CPU and the coprocessor across a range of dataset sizes. (a) shows

the timings for 16 threads on the CPU, (b) shows 244 threads running on the coprocessor.

105

104

103

102

101

100

Fig. 4: Per-kernel comparison of single-threaded performance

between the original application and our optimised version

for the 2000 nucleosome yeast dataset. The “linear” kernel

refers to the combination of the tension and angular force

computation, which were merged for the optimised version. A

logarithmic y-axis is used to better demonstrate the difference

in terms of orders of magnitude—note the 10 improvement

to the repulsion kernel.

vectorised either, likely because each binding site is largely

independent leading to good scaling to a larger number of

threads. The integration also scales better with dataset size, as

the coprocessor has roughly 3 the memory bandwidth as the

CPU (153 GB=s per NUMA region as opposed to 48 GB=s,

as reported by the STREAM benchmark [23]).

The main issue we see on the coprocessor is significantly

higher barrier costs. On some level this is unavoidable, a

higher number of threads is going to mean slower blocking

operations and a greater sensitivity to load imbalance, and we

cannot remove any barriers as they are necessary to ensure

correctness. We can aim to reduce the number of barriers

via algorithmic changes however—the midpoint integration

scheme used is the main culprit here, requiring twice as many

barriers per timestep as would otherwise be needed.

C. Offload computation

We experimented with offloading computation to the coproces-

sor while running on the CPU. Suitable candidate kernels for

offloading should perform well on the coprocessor, be able to

run in parallel with other kernels (minimal data dependencies),

not require large amounts of data transfer on and off the

coprocessor each timestep, and take long enough that the

overhead of offload does not dominate. Of the kernels in this

simulation, the only one that satisfies most of these conditions

is the projection sorting force sweep. It performs better on

the coprocessor, and can be run in parallel with any of the

other force computation kernels. Despite this, the time saved

by running offloaded was roughly equalled by the overhead

of doing so, and we did not see any significant change in

performance.

VI. CONCLUSIONS

We present projection sorting, an alternative to the traditional

Verlet list algorithm for short-range interaction force computa-

tion, and show that it is more effective under certain conditions

Sort Condensin Repulsion

Integration Other Barrier

Original

Optimised

present in this molecular dynamics simulation of chromosome

condensation. We provide efficient parallel implementations of

this strategy for traditional and many-core architectures, along

with the rest of the code.

We achieve large speed-ups starting at 10 , and improving

with dataset size, over the original implementation, and com-

pare the performance of our optimised CPU and coprocessor

implementations. We find that some kernels are better suited to

the Xeon Phi coprocessor, in particular the projection sorting

force sweep, which consumes the majority of the runtime in

this simulation.

Our optimisations have been and continue to be used to

facilitate further experiments into chromosome condensation.

While the algorithms we discuss are specific to molecular

dynamics, the issues that arise through implementation are

more widely applicable, in particular our discussion of sorting,

a very common operation in a great many classes of code.

A. Further work

Future directions for this code include support for multi-

ple interacting chromatin strings with a controlled region

of overlap between their bounding boxes, which introduces

some challenging dynamic load balancing problems where the

strings come into contact with each other.

Reworking the simulation to use an alternative integration

scheme that does not require computing forces more than once

(such as Verlet integration [14]), would radically affect the

performance characteristics of the simulation.

Currently the code is shared memory parallel only, using

OpenMP. Extension to distributed memory parallelism would

require reworking of some algorithms (for example, efficient

distributed sorting is more complex than shared memory

sorting [24]), but is generally straightforward and would open

doors to greater performance on larger systems.

ACKNOWLEDGEMENTS

This work was supported by the Francis Crick Institute

which receives its core funding from Cancer Research UK

(FC001003), the UK Medical Research Council (FC001003),

and the Wellcome Trust (FC001003), and by the Engineering

and Physical Sciences Research Council and Intel Corporation

(CASE award 1365607).

REFERENCES

[1] T. M. K. Cheng, S. Heeger, R. A. G. Chaleil, N. Matthews, A. Stewart,
J. Wright, C. Lim, P. A. Bates, and F. Uhlmann, “A simple biophysical
model emulates budding yeast chromosome condensation.” eLife, vol. 4,
p. e05565, 2015.

[2] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD.” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, Dec. 2005.

[3] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kalé,
“Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in Proceedings of the International Parallel and

Distributed Processing Symposium 2008. IEEE, 2008, pp. 1–12.
[4] W. Jiang, J. C. Phillips, L. Huang, M. Fajer, Y. Meng, J. C. Gumbart,

Y. Luo, K. Schulten, and B. Roux, “Generalized Scalable Multiple Copy
Algorithms for Molecular Dynamics Simulations in NAMD.” Computer

Physics Communications, vol. 185, no. 3, pp. 908–916, Mar. 2014.

[5] Y. Sun, G. Zheng, C. Mei, E. J. Bohm, J. C. Phillips, L. V. Kalé, and T. R.
Jones, “Optimizing fine-grained communication in a biomolecular sim-
ulation application on Cray XK6,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis 2012. IEEE, 2012, pp. 1–11.
[6] S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular

Dynamics,” Journal of Computational Physics, vol. 117, pp. 1–19, Mar.
1995.

[7] I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL POLY 3:
new dimensions in molecular dynamics simulations via massive paral-
lelism,” Journal of Materials Chemistry, vol. 16, no. 20, pp. 1911–1918,
May 2006.

[8] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,” Soft-

wareX, vol. 1-2, pp. 19–25, Sep. 2015.
[9] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose

molecular dynamics simulations fully implemented on graphics pro-
cessing units,” Journal of Computational Physics, vol. 227, no. 10, pp.
5342–5359, May 2008.

[10] A. Harode, A. Gupta, B. Mathew, and N. Rai, “Optimization of
Molecular Dynamics application for Intel Xeon Phi coprocessor,” in
Proceedings of the International Conference on High Performance

Computing and Applications 2014. IEEE, 2014, pp. 1–6.
[11] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,

“Exploring SIMD for Molecular Dynamics, Using Intel R Xeon R

Processors and Intel R Xeon PhiTM Coprocessors,” in Proceedings of the

International Symposium on Parallel and Distributed Processing 2013.
IEEE Computer Society, May 2013, pp. 1085–1097.

[12] R. W. Hockney, S. P. Goel, and J. W. Eastwood, “Quiet high-resolution
computer models of a plasma,” Journal of Computational Physics,
vol. 14, no. 2, pp. 148–158, Feb. 1974.

[13] B. Quentrec and C. Brot, “New method for searching for neighbors in
molecular dynamics computations,” Journal of Computational Physics,
vol. 13, no. 3, pp. 430–432, Nov. 1973.

[14] L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules,” Physical Review, vol.
159, no. 1, pp. 98–103, Jul. 1967.

[15] Z. Yao, J. Wang, G. Liu, and M. Cheng, “Improved neighbor list
algorithm in molecular simulations using cell decomposition and data
sorting method,” Computer Physics Communications, vol. 161, no. 1-2,
pp. 27–35, Aug. 2004.

[16] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis
of the clustering properties of the Hilbert space-filling curve,” IEEE

Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp.
124–141, 2001.

[17] P. Gonnet, “A simple algorithm to accelerate the computation of non-
bonded interactions in cell-based molecular dynamics simulations.”
Journal of Computational Chemistry, vol. 28, no. 2, pp. 570–573, Jan.
2007.

[18] R. S. Francis and I. D. Mathieson, “A benchmark parallel sort for shared
memory multiprocessors,” IEEE Transactions on Computers, vol. 37,
no. 12, pp. 1619–1626, 1988.

[19] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the 1968 AFIPS Conference. ACM Press, 1968, pp. 307–314.
[20] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y. Chen,

A. Baransi, S. Kumar, and P. Dubey, “Efficient implementation of sorting
on multi-core SIMD CPU architecture,” in Proceedings of the VLDB

Endowment 2008. VLDB Endowment, Aug. 2008, pp. 1313–1324.
[21] U. Welling and G. Germano, “Efficiency of linked cell algorithms,”

Computer Physics Communications, vol. 182, no. 3, pp. 611–615, Mar.
2011.

[22] S. Kumar, D. Kim, M. Smelyanskiy, Y. Chen, J. Chhugani, C. J. Hughes,
C. Kim, V. W. Lee, and A. D. Nguyen, “Atomic Vector Operations
on Chip Multiprocessors,” in Proceedings of the 35th International

Symposium on Computer Architecture 2008. IEEE, 2008, pp. 441–
452.

[23] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical
Committee on Computer Architecture TCCA Newsletter, 1995.

[24] E. Solomonik and L. V. Kalé, “Highly scalable parallel sorting,” in
Proceedings of the International Parallel and Distributed Processing

Symposium 2010. IEEE, 2010, pp. 1–12.

