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1 Introduction

The fifty years since the birth of the Birnbaum-Saunders distribution can be broken-down into three

distinct periods. The first 30 years (1969–1999) showed slow development and few applications; see,

for example, Birnbaum and Saunders (1969), Rieck and Nedelman (1991), Dupuis and Mills (1998) and

Owen and Padgett (1999). The next ten years (2000–2010), in contrast, represented rapid methodologi-

cal development in terms of estimation, diagnostics and computational aspects, as well as generalisations

and novel modeling based on arguments of cumulative effects; see, for example, Volodin and Dzhun-

gurova (2000), Galea et al. (2004) and Vilca et al. (2010). Work during the most recent period (2011 to

the present) is characterized by the breaking of the previously ever-present link with lifetime modelling

and the resultant move to new areas of application such as: agriculture, business, econometrics, envi-

ronment, industry, management, medicine, neurology and seismology; see the book by Leiva (2016) for

details of these developments and applications of the univariate Birnbaum-Saunders distribution. Leiva

(2016), however, does not emphasise multivariate versions of the Birnbaum-Saunders distribution.

In their paper, Balakrishnan and Kundu (2018) conducted a comprehensive review of the Birnbaum-

Saunders distribution, which includes mathematical and statistical properties, physical interpretations,

analysis of the distribution shape, relations with other distributions, regression modeling and generali-

sations for the univariate case, as well as extensions to the multivariate and matrix-variate cases. Our

discussion updates and complements the references on the topic and we also provide more details on

multivariate Birnbaum-Saunders models and discuss a novel application in economics.

Other recent articles include a review of multivariate Birnbaum-Saunders distributions and applica-

tions by Aykroyd et al. (2018). Work on multivariate Birnbaum-Saunders models and their applications

was presented in Marchant et al. (2016a,b, 2018) and applications of multivariate Birnbaum-Saunders

distributions in spatial modelling appear in Garcia-Papani et al. (2017, 2018a,b). Also, multivariate cu-

mulative damage models, and their relationship with time of occurrence in the context of multicomponent

systems, were recently derived by Fierro et al. (2018).

In our discussion, we provide further aspects of the multivariate Birnbaum-Saunders distribution

reviewed by Balakrishnan and Kundu (2018), considering its properties and features, modeling, diag-

nostics, as well as new opportunities and future applications.
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2 Multivariate model definitions

2.1 The multivariate Birnbaum-Saunders distribution

The random vector T = (T1, . . . , Tm)
⊤ ∈ R

m
+ follows a multivariate Birnbaum-Saunders distribution

with parameters α = (α1, . . . , αm)
⊤ ∈ R

m
+ , λ = (λ1, . . . , λm)

⊤ ∈ R
m
+ and covariance matrix Σ ∈ R

m×m

if Tj = λj(αjVj/2 + (((αjVj/2)
2 + 1)1/2)2, for j = 1, . . . ,m, and V = (V1, . . . , Vm)

⊤ ∈ R
m ∼

Nm(0m×1,Γ), with 0m×1 being an m × 1 vector of zeros and Γ ∈ R
m×m being a correlation matrix.

Furthermore, since for the Birnbaum-Saunders case σkk = 1, for all k = 1, . . . ,m, then

Σ =




1 ρ12 · · · ρ1m
ρ12 1 · · · ρ2m

...
...

. . .
...

ρ1m ρ2m · · · 1


 = Γ. (2.1)

We denote the m-variate Birnbaum-Saunders distribution by T ∼ BSm(α, λ,Γ). Thus, the cumula-

tive distribution and probability density functions (CDF and PDF) of T are given by FT (t;α, λ,Γ) =
Φm(A;Γ) and fT (t;α, λ,Γ) = φm(A;Γ)a, respectively, for t = (t1, . . . , tm)

⊤ ∈ R
m
+ , where φm and

Φm are the m-variate standard normal PDF and CDF, A = (A1, . . . , Am)
⊤ and a =

∏m
j=1 aj , with

Aj = (1/αj)((tj/λj)
1/2 − (λ/t)1/2) and aj = (1/(2αjλj)) ((λj/tj)

1/2 + (λj/tj)
3/2), for j = 1, . . . ,m.

Let T = (T1, . . . , Tm)
⊤ ∼ BSm(α, λ,Γ). Then, Y = (Y1, . . . , Ym)

⊤ = (log(T1), . . . , log(Tm))
⊤ follows

a multivariate log-Birnbaum-Saunders distribution with shape parameters α = (α1, . . . , αm)
⊤, mean

vector µ = E[Y ] = (E[Y1], . . . ,E[Ym])
⊤ = (log(λ1), . . . , log(λm))

⊤ ∈ R
m, and correlation matrix

Γ ∈ R
m×m given in (2.1). This is denoted by Y ∼ log-BSm(α, µ,Γ). The CDF and PDF of Y are

defined as FY (y;α, µ,Γ) = Φm(B;Γ) and fY (y;α, µ,Γ) = φm(B;Γ)b, for y ∈ R
m, where b =

∏m
j=1 bj

and B = (B1, . . ., Bm)
⊤, with bj = (1/αj) cosh((yj − µj)/2) and Bj = (2/αj) sinh((yj − µj)/2), for

j = 1, . . . ,m.

2.2 The multivariate Birnbaum-Saunders regression model

The Birnbaum-Saunders log-linear regression model is formulated as

Y = Xβ +E, (2.2)

where Y = (Yij) ∈ R
n×m is the log-response matrix and X = (xis) ∈ R

n×p is the model design

matrix of rank p, which contains values of p covariates. Here, X,Y are linked by a coefficient matrix

β = (βsj) = (β
1
, . . . , β

m
) ∈ R

p×m, and E = (εij) ∈ R
n×m is the error matrix. Furthermore, let Y ⊤

i , x⊤

i

and ε⊤i be the i-th rows of Y ,X,E, respectively. Thus, the model defined in (2.2) can be rewritten as

Y i = µ
i
+ εi = β⊤xi + εi, i = 1, . . . , n, (2.3)

where ε1, . . . , εn are independently and identically log-BSm(α1m×1, 0m×1, Γ) distributed, with 1m×1 be-

ing an m×1 vector of ones. Consider a sample from a multivariate log-Birnbaum-Saunders distribution,

Y = (Y 1, . . . , Y n)
⊤, with E[Y i] = β⊤xi and observations y = (y

1
, . . . , y

n
)⊤. Then, the log-likelihood

function for θ = (α, vec(β)⊤, svec(Γ)⊤)⊤, with ‘vec’ representing the vectorization of a general matrix

2



and ‘svec’ denotes vectorization of a symmetric matrix, is given by

ℓ(θ) = −m log(2)−
m

2
log(2π)−

1

2
log(|Γ|)−

1

2
φ⊤

i
Γ

−1φ
i
+

m∑

j=1

log(ξij), (2.4)

where φ
i
= (φi1, . . . , φim)

⊤, with φij = (2/α) sinh((yij − µij)/2), and ξij = (2/α) cosh((yij − µij)/2)

with µij = β⊤

j
xi, for i = 1, . . . , n and j = 1, . . . ,m. The ML estimate θ̂ of θ is defined as the values

maximizing the log-likelihood function defined in (2.4). When this corresponds to a stationary point,

it can be obtained from the solution of a homogeneous system of equations given by ∂ℓ(θ)/∂α = 0,

∂ℓ(θ)/∂β∗ = 0(pm)×1 and ∂ℓ(θ)/∂Γ∗ = 0(m(m−1)/2)×1, where β∗ = vec(β)⊤ and Γ∗ = svec(Γ)⊤; see

the details in Marchant et al. (2016a). As this system cannot be solved analytically, the ML estimate θ̂
of θ may be found using the Broyden-Fletcher-Goldfarb-Shanno procedure; see Lange (2001).

As an alternative form of modeling, we can use a parameterization of the Birnbaum-Saunders distri-

bution based on the mean to introduce new multivariate regression models, as proposed in Leiva et al.

(2014) and Santos-Neto et al. (2016), of the type T ∼ BS(α, µ), where E[T ] = µ. This allows the

development of generalized linear models for the multivariate Birnbaum-Saunders distribution and the

corresponding derivation of influence methods, as well as the incorporation of temporal and spatial com-

ponents for the modeling within a standard framework.

Another alternative form of modeling can be established by considering quantile regression; see

Furno and Vistocco (2018). In the model presented in (2.3), Var[εi] is constant and Cov[εl, εk] = 0, for

l 6= k (that is, the errors have equal variance and are uncorrelated). This implies that a regression model

describes the conditional mean E[T |X = x] = x⊤

i β. In this perspective, one can even postulate a general

expression as ̺i = h(x⊤

i β), where h is an invertible function, such as in generalized linear modelling.

Then, considering the conditional Birnbaum-Saunders distribution, we may establish the formulation

Ti|X i = xi ∼ f(t;α, h(x⊤

i β)), i = 1, . . . , n, (2.5)

where f is now the conditional PDF. Thus, we can model the median of the conditional distribution

presented in (2.5) instead of the mean. Hence, it is possible to use quantile regression models, which

offer a mechanism to estimate and predict the median response, as well as other quantiles. This class of

regression models is based on the quantile function given by Q(τ ; θ) = inf{t: F (t; θ) ≥ τ}, where F
is the Birnbaum-Saunders CDF, θ⊤ = (α, β) and 0 < τ < 1; see Sánchez et al. (2018) for Birnbaum-

Saunders quantile regression models.

2.3 Diagnostics

Outlying and influential observations are often present in data. Global influence in multivariate

Birnbaum-Saunders regression models can be assessed by the Mahalanobis distance; see Marchant et al.

(2016b). Local influence methods also play a central role for diagnostics in statistical modelling. These

methods allow us to evaluate the effect of perturbations on the estimates of parameters and then to detect

potentially influential cases in multivariate Birnbaum-Saunders regression models; see Marchant et al.

(2016b).
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3 An application in economics

Next, we analyze a real-world data set from economics presented in Leiva et al. (2016), which cor-

responds to the demand for textile products. We consider an inverse regression with the following re-

sponses: (i) deflated price index of clothing (T1) and (ii) real per capita income (T2); and as covariate we

include the per capita textile consumption per year (X). Figure 1(a) shows scatter-plots for log-responses

Y1, Y2 and the covariate X . From this figure, we detect adequate levels of correlation between the re-

sponses and the covariate, justifying the use of a bivariate linear regression model, as well as a weak

correlation between (X, Y1) and a strong correlation between (X, Y2).
Consider the bivariate Birnbaum-Saunders regression model, to describe (Y1, Y2) as a function of X ,

given by

Y i = β⊤xi + εi, i = 1, . . . , n,

where εi = (εi1, εi2)
⊤ ∼ log-BS2(α12×1, 02×1,Γ). ML estimates for the model parameters (based on a

sample with n = 17) are reported in Table 1, with corresponding estimated standard errors and p-values.

Note that: (i) ρ is statistically significant at the 5% level, confirming the conjecture from the exploratory

analysis; and (ii) the regression coefficients β11, β12 and β22 should be included in the model, whereas

the coefficient β21 can be discarded in the prediction of Y1, again in agreement with the exploratory

analysis.

Table 1: ML estimates of the indicated parameters with corresponding estimated standard errors and p-values

using textile products data.

Parameter
α β11 β12 β21 β22 ρ

ML estimate 0.022851 1.953439 4.285798 0.027697 -1.137174 0.895837
Standard error 0.001973 0.153330 0.072205 0.153323 0.072201 0.016190
p-value < 0.0001 < 0.0001 < 0.0001 0.8566 < 0.0001 < 0.0001

Validation of the model is based on the Mahalanobis distance, after being transformed to normality

using the Wilson–Hilferty approximation; see Marchant et al. (2016a). Probability-probability plots

and acceptance bands associated with the Kolmogorov–Smirnov (KS) statistic for testing normality are

constructed; for details, see Marchant et al. (2016a). From Figure 1(b), note that the Birnbaum-Saunders

model provides a good fit, which agrees with the p-value of 0.6828 from the associated KS test. Figure

1(c) displays the Mahalanobis distance index plot for the bivariate Birnbaum-Saunders regression model,

with cases #13 and #16 being identified as potential multivariate outliers. Figure 1(d) shows the index

plots of total local influence (Ci) (see Marchant et al., 2016b) under the case-weight perturbation for β̂.

From this figure, note that case #16 has a large influence on the bivariate Birnbaum-Saunders model.

This case coincides with that detected by the Mahalanobis distance. In addition, case #17 seems to have

a large influence on the model under case-weight for β̂. However, when these potentially influential

cases are removed, no inferential changes are produced. Therefore, cases #13, #16 and #17 do not need

to be removed, and the prediction model can be estimated considering them.

4



X

1.98 2.00 2.02 2.04

2.
00

2.
10

2.
20

1.
98

2.
00

2.
02

2.
04

0.098 Y1

2.00 2.10 2.20

−0.936 0.222

1.75 1.85 1.95

1.
75

1.
85

1.
95

Y2

(a) Data scatter-plots

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Theoretical CDF

E
m

pi
ric

al
 C

D
F

KS p−value = 0.6828

(b) Probability-probability plot

5 10 15

0
5

1
0

1
5

2
0

Index

M
a

h
a

la
n

o
b

is
 d

is
ta

n
c
e

13

16

(c) Mahalanobis plot for Birnbaum-Saunders model

5 10 15

0
1

2
3

4

Index

C
i

 

16

17

(d) Index plot of total local influence for β̂

Figure 1: Indicated plot for the textile products data.

4 Conclusions

New work on the multivariate Birnbaum-Saunders distribution was developed in 2016-2018, hence

this is a new relatively topic and so here we have presented more details of the multivariate Birnbaum-

Saunders distribution, compared to Balakrishnan and Kundu (2018), mainly focussing on modelling,

diagnostics and applications. We have given a new application of the multivariate Birnbaum-Saunders re-

gression model in economics, an area in which data following asymmetric distributions are often present.

With respect to future research on the multivariate Birnbaum-Saunders distribution, some new ideas on

modeling have been presented throughout our discussion which can be exploited in further investigations

of the multivariate Birnbaum-Saunders distribution.
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