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Abstract—We present optimisations applied to a bespoke bio- 
physical molecular dynamics simulation designed to investigate 
chromosome condensation. Our pr imary focus is on domain-
specific algor ithmic improvements to determining shor t-range
interaction forces between par ticles, as cer tain qualities of the
simulation render traditional methods less effective. We im-
plement tuned versions of the code for both traditional CPU
architectures and the modern many-core architecture found in
the Intel Xeon Phi coprocessor and compare their effectiveness.
We achieve speed-ups star ting at a factor of 10 over the or iginal
code, facilitating more detailed and larger-scale exper iments.

I. INTRODUCTION

Genomes can be large—the DNA comprising the human 

genome is approximately 2 m long when stretched out. In 

order to fit inside the nucleus of each cell, the DNA is wrapped 

around many bundles of proteins to form packaging units 

called nucleosomes, collectively comprising a structure called 

chromatin. Chromatin’s structure varies with the cell cycle; 

when the time comes for the cell to divide, it moves from the 

loose conformation of nucleosomes and DNA linkers (often 

likened to “beads on a string”) to a more tightly compacted 

version typically associated with chromosomes. This process 

is known as chromosome condensation, and it is thought to be 

affected by protein complexes known as condensins, although 

exactly how it happens is currently not well understood.

Current research looks to leverage computational techniques 

to answer this question. In this paper we discuss optimisations 

applied to one such biophysical molecular dynamics simula- 

tion, developed recently by Cheng et al. [1]. The simulation 

is used to study the effects of different models of condensin 

interaction on the condensation of conformations of nucleo- 

somes and linker DNA determined via in vitro methods (see 

Figure 1). In this paper we present optimisations that make it 

feasible to run the lengthy simulations required.

The contributions presented in this paper are:

  Development of projection sorting, an improvement to 

the computation of short-range interaction forces between

particles under certain organisational conditions;

  Analysis and implementation of the most effective thread 

and vector parallelism strategies for both the above and 

for other kernels in this simulation, leading to overall 

speedups starting at 10  and increasing with dataset size;

  Investigation of the resulting performance on the In- 

tel Xeon and Xeon Phi platforms, and discussion of 

characteristics that make some kernels more suitable for

execution on the coprocessor.

Section II discusses related work and provides a brief 

overview of the simulation and its component parts. In Sec-

tion III we discuss the computation of repulsion forces, our

algorithm for computing them, and important implementation 

details. Similarly, Section IV deals with condensin binding site 

interactions. Section V presents an analysis of the resulting 

performance and the work concludes in Section VI.

II. BACKGROUND

A. Related work

Computational simulations are widely used in the life sciences, 

spanning a variety of domains of investigation from protein 

structures to cell pathways, with numerous software packages 

available. Perhaps the most well known molecular dynamics 

program applicable to biological research is NAMD [2], 

which has been heavily optimised for a variety of highly 

parallel systems over the last 20 years [3], [4], [5]. Other 

well known molecular dynamics codes include LAMMPS [6], 

DL POLY [7] and GROMACS [8].

As clock-speeds drop off, exploiting the increasing amounts

of available parallelism at the vector and on-chip levels 

becomes more and more important. Modern many-core ar- 

chitectures such as Intel’s Knights Corner (KNC) and the 

upcoming Knights Landing, and Nvidia’s Kepler and Maxwell 

GPU architectures, demand much more from implementations 

in order to extract maximum performance. Significant work 

has gone into optimising molecular dynamics applications for 

such architectures [9], [10], [11].

Fig. 1: A visualisation of one of the datasets used—a confor- 

mation of yeast DNA dotted with nucleosomes.
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The primary focus of this paper is optimisation of a pairwise 

short-range force calculation, where interactions take place 

between all pairs of particles within a cut-off radius, rc , of each 

other. Owing to their computational expense and widespread 

applicability, forces such as these have received significant 

attention in the MD literature. Many modern MD codes, 

including NAMD and LAMMPS, use a combination of cell 

lists [12], [13] and Verlet lists [14].

Cell lists are constructed by discretising the simulation

space into cubic partitions and binning particles according 

to the partition they reside in. This reduces the number of 

distance checks that must be performed to only a small 

neighbourhood of partitions. This was the approach used by 

Cheng et al. [1].

The cell lists can further be used to cheaply construct a

Verlet list for each particle, containing all other particles within

distance rv = rc + krs , where rc is the cut-off radius for the 

force, outside which its magnitude is zero, and rs is the skin 

distance of the simulation, chosen such that no particle may 

move further in a single timestep. The Verlet lists may then be 

used to efficiently calculate forces for up to k timesteps, after 

which the lists must be rebuilt. k should be chosen to strike 

a balance between increasing the size of the Verlet lists, and 

decreasing the frequency of the rebuilds.

Another class of optimisations involves reordering stored

particles such that those local to each other in three dimen- 

sional simulation space are also local in the computer’s mem- 

ory (a one dimensional space). Spatial locality is important 

in contemporary computer architectures, whose performance 

often depends on being able to work around memory latency 

by means of reuse within multiple layers of cache, and the 

ability to predict and prefetch data likely to be needed in the 

near future. Yao et al. discuss sorting particles along an axis 

of the simulation domain [15]. Anderson et al. demonstrate 

a successful application of a more sophisticated approach, 

whereby particles are ordered according to their distance along 

a space-filling Hilbert curve [9]. The Hilbert curve is chosen 

due to its locality preserving properties [16].

This simulation has the advantage that, due to the tension

forces enacted by DNA linkers between each nucleosome, two 

nucleosomes that are next to each other in memory can never 

stray far from each other; this is in contrast to liquid or gas 

MD simulations. The string can however wrap around on itself 

leading to interactions between distant nucleosomes.

B. Simulation

The simulation treats the nucleosomes as uniform particles 

in a molecular dynamics simulation, with radius 5 nm. The 

DNA linkers are modelled as ideal springs following Hooke’s 

law, connecting each nucleosome to the next. Nucleosomes are 

free to move according to Brownian motion, subject to certain 

constraints:

  Tension forces exerted by DNA linkers (modelled as ideal

springs);

  Repulsion forces between nucleosomes that are intersect-

ing, or very close to each other;

  Angular tendencies between adjacent DNA linkers;

  Interactions between “condensin binding sites” spaced

along the string;

  Boundary conditions—nucleosomes may not exit a cylin-

drical or ellipsoidal bounding volume.

In the original implementation, the vast majority ( 95%) 

of the runtime is spent computing the repulsion forces that 

prevent particles from overlapping. As such, the majority of 

this paper (see Section III) focuses on improving the perfor- 

mance of this kernel, both through algorithmic changes and 

micro-optimisation. Of secondary importance is the condensin 

interaction kernel (see Section IV), which consumed  2% of 

the original simulation runtime. Increasing the dataset size 

has a greater proportional impact on the performance of this 

kernel, which therefore is of increasing importance as the code 

scales.

III. REPULSION FORCE

Two nucleosomes cannot occupy the same area in space at the 

same time. In order to enforce this in the simulation, a force is 

included that repels pairs of nucleosomes whose centres come 

very close to each other. 15 nm is the cut-off radius rc outside 

which no repulsion forces apply between two nucleosomes, 

and is equal to twice the nucleosome radius of 5 nm plus an 

extra 5 nm to deter possible collisions on the next timestep.

The traditional combination of cell lists and Verlet lists 

are not effective for this calculation, primarily because the 

timestep ∆ t is large, and the particles move far enough at 

each step that rebuilds are necessarily frequent and the lists 

are large. We now present projection sorting as an alternative 

method and contrast it with Verlet lists in Section III-C.

A. Projection sorting

Given the linear nature of the datasets and the small cut-off 

radius, we present an alternative approach to cell lists and 

Verlet lists, henceforth referred to as projection sorting. It is

easy to see that when two particles are separated by a distance 

greater than rc along any single axis (or any unit vector v̂),

the Euclidean distance between them cannot possibly be less 

than rc . This is formalised for two particle position vectors a 

and b and an arbitrary v̂ in Equation 1. It follows that if one 

were to order the particles by their scalar projection onto such 

a vector, then for each particle there would exist a contiguous 

block of particles extending either side within rc along v̂. Only 

particles within this block could possibly be within rc in space 

(subject to a full distance check). Outside of this block all 

particles could be disregarded. In order for this approach to 

be effective the span of the set of particles along v̂ should 

greatly exceed that of the span along vectors orthogonal to v̂, 

or many spurious checks must still be carried out.

Our algorithm using this fact is as follows:

1) Selecting v̂: An ideal choice for v̂ is along a line of

best fit through the set of particles, for example, the

v v8^;a;b 2 R3; j(a b)  ^j   ∥a b∥ (1)
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ordinary least squares or orthogonal distance regression 

lines, but this is expensive to calculate. In our case, we 

have a static, fairly tight, cylindrical/ellipsoidal bounding 

volume which defines the primary axis along which the

string extends. We can reduce the overhead of computing 
^ by using the major axis of this volume, which here

serves as a good approximation to a line of best fit.

2) Par ticle sor t: The particles are then sorted by their

sorting by projection in a related context [17]. Efficient 

sorting is key to good performance with this method.

3) Force sweep: For each particle i, loop over all particles

j , where j is bounded by k lo and khi, the first particles 

below and above i respectively for which the difference 

between the scalar projections of j and i onto v̂ exceeds 

rc . It is guaranteed by Equation 1 that no particle outside 

this set will be within rc in space. The search space 

can be further reduced to particles j , where i < j < 

khi by using Newton’s Third Law (N3), at the expense 

of additional synchronised writes on every inner loop 

iteration.

B. Implementation

We now discuss the implementation of the two performance-

critical components of the projection sorting algorithm—the 

force sweep and the global particle sort.

The Structure-of-Arrays (SoA) data layout (where each

particle facet is laid out independently and contiguously in 

memory) is used throughout the code for position and force 

arrays to facilitate vectorisation. As a result, the compiler 

is able to auto-vectorise the simpler kernels (the entropic, 

tension and angular forces, and the integration), with minimal 

help in the form of #pr agma directives. Those that do not 

auto-vectorise, including the projection sorting implementa- 

tion, have been hand-vectorised using both AVX2 and KNC 

intrinsics (depending on whether the code is being built for 

CPU or the coprocessor respectively).

1) Force sweep: Due to the nature of vectorisation, all

instructions within a branch must be executed if any of the 

lanes trigger the condition. This introduces inefficiency, as 

the scalar version only executes the inner branch on a per- 

particle basis as necessary. The actual inefficiency depends on 

the proportion of particles that are within the cut-off distance.

For a SIMD width of W , up to W 1 of the force computations

carried out inside the branch could be unnecessary.

Inefficiency also comes from padding to a multiple of 

the vector width at the end of each force sweep, and from 

redundant computation due to alignment requirements at the 

start of each force sweep. Each sweep must continue until all 

beads in the vector fail the projection cut-off check, which

implies a maximum wastage of 2W 2. The worst case for

wastage due to alignment is W 1, so for a bidirectional

pair of sweeps, the maximum wastage is 6W 6. The longer

the sweep, the smaller a fraction of the total number of 

particles processed this will account for, leading to better 

vector efficiency. With real datasets, the sweeps are quite short

so the inefficiency can be significant. We explore the empirical 

values for these inefficiencies in detail in Section III-C.

In addition to inefficiency arising from simply performing 

unnecessary computation, it is also necessary to ensure that 

the results of these computations are not stored. This requires

2 extra comparison operations on both the CPU and the

coprocessor, 3 extra blend operations on the CPU, and the 

addition of masking to the final triplet of fused multiply-add 

instructions used to accumulate forces on the coprocessor.

The force sweep is very cache friendly as all accesses are 

contiguous. Hardware counter analysis for a representative 

run reveals that 99.8% of loads issued hit L1 cache. This 

minimises delays in getting data into the vector registers.

2) Sorting: The other computationally intensive component 

of the projection sorting approach is the global particle sort. 

Each thread uses a tuned in-place Quicksort to sort the 

particles under its control. We can exploit the partially ordered 

conformation at each step to accelerate the sort somewhat. 

Pairs of sorted blocks are then merged iteratively using the

balanced asynchronous parallel merging algorithm described

by Francis and Mathieson [18]. This ensures that each thread 

merges an even portion of the input sequences. For P threads, 

log2 P layers of merging are required.

The sort operates on the data in SoA format, which is sub-

optimal as extraneous data is transferred and takes up cache 

space, in an already bandwidth intensive operation. Each 

particle consists of five pieces of information—the value of 

its scalar projection, its (x ;y;z ) coordinates in space, and its 

index in the unsorted conformation. The cost of transposing 

these five arrays to and from Array-of-Structures (AoS) format 

(where particle facets are packed in memory) was determined 

to be significantly more expensive than the overhead incurred 

by leaving the data as SoA.

Using the SoA format enables the use of vectorised in- 

register sorting techniques. Bitonic sorting networks [19] are 

frequently applied here in the literature, as they fit well with 

existing SIMD ISAs. We use the in-register sorting/merging 

scheme described by Chhugani et al. [20], implemented with 

SSE 4.2, AVX2 and KNC intrinsics. Although the size of 

these networks scales poorly with the SIMD width W we 

see reasonable speedups of 1.30 , 2.02  and 1.31  for the 

SSE, AVX2 and KNC implementations respectively, when 

applying them to sorting a single array. When scaling up to 5 

arrays however, the code is much slower than the unvectorised 

version, peaking at 0.31 . This is due in part to increased

register pressure—five times as many arrays requires five

times as many registers, and any overflow must be stored on 

the program stack. However the bigger issue is instruction 

pressure. The bitonic networks are implemented using shuffle 

instructions, which for the most part can only be issued to 

a single execution unit. Analysis using the Intel Architecture 

Code Analyser (IACA) tool shows huge queues of shuffles 

lining up against one port, which harms performance greatly 

as there is no instruction-level parallelism. For this reason we 

opt not to vectorise the projection sort.

v
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C. Projection sorting vs. Verlet lists

As discussed in Section II, Verlet lists are the de facto 

standard approach to short-range n -body force computation. 

In this section we investigate how the performance of the 

projection sorting approach compares. Verlet list rebuilds and 

force computation using Verlet lists were hand-vectorised as 

described by Pennycook et al. [11].

To fairly compare the two, we need to choose values for

the skin distance rs and rebuild period k that maximise the 

performance of the Verlet list approach while still computing 

correct results. The values rs = 40 and k = 2 were determined 

by tracking the maximum distance moved by any particle over 

an experiment using the projection sorting method, and setting 

rs to just greater than that, ensuring that the results are correct. 

k was then chosen to maximise performance.
1) Distance check counts: A “distance check” is a calcu-

lation of the distance between a pair of particles, necessary 

to determine whether we need to calculate the force between 

them. The number of distance checks performed by an algo- 

rithm is a good predictor of its performance [21]. Table I shows 

the average number of distance checks performed using each 

method, with N3 on and off, as well as the SIMD inefficiency 

for AVX2 and KNC intrinsic implementations (i.e. the number 

of distance checks that were unnecessary, and only performed 

as a result of SIMD limitations).

Projection sorting performs fewer distance checks overall,

but is affected more by SIMD inefficiencies. As discussed

above, when N3 is not used projection sorting requires two 

force sweeps. There is SIMD inefficiency at the end of both 

of these sweeps, and also at the beginning of the sweep 

due to alignment requirements. Verlet lists only require one 

sweep regardless of N3, and have no alignment requirements 

as they are allocated on a cache line boundary. As we scale 

up to wider SIMD, we see the projection sorting technique 

approaching the operation of Verlet lists in terms of the 

number of distance checks performed. At current SIMD widths 

however, projection sorting still requires the fewest checks in 

all cases.
2) Verlet rebuild vs. sorting performance: A key part of the

Verlet list algorithm is the use of cell lists to accelerate the 

list build phase. The simulation space is discretised into cubes 

of side rv (the Verlet radius, rv = rc + krs ) and particles are 

binned accordingly. While this step is necessary (construction 

of the Verlet lists takes time quadratic in the number of 

particles otherwise) the cell lists consume a very large amount 

of memory. Typically this is avoided by computing the cell 

lists in a distributed fashion, but in our case we wish to run 

on a single node, and must find an alternative approach.

As the conformation is concentrated in a small portion of

simulation space, we implement the construction using a lock- 

free hash table, where cell lists are only allocated when a 

particle actually needs to be added. Once an allocation has 

occurred we do not free the memory until the end of the 

simulation, to avoid the large overhead of continually freeing 

and reallocating memory that is likely to be reused anyway. 

Using atomic operations rather than mutexes ensures internal

consistency with minimal performance penalties. This method 

is slower than simply allocating all bins at the start, but uses 

orders of magnitude less memory, and as such is feasible for 

larger datasets.

Figure 2a compares the costs of Verlet list rebuilds using this

scheme and the global particle sort required by the projection 

sorting algorithm. The sort is clearly cheaper than the Verlet 

list rebuild, even though it is performed 4 times as often.

3) Sweep performance: Finally, we compare the cost of

the force sweeps. Vectorisation is a major consideration, and 

Table II shows the empirical values for the inefficiency arising 

from wasted computation inside the force calculation branch. 

As discussed in Section III-B, we see very high fractions 

here due to the low rate of interactions

between particles (brought on by the small cut-off distance).

This impacts the overall SIMD speedup as the width increases. 

Verlet lists have slightly lower inefficiencies as they preserve 

the order of beads better than projection sorting.

Figure 2b shows the full sweep comparison. Interestingly,

the fastest option here is projection sorting with N3 disabled. 

Even though N3 cuts the number of distance checks in half, 

the additional cost of atomic operations on the force array 

outweigh this benefit. The gap is especially pronounced on 

Xeon Phi, as it is running 15  as many threads. Conversely, 

N3 improves performance for Verlet lists.

In conclusion, projection sorting wins on all fronts in these

tests, exhibiting the lowest number of distance checks, the 

cheapest periodic costs, and the fastest force sweeps. The 

high value for rs is the primary reason that Verlet lists are 

ineffective for this simulation, as this forces the rebuild period 

lower, and increases the list sizes. Nonetheless it is clear that, 

projection sorting can be an effective alternative. The primary 

factors to consider when choosing an algorithm are (roughly 

in order of importance):

  Geometry of the simulation (the set of particles having a

long axis favours projection sorting),

  Average movement of particles per timestep (lower allows

for a smaller rs ),

  Projection sorting uses memory bandwidth more effec-

tively,

  Higher SIMD width favours Verlet lists.

IV. CONDENSIN FORCE

The other computationally intensive force calculation per- 

tains to the interactions between “condensin binding sites”— 

modelled as special nucleosomes occurring along the length 

of the string at irregular intervals, with an average separa- 

tion of 48 nucleosomes. These sites can interact when they 

come close, and become stuck together for extended periods, 

prompting the condensation of the string over time.

Sites whose centres come within 40 nm of each other expe-

rience attractive forces, up to a limited number of interactions 

per site, per timestep (typically capped at 1 or 2). There 

is also a stochastic component—for each interaction, and 

each timestep there is a small configurable probability that 

interacting sites will dissociate from each other. When this

approaching W
W
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Algor ithm N3? Mean # checks Mean AVX2 ineff. (#/% ) Mean KNC ineff. (#/% )

Projection sorting 

Verlet lists

N 64.73 10.15 (13.55%) 22.03 (25.39%)
Y 32.41 6.00 (15.54%) 13.98 (30.13%)
N 91.74 1.42 (1.52%) 3.54 (3.72%)
Y 45.83 1.57 (3.31%) 3.60 (7.27%)

TABLE I: Mean number of distance checks performed per particle, and the number of unnecessary checks performed as a 

result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 128;000 

nucleosomes, with rs = 40 and k = 2.

Algor ithm N3? Mean # calcs. Mean AVX2 ineff. (#/% ) Mean KNC ineff. (#/% )

Projection sorting 

Verlet lists

N 1.68 4.74 (73.83%) 10.51 (86.21%)
Y 0.84 2.38 (73.91%) 5.47 (86.69%)
N 1.68 3.53 (67.75%) 7.80 (82.28%)
Y 0.84 2.05 (70.93%) 4.69 (84.81%)

TABLE II: Mean number of full neighbour force calculations performed per particle, and the number of unnecessary calculations

performed as a result of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used contained 

128;000 nucleosomes, with rs = 40 and k = 2.
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Fig. 2: Breakdown of performance differences between: (a) Verlet list rebuilds vs. projection sorts, and (b) force sweep based 

on Verlet lists and force sweep based on projection sorting, over different dataset sizes. The CPU is running 16 threads and 

the coprocessor 244. Only the “N3” lines are shown for projection sorting in (a), as this setting doesn’t affect the sort.

happens they enter a cooldown period of 3 timesteps during 

which they cannot form any bonds, giving them time to move 

apart.

There are two primary steps to computing the forces on 

each site, referred to henceforth as the binning step and the 

interaction step respectively:

1) List other sites within the 40 nm cut-off radius,

2) Determine whether to apply forces, dissociate, or ad- 

vance cooldown period, depending on the number of 

close pairs and their interaction history.

This is another short-range interaction of the type discussed 

in Section III, although with different properties. The cut- 

off radius is larger, 40 nm compared to 15 nm. The force 

between a pair of sites is more expensive to calculate, but 

the number of sites is an order of magnitude smaller than the 

number of nucleosomes. For a given site, we must determine 

all other close sites before we can compute any forces, rather 

than accumulating them per interaction as in the repulsion 

kernel. The cooldown mechanic also introduces additional

state between timesteps, which complicates matters. Projection

CPU PS N3 CPU PS no N3 CPU VL N3 CPU VL no N3

Coproc. PS N3 Coproc. PS no N3 Coproc. VL N3 Coproc. VL no N3



sorting can be used during the binning step, although careful 

attention must be paid to correctly mapping from sorted 

binding sites to the inter-timestep state.

A. Implementation

1) Storage: It is necessary to store the cooldown status 

for every pair of binding sites—a flag indicating whether a 

site’s interaction with another bead is currently in cooldown 

mode, and the number of timesteps remaining before it is 

free to interact again. While the two can be combined into 

a single field (with 0 representing no cooldown mode, and 

any other number representing the remaining count), the na ̈ve 

storage requirement is still quadratic in the number of sites. 

This becomes a problem with larger datasets.

As dissociation events are uncommon, the matrix of

cooldown state is very sparse. Taking advantage of this fact, 

we implement the same technique used to reduce the storage 

requirement for cell lists in Section III-C, and replace the 

matrix with a lock-free hash table. For a large number of 

binding sites, say 100;000, this approach requires over 2300  

less space, 4:1 MB instead of 9:3 GB.

2) Vectorisation: Meaningful vectorisation is infeasible for 

both the binning and interaction steps. The binning step 

requires access to the cooldown status of each bead. As these 

are stored non-contiguously regardless of the storage strategy 

used, we are faced with an expensive gather operation. In the 

case of the hash table, current SIMD ISAs do not support 

atomic gathers [22], necessitating performing the memory ac- 

cesses and register insertions manually. More crucially though, 

the average binding site sweep length is slightly under 2, 

which negates any benefit due to the large overhead. For 

the interaction step the algorithm dictates that each site is 

processed individually based on the contents of a very short 

list of neighbour sites.

V. RESULTS

We now discuss in more detail the experimental setup for

the runs performed, and present both the overall runtime 

characteristics and comparisons between performance on the 

CPU and coprocessor.

A. Experimental setup

All experiments use the projection sorting method without 

N3, as discussed in Section III-C. Per kernel timing was 

implemented using the r dt s c hardware counter in order to 

achieve high accuracy with minimal overhead.

1) Datasets: The initial dataset described by

Cheng et al. [1] was derived from a budding yeast cell 

and contains 2000 nucleosomes. As no larger real datasets 

were available while this work was being undertaken, we 

generated extended versions of the original using probabilistic 

methods. We defined three normal distributions, each 

parameterised using the mean and standard deviation of the 

deltas between each nucleosome for the x , y and z axes 

respectively. We then generated new conformations of length 

N particles by sampling these distributions to perform an

Xeon E5-2630v3 Xeon Phi 7120P

Sockets Cores Threads 2 8 2 1 61 4
Clock (GHz) 2.40 1.24
L1f i,dg / L2 / L3 Cache (KB) 32 / 256 / 12288 32 / 512 / N/A
Memory (GB) 64 16
SIMD ISA AVX2 KNC

TABLE III: Machine configuration

N step random walk. Condensin binding sites were placed 

randomly on average every 48 nucleosomes. After generation 

we advanced the conformation by 100;000 timesteps to 

reach a relatively stable state, free of artefacts caused by 

the random walk process. Synthetic datasets were generated 

for the following values of N : 4000, 8000, 16;000, 32;000, 

64;000, 128;000, 256;000 and 512;000.

2) Machine specifications: The machine used for experi-

ments was fitted with dual Intel Xeon E5-2630 8-core CPUs 

for a total of 16 cores. 64 GB of RAM was available. The 

coprocessor was an Intel Xeon Phi 7120P, with 61 cores 

and 16 GB of RAM. See Table III for details. All code was 

compiled using the Intel C++ compiler, v15.0.4.

B. Overall performance

Relative to the original code, we see single-threaded speedups 

starting at over 10  on the CPU for 2000 beads (see Figure 4 

for a per-kernel breakdown), and increasing as the dataset size 

goes up due to better algorithmic scaling. We would note 

that this is not a fair comparison of algorithmic approaches 

(previously presented in Section III-C), as the original cell 

list implementation is not heavily optimised. The slowdown 

to the entropic kernel is due to switching to a more robustly 

thread-safe random number generator. We observe speedups 

in all other kernels. This decreases the time taken to perform 

a typical experimental run, consisting of 40 million timesteps, 

from  90 hours to  9 hours on our hardware. When factoring 

in the effects of parallelisation the improvement is much 

greater.

Figure 3 shows a breakdown of each optimised kernel’s

performance over a range of dataset sizes for both the CPU 

and coprocessor. On the CPU, the repulsion sweep is the most 

expensive, followed closely by the condensin interactions and

the sort. The entropic, tension and attraction forces (grouped

under “other”) are comparatively cheap. The point where 

the integration falls out of last-level cache (LLC) is clearly 

visible between 128;000 and 256;000. The barrier costs are 

fairly low throughout, but increase sharply for the largest 

dataset, possibly due to non-uniform memory access (NUMA) 

problems.

On the coprocessor, the sort is most expensive, primarily

as it is not vectorised at all (see discussion in Section III-B). 

Vectorisation is more crucial to performance on the Xeon Phi 

than on the CPU so this is expected. The repulsion sweep 

is cheaper on the Xeon Phi, as it vectorises very well and 

does not require any barriers. Interestingly, the condensin 

interactions are also cheaper to compute, despite not being
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Fig. 3: Breakdown of kernel times when running on the CPU and the coprocessor across a range of dataset sizes. (a) shows 

the timings for 16 threads on the CPU, (b) shows 244 threads running on the coprocessor.
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Fig. 4: Per-kernel comparison of single-threaded performance 

between the original application and our optimised version 

for the 2000 nucleosome yeast dataset. The “linear” kernel 

refers to the combination of the tension and angular force 

computation, which were merged for the optimised version. A 

logarithmic y-axis is used to better demonstrate the difference 

in terms of orders of magnitude—note the 10  improvement 

to the repulsion kernel.

vectorised either, likely because each binding site is largely 

independent leading to good scaling to a larger number of 

threads. The integration also scales better with dataset size, as 

the coprocessor has roughly 3  the memory bandwidth as the

CPU (153 GB=s per NUMA region as opposed to 48 GB=s, 

as reported by the STREAM benchmark [23]).

The main issue we see on the coprocessor is significantly

higher barrier costs. On some level this is unavoidable, a 

higher number of threads is going to mean slower blocking 

operations and a greater sensitivity to load imbalance, and we 

cannot remove any barriers as they are necessary to ensure 

correctness. We can aim to reduce the number of barriers 

via algorithmic changes however—the midpoint integration 

scheme used is the main culprit here, requiring twice as many 

barriers per timestep as would otherwise be needed.

C. Offload computation

We experimented with offloading computation to the coproces- 

sor while running on the CPU. Suitable candidate kernels for 

offloading should perform well on the coprocessor, be able to 

run in parallel with other kernels (minimal data dependencies), 

not require large amounts of data transfer on and off the 

coprocessor each timestep, and take long enough that the 

overhead of offload does not dominate. Of the kernels in this

simulation, the only one that satisfies most of these conditions

is the projection sorting force sweep. It performs better on 

the coprocessor, and can be run in parallel with any of the 

other force computation kernels. Despite this, the time saved 

by running offloaded was roughly equalled by the overhead 

of doing so, and we did not see any significant change in 

performance.

VI. CONCLUSIONS

We present projection sorting, an alternative to the traditional

Verlet list algorithm for short-range interaction force computa-

tion, and show that it is more effective under certain conditions

Sort Condensin Repulsion

Integration Other Barrier

Original 

Optimised



present in this molecular dynamics simulation of chromosome 

condensation. We provide efficient parallel implementations of 

this strategy for traditional and many-core architectures, along 

with the rest of the code.

We achieve large speed-ups starting at 10 , and improving

with dataset size, over the original implementation, and com- 

pare the performance of our optimised CPU and coprocessor 

implementations. We find that some kernels are better suited to 

the Xeon Phi coprocessor, in particular the projection sorting 

force sweep, which consumes the majority of the runtime in 

this simulation.

Our optimisations have been and continue to be used to

facilitate further experiments into chromosome condensation.

While the algorithms we discuss are specific to molecular 

dynamics, the issues that arise through implementation are 

more widely applicable, in particular our discussion of sorting, 

a very common operation in a great many classes of code.

A. Further work

Future directions for this code include support for multi- 

ple interacting chromatin strings with a controlled region 

of overlap between their bounding boxes, which introduces 

some challenging dynamic load balancing problems where the 

strings come into contact with each other.

Reworking the simulation to use an alternative integration

scheme that does not require computing forces more than once 

(such as Verlet integration [14]), would radically affect the 

performance characteristics of the simulation.

Currently the code is shared memory parallel only, using

OpenMP. Extension to distributed memory parallelism would 

require reworking of some algorithms (for example, efficient 

distributed sorting is more complex than shared memory 

sorting [24]), but is generally straightforward and would open 

doors to greater performance on larger systems.
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