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Abstract

This paper provides a normative framework based on cooperative game theory aimed at

studying the problem of pollution responsibility allocation across multi-tier supply chains.

The model is further developed with reference to the case of a linear supply chain, by using

three responsibility principles (namely: Upstream, Downstream and Local Responsibility).

Allocation rules are derived; also, desirable properties in terms of fairness, efficiency and

transparency are introduced, in order to characterize such rules. Furthermore, a stability

concept for efficient allocations is formulated. An example of a possible application of the

introduced cost allocation rules is provided.

Keywords Supply chains · Pollution responsibility allocation · Game theory · Shapley value

1 Introduction

The promotion of environmental sustainability has become crucial in the implementation and

day-to-day functioning of complex and global supply networks. A growing number of large

multi-national enterprises are implementing more stringent environmental practices; this has

also an impact on small and medium-sized enterprises (SMEs) which are often involved in

their supply networks (UN Global 2011).

The promotion of tighter environmental standards also implies the adoption of bench-

marking approaches for comparing the sustainability performances of supply chains against

industry standards. Within this context, Life Cycle Assessment (LCA) methodologies allow

the estimation of cumulative environmental impacts across the entire supply chain and against

a wide range of indicators, adopting a full product life cycle perspective. Within the current

context of growing environmental sustainability, performing an allocation of environmental

impacts to the different actors in the supply chain, with the aim of understanding which of

them should be deemed responsible for polluting activities and related taxes or abatement

costs, is a relevant and timely issue, if proper mitigation measures need to be implemented.

The interest in the topic of environmental pollution responsibility started due to the need to

establish mechanisms to perform pollution burden sharing actions across countries (Zhou and
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Wang 2016); the related literature has then evolved in order to address allocation problems at

different levels. According to an analysis of the current literature (see, for instance, Zhou and

Wang 2016), most of the available approaches such problems at a macro-level; the application

of pollution responsibilities approaches to contemporary multi-tier and multi-stakeholders

supply chains is often overlooked.

This paper aims at addressing this research gap, by providing a normative framework

based on cooperative game theory aimed at studying the problem of pollution responsibility

allocation across multi-tier supply chains.

The paper is organised as follows. After a review of the literature concerned with pollution

responsibility allocation, and the identification of relevant gaps (Sect. 2), the paper presents

a cooperative game theoretical responsibility model for pollution allocation (Sect. 3). In

Sect. 4, the paper details the generic model in the case of a linear supply chain. In Sect. 5,

a practical application of the introduced cost allocation rules is provided; finally, some

conclusions are drawn.

2 Literature review

The problem of associating pollution responsibilities with economic actors traces its roots

in the international trade literature (Leontief and Ford 1970; Proops et al. 1993; Wyckoff

and Roop 1994; Imura and Moriguchi 1995; Subak 1995; Bosquet 2000; Korhonen 2002;

Bastianoni et al. 2004; Lenzen and Murray 2010). While the interest in the topic started

because of the need to establish mechanisms to perform pollution burden sharing actions

across countries, the related literature has then evolved in order to address allocation problems

at different levels. These include the decomposition of national objectives into regional ones

and the distribution of environmental pollution responsibility across partner firms in a given

supply chain.

One of the fundamental research questions in the field of environmental pollution responsi-

bility has been represented by the allocation principle to be followed. Scholars have developed

different allocation criteria that can be mainly categorized into fairness- and efficiency-

inspired principles. The concept of “fairness” is generally linked to equitable distribution

issues (Rose 1990); the one of “efficiency” is more related to the minimization of costs

related to abatement and mitigation measures. Many emissions allocation methods have

been proposed. According to the extensive review performed by Zhou and Wang (2016), these

can be classified into multiple categories. One of them is the so-called indicator approach.

Through the development of specific indicators, pollution responsibilities, targets or permits

are worked out in relation to these measures. Another stream of studies is devoted to the

use of optimization approaches, which is based on mathematical programming frameworks

for pollution allocation, which try to minimize costs for pollution abatements. For exam-

ple, Ridgley (1996) combed the use of composite indicators and an optimization method for

deriving suitable pollution responsibility allocations at a country level. This rapid scan of the

extant literature, coherently with findings from Zhou and Wang (2016), highlights that most

of the developed approaches deal with the pollution responsibility problem at a macro-level.

Indeed, most of the methodologies tackle the problem at a country or regional level.

While some firm-level approaches can be retrieved, the supply chain perspective has been,

so far, largely ignored, with the few available approaches being characterized by very simple

and naïve models, mainly dealing with dyadic configurations; the application of pollution

responsibilities approaches to contemporary multi-tier and multi-stakeholders supply chains

is often overlooked.
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Pollution allocation mechanisms often include interactions involving multiple actors. As

such, pollution allocation mechanisms may be represented in a very effective way through

approaches based on Game Theory. As stated by Zhou and Wang (2016), game theoretic

approaches seem to be naturally suited for this purpose. Such allocations result from equi-

libria among different parties’ interactions or from values, which may satisfy enjoyable

properties imposed by a central authority. Compared to the traditional approaches for pollu-

tion costs allocation, game theoretic approaches can be deemed as more sophisticated and

less immediate. The use of game theoretic approaches is underexploited, especially when

dealing with complex and multi-tier supply chains. Concepts from cooperative game theory

may assume a normative value, i.e. a value that is imposed by an external authority.

Chander and Tulkens (1995) and Filar and Gaertner (1997) developed the first adaptation

of Game Theory to the problem in order to investigate the allocation of GHGs emission

reductions quota among countries. A similar approach, at an international level, was devel-

oped by Eyckmans and Tulkens (2003), while Germain and Steenberghe (2003) utilized a

dynamic game framework. Viguier et al. (2006) deployed a two-level game for solving a sim-

ilar allocation problem. At a firm level, MacKenzie et al. (2008, 2009) utilized, respectively,

rank-order contests and incomplete information games for allocating pollution allowances.

Chung et al. (2013) utilized dynamic games to evaluate the response of companies to envi-

ronmental pollution taxes in a spatially distributed supply chain. Ren et al. (2015) proposed

a Stackelberg game for studying CO2 reduction targets in a very simple dyadic supply chain.

Surprisingly, the development of normative approaches to pollution cost allocation is less

extensive. A practical applications of the Shapley value approach was developed by Liao

et al. (2015) for allocating emission allowances across energy producers in Shanghai.

2.1 Contribution of the paper

The next section presents a unified cooperative game theoretical approach to pollution respon-

sibility allocation in a multi-tier supply chain. In Sect. 4, the paper details the generic model

in the case of a linear supply chain, by selecting three different responsibility principles

(namely: Upstream, Downstream and Local Responsibility). Also, fairness, efficiency and

transparency properties are introduced, as desirable characteristics for allocation rules; fur-

thermore, a stability concept for efficient allocations is formulated. In particular, here we

present the Shapley value for this unified cooperative game theoretical responsibility model.

In doing this, we find interesting connections between the so-called river problem introduced

by Dong et al. (2012) in the pollution games literature and our framework. The Shapley allo-

cation satisfies many of the mentioned desirable properties.

In Sect. 5, a practical application of the introduced cost allocation rules is provided, with

the reference to the context of dairy supply chains. Finally, some conclusions are drawn.

3 Cooperative responsibility models for environmental supply chains

Consider a supply chain of a given product. Such a supply chain can be seen as a set N of

companies engaged, at various stages, in the manufacturing of the product, through sourcing

of raw materials, sub-components manufacturing, assembly activities; such companies can

be indexed in a given order. A set of processes Pi (with |Pi |≤ |N | − 1) can be associated

with each company i . In this context, a process (i , j) represents the production of goods by

company i and the supplying of such goods to company j (with i �� j) (as shown in Fig. 1).
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Fig. 1 Structure of a supply chain

network

As such, Pi⊆P, where P �
⋃

i�1...n Pi . The set Pi might be empty and this implies that

company i is not supplying goods or services to any supply chain partner. Conversely, the set

Pi might be coinciding with the whole set of processes (i.e., P); this means that company i is

the only supplier in the considered network. Also, each process (i , j) has an environmental

cost that is denoted as ci j . Let C be the set of all environmental costs. Therefore, we build a

mathematical framework as follows:

(N , P , C) (1)

In order to enhance this framework with the concept of environmental responsibility, it can

be useful to introduce a |N | × |P| responsibility matrix B �
(

Bi , p

)

where the row index i

represents companies and the column index p represents processes. Significantly, bi p � 1

if company i is responsible (from an environmental point of view) for process p, bi p � 0

otherwise. Let Bi be the set of the processes for which company i is responsible from an

environmental point of view, that is Bi �
{

p ∈ P|bi p � 1
}

. It is important to recall that the

environmental responsibility of a process may not depend on the physical location of the

process; in other words, bi p can be equal to 1 even if process does not involve physically

company i (in other words, if the company i is not involved as a supplier in this process, or,

alternatively, if the production of goods involved in the process does not happen at company

i premises). Therefore, the framework (1) can be rewritten as (N , P , B, C), where B is the

responsibility matrix. The quantity
∑

p∈Bi
cp can be interpreted as an intuitive cost allocation

for company i , summing up all the environmental costs of processes p for which company i

is deemed responsible. A coalition responsibility set can be defined as BS � ∪i∈S Bi ; then,

the social cost function for each sub-group of companies S ⊆ N can be defined as follows:

v(S) �
∑

p∈Bs

cp (2)

The sum v(S) in the formula (2) represents the environmental cost of all the processes for

which at least one company belonging to the set S is responsible. Moreover, each cost is

counted only once as different companies may be responsible for the same process.1 Being

1 The environmental cost function can be also defined as v(S) �
∑

s∈S

∑

(i , j)∈Bs/⊔
s−1
t�1

Bt
ci j in an equivalent

way.
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N , by definition, a finite set, ν : 2N → R is a function which associates a real value with each

subset of N . Following a classical definition, (N , ν) represents a cooperative game with a

characteristic function. N also represents the set of players; each subset of the set of players

is called a coalition; ν is called the characteristic function of the game.

In this case, the characteristic function v is defined through the above-introduced elements

P , B and C , therefore leading to the following model:

G � (N , P , B, C , v) (3)

Such cooperative games are defined in terms of a characteristic function, which specifies the

outcomes that each coalition can achieve for itself. Outcomes are specified in terms of the

total utility/cost that a coalition can get and distribute across its members. By assuming the

formation of a grand coalition, the main aim of such games is the definition of a solution

concept, which allocates costs among each player from N .

In a supply chain context, it can be fair assuming that companies cooperate (by forming

a grand coalition) in order to coordinate the activities of the production system. This way,

they will incur in different individual production costs because of initial binding agreements

among partners; also, they will face costs related to the mitigation of the environmental

impacts of their production activities. Cooperative game theory can provide solutions to

allocate environmental pollution impacts across each member of the production system, by

allowing transferable payments among companies.

In this study, the main aim is to identify a vector x � (xi ) ∈ R
|N |
+ representing a solution

to the cooperative model (2), which assigns the cost xi to each company i .

An allocation is responsible-compatible when, if Bi is empty, then xi is null. In the follow-

ing, we will always refer to allocations which respect the responsible-compatible principle.

An allocation is efficient if the sum of all cost-allocations, i.e.
∑|N|

i�1 xi , is equal to the

sum of all costs, i.e.
∑|N |

i�1

∑|N |
j�1 ci j .

2

3.1 Desirable properties for cost allocation rules

Cost allocation rules should respect some desirable properties that have been described in the

environmental pollution responsibility literature. In the following, we list and discuss each

of these properties; we remark that some of these have been already listed in Gopalakrishnan

et al. (2016), while and some of them are novel.

Property 1: Equivalence If two companies i and j are responsible for the same processes,

then they must have the same cost allocation. Therefore, if Bi � B j then xi � x j must be

satisfied for any i and j ∈ N .

Property 2: Equal sharing of extra pollution This property provides fairness to the allocation

of extra costs that might arise as the result of additional polluting activities (that could happen

over time). If there is an increase in total pollution costs, it is required that companies

responsible for this increase should be equally affected by extra burdens.

As a preliminary definition, it can be stated that C′ ≥C if and only if cij
′ ≥ cij for any i ,

j ∈ N. We say that C′ >C if C′ ≥C and there exists a process (i , j) ∈ P such that cij
′ >cij Let

G � (N , P , B, C , v), G ′ �
(

N , P , B, C ′, v
)

be the two associated cooperative models

where C and C′ are two sets of environmental costs with C′ ≥C. If i , j ∈ N are responsible

2 We will denote an allocation xi of the cooperative model G by x(G) � (xi (G)) ∈ R
|N |
+ .
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for any process p, that is bi , p � b j , p � 1 where p ∈ P is characterized by cp
′ >cp. Then

the following equality xi

(

G ′
)

− xi (G) � x j

(

G ′
)

− x j (G) must be satisfied.

Property 3: No free riding The equal sharing of extra pollution property (introduced above

as Property 2) does not guarantee the efficiency of such net cost increase re-allocation. In

other words, the property does not require that the sum of extra charges for responsible

companies is equal to the net increase of the pollution costs across the supply chain. As such,

Property 3 provides an additional efficiency requirement to the above-mentioned situation.

This property requires that if the total pollution costs increase, but, at the same time, for

some firms the pollution of the processes they are responsible for remains unchanged, the

allocation for these firms should remain the same.

Let G � (N , P , B, C , v) and G ′ �
(

N , P , B, C ′, v
)

be the two associated cooperative

models where C, C′ are two sets of environmental costs with C′ ≥C. Let i ∈ N; suppose that

c′
p � cp for each process p satisfying bi , p � 1. Then, the equality xi

(

G ′
)

� xi (G) must be

satisfied.

Property 4: Process independence Suppose that a single process p increases its pollution

cost cp; as a consequence, cost allocations across the supply chain will change. In other

words, cost allocations might be affected by the new cost distribution over the set of all

processes even if just one single process increases its cost. If this does not happen, it means

that the variation of cost allocations solely depends on the process whose cost has increased;

then, we say that cost allocations are process independent. As a consequence, this property

implies that the firms can transparently relate their cost variations to the processes with

increased costs; as such, they may make an official grievance against firms involved in those

more costly processes.

Let G �
(

N , P , B, C , v

)

,G ′ �
(

N , P , B, C ′, v

)

,G̃ �
(

N , P , B, C̃ , v

)

,G̃ ′ �
(

N ,

P , B, C̃ ′, v

)

be the cooperative models associated to the cost structures C , C ′, C̃ , C̃ ′. We

assume that C ′ ≥ C , C̃ ′ ≥ C̃ and c′
p � cp , c̃′

p � c̃p for p ∈ M\{q}. We assume that

c̃′
q � c′

q and cq � c̃q . Then, xi

(

G ′
)

− xi (G) � xi

(

G̃ ′
)

− xi

(

G̃
)

must hold for each i ∈ N .

Property 5: (Weak) unilateral disaggregation stability Lenzen et al. (2007) and Rodrigues

and Domingos (2008) originally discussed the stability of pollution responsibility allocations

due to de-merging of companies over supply chains. Let G � (N , P , B, C , v) be our

cooperative model. As a preliminary step, we formalize disaggregated supply chains with

reference to the original model.

Let P(i) { j ∈ N |(i , j) ∈ P} and R(i) { j ∈ N |( j , i) ∈ P} be the subsets including firms,

who are supplied by i or supply firm i , respectively. Similarly, let Pi and Ri be the subsets

including processes in which firm i is a supplier or firm i is supplied by, respectively. Assume

that firm i disaggregates its activities into two companies i1 and i2. After disaggregation, the

set of firms is modified as N ′ � {i1, i2}∪ N\{i}. Then, the new set of processes is composed

by P ′ � R(i)×{i1}∪{i2}× P(i)∪(i1, i2)∪ P\(Pi ∪ Ri ). The new set of environmental costs

C ′ is composed as it follows. First of all, we define c′
j i1

:� c j i for j ∈ R(i) and c′
i2 j , c′

i1i2
≥ 0

where ci j :� c′
i2 j +c′

i1i2
for each j ∈ P(i). The last equality is named cost-splitting property.

For the remaining cases, we simply require that c′
hk :� chk . It is straightforward to think that

disaggregated responsibility situations need a new responsibility matrix, that is B ′. First of all,

such a new responsibility matrix B ′ must have |N| + 1 rows, that is the new number of firms,

and |P| + 1 columns, that is the new number of processes. Such a new responsibility matrix
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might be defined in several ways. We require some reasonable assumption on it. Let h be a

firm participating in the original game and in the disaggregated game. Then it is immediate

to see that h cannot be firms i1, i2, i . For such a firm, we require some consistency property

related to the original responsibility matrix B. Firstly, Bhp � 1 with p � (i, j) implies

B ′
hp′ � 1 with p′ � (i2, j); Bhp � 1 with p � (j, i) implies B ′

hp′ � 1 with p′ � ( j , i1).

Finally B ′
hp � Bhp holds if the process p does not contain i1, i2.

The above conditions ensure that, if a firm is responsible for processes involving the firm

i in the original game, is also responsible for associated processes involving i1, i2 after

the disaggregation. The latter means that the disaggregation does not create externalities on

others’ responsibilities for processes. In addition, we require that (i1, i2) /∈ B ′
i1

∩ B ′
i2

; this

means that, at most, one of the new companies is responsible for the internal process (i1, i2),

due to the disaggregation. If B ′ satisfies both conditions we say that a responsibility matrix

B ′ is B -compatible.

We have defined disaggregated models G ′ �
(

N ′, P ′, B ′, C ′, v
)

from the original model

G � (N , P , B , C , v). The multiplicity of disaggregated models depends on the multiple

ways to split costs and/or on the multiple ways to implement new pollution responsibilities

over supply chains.

Within this context, we say that G � (N , P , B , C , v) satisfies the unilateral disaggre-

gation stability property if there exists a B-compatible responsibility matrix B ′ and, then,

there exists a firm i such that xi1

(

G ′
)

+ xi2

(

G ′
)

> xi (G) for any disaggregated model

G ′ �
(

N ′, P ′, B ′, C ′, v
)

(Unilateral Disaggregation Stability). We say that firm i is the

aggregating company and B ′ is the aggregating responsibility matrix. We say that G satisfies

weak unilateral disaggregation stability if x j (G) ≥ x j

(

G ′
)

(Weak Unilateral Disaggregation

Stability) for each company j different from i.

Assume that cost allocations satisfy unilateral disaggregation stability. In virtue of the

cost-splitting property, it is straightforward to prove that:

n
∑

h�1

n
∑

k�1

chk ≥

n+1
∑

h�1

n+1
∑

k�1

c′
hk .

Since cost allocations are efficient, we have

n
∑

h�1

xh(G) �

n
∑

h�1

n
∑

k�1

chk �

n+1
∑

h�1

xh

(

G ′
)

�

n+1
∑

h�1

n+1
∑

k�1

c′
hk .

We say that firm i is the aggregating company. It follows that

n
∑

h�1

xh(G) − xi(G) >

n+1
∑

h�1

xh

(

G ′
)

− xi1

(

G ′
)

− xi2

(

G ′
)

The last formula implies that xh(G) > xh

(

G ′
)

for some companies h. This means that

there exists, at least, one firm who might consider the disaggregation option as a profitable

one. If each company can get a benefit from disaggregation, then the whole supply chain

can be considered as weakly stable, even if the aggregating firm prefers not to disaggregate

its activities. In addition, if the cost of original game is strictly superior to the cost of the

disaggregated game, there are internal incentives along supply chains to cause disaggrega-

tion. Even if cost allocations satisfy the unilateral disaggregation stability property, internal

resources might still provide incentives to companies, which do not directly demerge, to

collude and cause the disaggregation of the aggregating firm.

123



Annals of Operations Research

3.2 Additional remarks

The first two properties (Equivalence and Equal Sharing of Extra Pollution) respect fairness

by definition. It must be highlighted that, according to an egalitarianism principle, each

company across a supply chain is granted the same right to pollute (Zhou and Wang 2016).

As such, the total pollution across a supply chain might be increased due to unilateral actions

from individual partners. However, in this case, an egalitarian perspective does not necessarily

imply distributive justice concerning pollution responsibility allocation deriving from extra

pollution (Rose 1990). Within this context, the equal sharing of extra pollution, no free

riding and process independence properties provide additional commitment to substantive

distributive justice.

4 Linear supply chains and pollution responsibility

Here, we specify our model (N , P , B, C , v) in (2) where υ has been already defined in

(1). The specifications deal with the structure of the process set P and of the responsibility

matrices B. A generic process (i , j) represents the production of goods by company i and

the supply of such goods to company j . In the linear supply chain, the set Pi is reduced to

a singleton for each company, at most. This implies that company i is supplying goods or

services to a single supply chain partner. Then a process (i , j) can be identified as an element

of the set of companies. In addition, each process has an environmental cost ci , i+1, which can

be simply expressed by ci . In the context, we can assume that existence of a final company

|N| + 1, which is the company such that P|N |+1 � ∅. From company |N|, a process starts and

supplies company |N| + 1. We assume that the final company has no responsibility, that is

characterized by the following assumption B|N |+1 � ∅. Because allocations are responsible

compatible by our initial choice, we know that x|N |+1 � 0. Then, we disregard the last

company |N | + 1 because its cost allocation is null. Therefore the number of processes |P|

is equal to the number of pertinent firms is |N | � n .

Here, we define how the responsibility matrix B is characterized according to environ-

mental supply chain philosophies. In this context, three principles can be employed to solve

the allocation problem. A Local Responsibility principle (LR), according to which each

company i is strictly responsible for the pollution costs, related to the production activities

strictly happening at its premises. An Upstream Responsibility principle (UR), stating that

upstream suppliers (dealing with raw material extraction, sub-component manufacturing and

other energy intensive activities) are responsible not only for pollution happening at their

premises, but can also influence the environmental performance of downstream partners. A

Downstream Responsibility principle (DR), stating that downstream partners in the supply

chain are responsible for the polluting activities happening at upstream suppliers’ premises.

The three above principles can be exemplified by introducing the following responsibility

matrices B. The following diagonal unitary n × n matrix characterizes LR:

B �

⎛

⎜

⎜

⎝

1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1

⎞

⎟

⎟

⎠
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The UR principle says that player j has the responsibility to participate in pollution

mitigation expenses of each downstream supply chain partner. Then, the following unitary

upper triangular n × n responsibility matrix characterizes the UR principle.

B �

⎛

⎜

⎜

⎝

1 1 . . . 1

0 1 . . . 1

. . . . . . . . . . . .

0 0 . . . 1

⎞

⎟

⎟

⎠

Similarly, the following unitary lower triangular n × n responsibility matrix characterizes

DR principle.

B �

⎛

⎜

⎜

⎝

1 0 . . . 0

1 1 . . . 0

. . . . . . . . . . . .

1 1 . . . 1

⎞

⎟

⎟

⎠

After having defined the structure of process set P and the responsibility matrices B, the

characteristic function, which has been defined in (1), depends just on the set of environmental

costs, that is C . It will assume different forms for each of the three principles. By adopting

the LR principle, the characteristic function (1) turns out to be:

ν1(S) �
∑

i∈S

ci .

Conversely, it will assume the following form if a UR principle is adopted:

ν2(S) �

n
∑

i� jmin

ci , jmin � minS.

Finally, by adopting a DR principle, the characteristic function will take the following form:

ν3(S) �

jmax
∑

i�1

ci , jmax � maxS.

Therefore the model (N , P , B, C , v) in (2) can be simplified as (N , C , ν), according to the

shape of the above-mentioned characteristic functions. In the following section, an allocation

rule for the environmental responsibility costs is illustrated. This allocation rule is efficient,

in such a way to ensure that
∑n

i�1 xi �
∑n

i�1 ci among all the supply chain partners for all

the three games introduced above (N , C , νi ).

5 The Shapley allocation for linear supply chains

Among the possible allocation rules that can be derived from cooperative game theory, the

Shapley value enjoys desirable properties such as efficiency and fairness (Owen 1995). The

game (N , C , ν1) admits a Shapley value xi � ci . The formula can be explicitly expressed

by the following equations:

x1 � c1

x2 � c2

x3 � c3

· · · � · · ·

xn � cn � 0
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This particular allocation can be called Local Responsibility Sharing (LRS). For an arbi-

trary company i , if ci � 0 then xi � 0. In this case, LRS allocation is null for firm i , even

if Bi �� ∅. Mathematical results provided in Dong et al. (2012) are helpful to have a closed-

formula for the Shapley value for the game (N , C , ν2). According to such results, (N , C , ν2)

admits a Shapley value which is equivalent to xi �
∑n

s�i cs/s. The formula can be explicitly

expressed by the following equations:

x1 � c1 + c2
2

+ c3
3

+ · · · + cn

n
� c1 + c2

2
+ c3

3
+ · · · +

cn−1

n−1

x2 � c2
2

+ c3
3

+ · · · + cn

n
� c2

2
+ c3

3
+ · · · +

cn−1

n−1

x3 � c3
3

+ · · · + cn

n
� c3

3
+ · · · +

cn−1

n−1

· · · � · · ·

xn � cn

n
� 0

This particular allocation can be called Upstream Equal Sharing (UES) cost allocation.

Similarly, thanks to the result provided in Ni and Wang (2007) and Gómez-Rúa (2013), the

game (N , C , ν3) admits a Shapley value, i.e. xi �
∑i

s�1 cs/(n − s + 1). The formula can be

explicitly expressed by the following equations:

x1 � c1
n

x2 � c1
n

+ c2
n−1

x3 � c1
n

+ c2
n−1

+ c3
n−2

· · · � · · ·

xn � c1
n

+ c2
n−1

+ c3
n−2

+ · · · + cn � c1
n

+ c2
n−1

+ c3
n−2

+ · · ·
cn−1

n−1

This particular allocation can be called Downstream Equal Sharing (DES) allocation

method. Here, we verify if LRS, DES and UES allocation rules satisfy the desirable properties

introduced in Sect. 3.

Proposition 1 LRS, DES and UES allocation rules satisfy the equivalence property.

Proposition 2 LRS, DES and UES allocation rules satisfy the equal sharing of extra pollution

property.

Proposition 3 LRS, DES and UES allocation rules satisfy the no free riding property.

Proposition 4 LRS, DES, UES cost allocations satisfy the process independence property.

Because the Shapley value is an efficient allocation, then UES cost allocations are efficient.

Proposition 5 LRS allocation rule does not satisfy the unilateral disaggregation stability

property. We assume that cn−1 �� 0 and n > 2. Then, UES allocation rule satisfies unilateral

disaggregation stability property. UES allocation rule satisfies weak unilateral disaggrega-

tion stability.

6 Applications

In order to demonstrate the applicability of the Shapley allocation (and related allocation

rules) to real-world problems, the developed approach has been tested on an example related
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to the dairy supply chain. Dairy supply chains enjoy a very linear structure, in which the

following stakeholders can be identified (Vergé et al. 2013):

– Feed producer, producing animal feed from raw agricultural products;

– Milk Producer, managing lactating animals (generally cows) and obtaining raw milk;

– Processor, performing important operations for converting milk into a product fit for

human consumption (heat treatments and pasteurization) and transforming it into a final

product to be sold onto the market (also taking care of the packaging element);

– Distributor, taking care of the logistical processes throughout the supply chain, involving

cold chain operations;

– Retailer, making the product available to the final consumer.

– Consumers, buying and consuming the final product.

In a typical dairy supply chain, environmental pollution can be characterized through carbon

equivalent emissions (expressed in Kg CO2-eq per Litre). Combining findings from several

sources (Vergé et al. 2013; Thoma et al. 2013; Ormond and Goodman 2015), environmental

impacts (measured in terms of Kg CO2-eq per litre of product) happening at each stage of

the supply chain can be reported as shown in Table 1. For sake of simplicity, pollution costs

might be deemed proportional to these environmental impacts.

The results of the three allocation principles shown in Sects. 3 and 4 (LRS, UES, DES)

to a typical dairy supply chain are shown in the following Table 2. It can be seen how

the three allocation principles provide very different results, allocating different quota of

environmental impacts to different actors. Under the LRS rule, the highest proportion of

environmental impacts (and, therefore, of associated mitigation costs) is assigned to the

Milk Producer, respecting a simple proportionality mechanism. UES and DES rules develop

more complex mechanisms; notably, the DES rule strongly penalizes the Retailer and the

Consumer.

It must be pointed out that the proposed allocation rules might be considered not mutually

exclusive; indeed, convex combinations of these rules might be developed, as shown in

Table 3, where LRS and DES are combined together. This could be done, for instance, in

order to introduce, within a LRS framework, elements of downstream responsibility.

7 Conclusions and future works

This study shed light on normative frameworks for the problem of pollution responsibility

allocation across multi-tier supply chains through cooperative game theory concepts. After a

thorough literature review, the paper has presented a cooperative game theoretical responsi-

Table 1 Environmental impacts

across a typical dairy supply

chain

Emissions (Kg CO2-eq per Litre)

Feed producer 0.284

Milk producer 0.727

Processor 0.129

Distributor 0.108

Retailer 0.091

Final consumer 0.000

Total 1.337
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Table 2 Environmental impact allocation according to LRS, UES, DES rules

Stakeholder Emissions share

(%)

LRS (%) DES (%) UES (%)

Feed producer 21.21 21.24 3.54 55.03

Milk producer 54.34 54.38 14.42 33.78

Processor 9.61 9.65 16.83 6.60

Distributor 8.05 8.08 19.52 3.38

Retailer 6.79 6.81 22.92 1.36

Consumers 0.00 0.00 22.92 0.00

Total 100.00 100.00 100.00 100.00

Table 3 Hybrid Allocation Rules

Stakeholder Emissions share (%) LRS + DES (50–50) (%) LRS + DES (80–20) (%)

Feed producer 21.21 12.39 17.70

Milk producer 54.34 34.40 46.38

Processor 9.61 13.24 11.08

Distributor 8.05 13.80 10.37

Retailer 6.79 14.86 10.03

Consumers 0 11.46 4.58

bility model for pollution allocation; the paper has detailed the generic model in the case of a

linear supply chain, by selecting three different responsibility principles (namely: Upstream,

Downstream and Local Responsibility) and developing some associated pollution responsi-

bility allocation rules. These rules have been tested against some desirable properties that

have been proposed. Furthermore, a practical application of the introduced cost allocation

rules has been provided in the context of dairy supply chains.

The work proposed in this paper can be further extended in future researches, in order

to overcome some of the limitations that characterize the current approaches. First of all,

the model has been implemented on a simple linear supply chain, in which each company

supplies and receives goods from a single partner; future work could extend the framework

to more complex supply networks, in which multiple companies operate at each tier. Also,

different pollution responsibility schemes and different supply chains structures (including,

for instance, reverse elements, such as theorized by Jacobs and Subramanian 2012) might be

employed in our model. A new set of normative properties could be defined, with the specific

aim to assess the stability of international supply chains, especially against pollution costs

differently perceived and taxed in nonhomogeneous countries.
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Appendix

Proof of Proposition 1

Let C be the set of environmental costs. Let i , j ∈ N be two players such that Bi � B j .

Firstly, we prove that the LRS allocation rule satisfies equivalence. We know that Bi � {i},

B j � { j} by definition of the LRS method. By hypothesis we have i � j . Therefore, the

condition xi � x j is trivially satisfied.

Secondly, we prove that the UES allocation rule satisfies equivalence. In order to introduce

a contradiction, we assume that i < j . Then we have bi , i � 1. But b j , i � 0. Therefore, we

have that i ∈ Bi\B j �� ∅. Then we have Bi �� B j , but this is an absurd. By symmetry, we

simply conclude that i � j . Then xi � x j is trivially satisfied.

Thirdly, we prove that the DES method satisfies the equivalence property. Assume that

i < j . Then, we have bi , j � 0. However, we have b j , i � 1 because i is upstream to j .

Therefore, j ∈ B j\Bi �� ∅. Therefore, we have B j �� Bi . This is an absurd by hypothesis.

By symmetric arguments we simply conclude that i � j . Therefore xi � x j holds.

Proof of Proposition 2

Let G � (N , P , B, C , v) and G ′ �
(

N , P , B, C ′, v
)

be the two associated cooperative

models where C, C′ be two vectors of environmental costs with C≥C′. We pick two processes

p, q . We define Apq �
{

k ∈ N |bp, k � bq , k � 1, c′
k > ck

}

.

Firstly, we prove that LRS satisfies the equal sharing of extra pollution. Because the

responsibility matrix is an identity one, then p � q � k. Therefore xk

(

G ′
)

− xk(G) �

xk

(

G ′
)

− xk(G) is satisfied because p � q coincides with k.

Secondly, we prove that UES method satisfies equal sharing of extra pollution. Since the

responsibility matrix is upper triangular, then we have k ≥ p and k ≥ q . Therefore we obtain

the following equalities

x p

(

G ′
)

− x p(G) �

n
∑

s�p

c′
s

s
−

n
∑

s�p

cs

s
�

∑

k∈Apq

c′
k

k
−

ck

k

xq

(

G ′
)

− xq(G) �

n
∑

s�q

c′
s

s
−

n
∑

s�q

cs

s
�

∑

k∈Apq

c′
k

k
−

ck

k
.

the two quantities are clearly equal since minApq ≥ max{p, q}.

Thirdly, we prove that DES satisfies equal sharing of extra pollution property. As the

responsibility matrix is upper triangular, then we have maxApq ≥ min{p, q}. Then we

obtain that the following two expressions

x p

(

G ′
)

− x p(G) �
∑

k∈Apq

ck

n−k+1
−

c′
k

n−k+1

xq

(

G ′
)

− xq(G) �
∑

k∈Apq

ck

n−k+1
−

c′
k

n−k+1

are equal.
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Proof of Proposition 3

Let G � (N , P , B, C , v) and G ′ �
(

N , P , B, C ′, v
)

be the two associated cooperative

models where C, C′ are the two sets of environmental costs with C′ ≥C. Let i ∈ N . Suppose

that c
′

j � c j for j such that bi , j � 1.

Firstly, we prove that the LRS method satisfies the no free riding property. As the respon-

sibility matrix is the identity matrix, from bi , j � 1 it thus follows that i � j . Then, we obtain

xi (G ) � x j (G ) � c j , xi

(

G ′
)

� x j

(

G ′
)

� c
′

j � c j since c′
j � c j as per initial assumptions.

From the above inequalities it follows that xi

(

G ′
)

� xi (G ). The latter implies that the no

free riding property is satisfied.

We prove that the UES method satisfies no free riding. Because the responsibility matrix

is upper triangular, from bi , j � 1 it thus follows that i ≤ j . From the above assumption of

no free riding axiom, we know that c j � c′
j for s ≥ i . From the UES method formulae, that

is xi (G) �
∑n

j�i c j/ j and xi

(

G ′
)

�
∑n

j�i c
′

j/ j , we imply that xi (G) � xi

(

G ′
)

. Then, the

UES allocation rule satisfies the no free riding property.

Thirdly, we prove that DES satisfies the no free riding property. As the responsibility

matrix is an upper triangular matrix, from bi , j � 1 it thus follows that i ≥ j . From the above

assumption, we assume c j � c
′

j if 1 ≤ j ≤ i . From the following DES allocation rules

xi (G) �

i
∑

j�1

c j

n − j + 1
xi

(

G ′
)

�

i
∑

j�1

c′
j

n − j + 1

we imply that xi (G) � xi

(

G ′
)

. Therefore the DES method satisfies the no free riding property.

Proof of Proposition 4

Let C , C ′, C, C̃ ′ be four cost vectors. Let G � (N , P , B, C , v), G ′ �
(

N , P , B, C ′, v
)

,

G̃ �
(

N , P , B, C̃ , v

)

and G̃ ′ �
(

N , P , B, C̃ , v

)

be the four cooperative models asso-

ciated to the cost structures C , C ′, C̃ , C̃ ′. We assume that C ′ ≥ C , C̃ ′ ≥ C̃ . In addition

c′
j � c j , c̃′

j � c̃ j for j ∈ N\{k} and c̃′
k � c′

k and ck � c̃k . Pick j �� k.

We prove that LRS satisfies the process independence property. Then x j

(

G ′
)

− x j (G) �

c′
j −c j � 0 and x j

(

G̃ ′
)

−x j

(

G̃
)

� c̃′
j −c̃ j � 0 by hypothesis. The equality c′

k −c̃′
k � ck −c̃k

or c′
k − ck � c̃′

k − c̃k holds by hypotheses. It is straightforward to see that xk

(

G ′
)

−xk(G) �

c′
k − ck and xk

(

G̃ ′
)

− xk

(

G̃
)

� c̃′
k − c̃k .

We prove that UES satisfies process independence. Pick j �� k. From the definition of

usual UES allocation rules, we can easily compute the following differences

x j

(

G ′
)

− x j (G) �

n
∑

s� j

c′
s

s
−

n
∑

s� j

cs

s
, x j

(

G̃ ′
)

− x j

(

G̃
)

�

n
∑

s� j

c̃′
s

s
−

n
∑

s� j

c̃s

s
.

We assume that k < j ; then, the two above quantities are equal to 0 since c′
s � cs ,

c̃′
s � c̃s . We assume that k ≥ j ; then, each addend in the above quantities is equal to 0 made

exception for the ones indexed by k. These two addends in the two different above sums are

(c′
k/k) − (ck/k) and (c̃′

k/k)−(c̃k/k) and they are equal by initial hypothesis.

We leave to the reader the proof for the DES allocation rule, which can be obtained

following a very similar procedure.
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Proof of Proposition 5

Let G � (N , C , v) be the associated cooperative model. After the disaggregation of company

i , let call G ′ the new game. The new set of environmental costs C ′ includes the following

components: c′
h � ch for h �� i1, i2 and � ci � c′

i2
+c′

i2
�c′

i +c′
i+1. The matrix B ′ is a square

matrix with order n + 1.The matrix B ′ is an LR matrix if the original responsibility matrix is

an LR matrix and B ′ is an UR matrix if the original responsibility matrix is an UR matrix.

In both cases it is straightforward to prove that B ′ is B –compatible.

We prove that the LRS allocation rule does not satisfy disaggregation stability. Let i be the

firm who disaggregates. Firstly, i1 /∈ B ′
i2

� {i + 1}. By definition of LRS allocations, we have

the following formulas xi (G) � ci , xi1

(

G ′
)

� xi

(

G ′
)

� c′
i � c′

i1
and xi2

(

G ′
)

� xi+1

(

G ′
)

�

c′
i+1 � c′

i2
. By hypothesis,ci � c′

i1
+ c′

i2
; then, the inequality becomes xi (G) � xi1

(

G ′
)

+

xi2

(

G ′
)

. Therefore, the LRS allocation rule does not satisfy the unilateral disaggregation

stability property.

We prove that UES allocation rule satisfies the disaggregation stability. First, we have that

i1 � i /∈ Bi2 � {i + 1, i + 2, . . . , n}. The UES cost allocation for firm i , who disaggregates,

is xi (G) �
∑n

s�i
cs

s
�

∑n
s�i+1

cs

s
+ ci

i
. UES cost allocations for firms i1 and i2 are

xi1

(

G ′
)

�

n+1
∑

s�i1

c′
s

s
�

n+1
∑

s�i

c′
s

s
�

n+1
∑

s�i+1

c′
s

s
+

c′
i

i
, xi2

(

c′
)

�

n+1
∑

s�i2

c′
s

s
�

n+1
∑

s�i+1

c′
s

s
.

By simple computations we have

xi1

(

G ′
)

+ xi2

(

G ′
)

− xi (G) �

n+1
∑

s�i+2

2c′
s

s
+

2c′
i+1

i + 1
−

n
∑

s�i+1

cs

s
+

c′
i

i
−

ci

i

�

n
∑

s�i+1

(

2c′
s+1

s + 1
−

cs

s

)

+
2c′

i+1

i + 1
+

c′
i

i
−

ci

i
. (5)

Let us assume that i �� n, n − 1. We rewrite the generic addend of the first sum in the

right hand side of (5) in the following way:

2c′
s+1

s + 1
−

cs

s
�

scs − cs

s(s + 1)
�

(s − 1)cs

s(s + 1)
≥ 0

since c
′

s+1 � cs for s ≥ i + 1 ≤ n. Then the first sum in the right hand side of (5) contains

the addend (n − 2)cn−1/((n − 1)n) since i + 1 ≤ n − 1. The last above quantity is strictly

positive because cn−1 > 0 and n > 2 by hypothesis. Therefore, the first term in the right

hand side of (5) is strictly positive. After simple computations, the algebraic difference of

the last three remaining addends in the right hand part of equality (5) can be reworked as

follows:

c′
i

i
+

2c′
i+1

i + 1
−

ci

i
�

c′
i

i
+

2c′
i+1

i + 1
−

c′
i + c′

i+1

i
�

2c′
i+1

i + 1
−

c′
i+1

i

�
2c′

i+1i − c′
i+1(i + 1)

(i + 1)i
�

c′
i+1i − c′

i+1

(i + 1)i
�

c′
i+1(i − 1)

(i + 1)i
≥ 0

Therefore we have xi1

(

G ′
)

+ xi2

(

G ′
)

> xi (G). Then UES satisfies unilateral disag-

gregation stability. In addition, we prove UES allocation rule satisfies weak unilateral

disaggregation stability. We, more significantly, focus on the firms j such that j < i . Then,

let us consider just i > 1. If i � 1 there are no firms located upstream to i � 1. Therefore,
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we again assume i1 � i and i2 � i + 1. For such companies, we have the following cost

allocations

x j (G) �

n
∑

s� j

cs

s
�

i−1
∑

j≤s

cs

s
+

ci

i
+

n−1
∑

i+1≤s

cs

s
(6)

x j

(

G ′
)

�

n+1
∑

s� j

c′
s

s
�

i−1
∑

j≤s

c′
s

s
+

c′
i1

i
+

c′
i2

i + 1
+

n
∑

i+2≤s

c′
s

s
(7)

By hypothesis, c′
s � cs if j ≤ s < i and c

′

s+1 � cs if i + 1 ≤ s ≤ n. By virtue of the

previous equalities, it is straightforward to prove that the first addend in the right-hand side

of formula (6) is equal to the first addend in the right-hand side of formula (7). If i �� n, the

third addend in the right-hand side of formula (6) is strictly greater than the fourth addend in

the right-hand side of formula (7) since cn−1 > 0.3 It thus follows that x j (G) > x j

(

G ′
)

if

and only if ci/i ≥ (c′
i/i) + (c′

i+1/(i + 1)). By cost-splitting formula, i.e. ci � c
′

i + c
′

i+1, then

the inequality becomes c
′

i/i + c
′

i+1/i ≥ c
′

i/i + c
′

i+1/(i + 1) . The last inequality is true; it is

a strict inequality if c′
i+1 �� 0 or it turns to be an equality if c′

i+1 � 0. We can conclude that

x j (G) > x j

(

G ′
)

. Let us assume that j > i . Firstly, we have the following inequalities:

xn(G) � xn

(

G ′
)

� 0, xn−1(G) �
cn−1

n − 1
>

cn

n
�

c′
n

n
� xn−1

(

G ′
)

because cn > 0. So we focus our attention on firms, which are different from n − 1, n.

As usual, UES allocations are x j (G) �
∑n−1

s� j cs/s and x j

(

G ′
)

�
∑n

s� j+1 c′
s/s. The first

sum contains the addend cn−1/(n − 1) and the second sum contains the addend cn−1/n.

Therefore, it follows that x j (G) > x j

(

G ′
)

for j > i and j �� n − 1, n. UES allocation rules

satisfy weak unilateral disaggregation stability.

References

Bastianoni, S., Pulselli, F. M., & Tiezzi, E. (2004). The problem of assigning responsibility for greenhouse

gas emissions. Ecological Economics, 49(3), 253–257.

Bosquet, B. (2000). Environmental tax reform: Does it work? A survey of the empirical evidence. Ecological

Economics, 34(1), 19–32.

Chander, P., & Tulkens, H. (1995). A core-theoretic solution for the design of cooperative agreements on

transfrontier pollution. International Tax and Public Finance, 2(2), 279–293.

Chung, S. H., Weaver, R. D., & Friesz, T. L. (2013). Strategic response to pollution taxes in supply chain

networks: Dynamic, spatial, and organizational dimensions. European Journal of Operational Research,

231(2), 314–327.

Dong, B., Ni, D., & Wang, Y. (2012). Sharing a polluted river network. Environmental & Resource Economics,

53(3), 367–387.

Eyckmans, J., & Tulkens, H. (2003). Simulating coalitionally stable burden sharing agreements for the climate

change problem agreements for the climate change problem. Resources and Energy Economics, 25,

299–327.

Filar, J. A., & Gaertner, P. S. (1997). A regional allocation of world CO2 emission reductions. Mathematical

and Computer Simulation, 43, 269–275.

Germain, M., & Steenberghe, V. V. (2003). Constraining equitable allocations of tradable CO2 emission quotas

by acceptability. Environmental and Resources Economics, 26, 469–492.

Gómez-Rúa, M. (2013). Sharing a polluted river through environmental taxes. SERIEs, 4(2), 137–153.

3 In case i � n, the third addend in the right-hand side of formula (6) and the fourth addend in the right-hand

side of formula (7) are simply null.

123



Annals of Operations Research

Gopalakrishnan, S., Granot, D., Granot, F., Sosic, G., Cui, H. (2016). Allocation of greenhouse gas emissions

in supply chains. Mimeo, The University of Chicago Booth Business School. Available online at: http://f

aculty.chicagobooth.edu/workshops/omscience/pdf/Autumn%202016/GREEN%20r1.pdf. Accessed 19

June 2018.

Imura, H., & Moriguchi, Y. (1995). Economic interdependence and eco-balance: Accounting for the flow of

environmental loads associated with trade. In S. Murai (Ed.), Toward global planning of sustainable use

of the earth. Amsterdam: Elsevier.

Jacobs, B. W., & Subramanian, R. (2012). Sharing responsibility for product recovery across the supply chain.

Production and Operations Management, 21(1), 85–100.

Korhonen, J. (2002). The dominant economics paradigm and corporate social responsibility. Corporate Social

Responsibility and Environmental Management, 9, 67–80.

Lenzen, M., & Murray, J. (2010). Conceptualising environmental responsibility. Ecological Economics, 70(2),

261–270.

Lenzen, M., Murray, J., Sack, F., & Wiedmann, T. (2007). Shared producer and consumer responsibility—the-

ory and practice. Ecological Economics, 61(1), 27–42.

Leontief, W., & Ford, D. (1970). Environmental repercussions and the economic structure: An input–output

approach. Review of Economics and Statistics, 52, 262–271.

Liao, Z. L., Zhu, X. L., & Shi, J. O. (2015). Case study on initial allocation of Shanghai carbon emission

trading based on Shapley value. Journal of Cleaner Production, 103(15), 338–344.

MacKenzie, I. A., Hanley, N., & Kornienko, T. (2008). The optimal initial allocation of pollution permits: A

relative performance approach. Environmental Resources and Economics, 39, 265–282.

MacKenzie, I. A., Hanley, N., & Kornienko, T. (2009). Using contests to allocate pollution rights. Energy

Policy, 37(7), 2798–2806.

Ni, D., & Wang, Y. (2007). Sharing a polluted river. Games and Economic Behavior, 60(1), 176–186.

Ormond, J., & Goodman, M. K. (2015). A new regime of carbon counting: The practices and politics of

accounting for everyday carbon through CO2-e. Global Environmental Change, 34, 119–131.

Owen, G. (1995). Game theory (3rd ed.). San Diego: Academic.

Proops, J. L. R., Faber, M., & Wagenhals, G. (1993). Reducing CO2 emissions. A comparative input–output

study for Germany and the UK . Berlin: Springer.

Ren, J., Bian, Y. W., Xu, X. Y., & He, P. (2015). Allocation of product-related carbon emission abatement

target in a make-to-order supply chain. Computers & Industrial Engineering, 80, 181–194.

Ridgley, M. A. (1996). Fair sharing of greenhouse gas burdens. Energy Policy, 24(6), 517–529.

Rodrigues, J., & Domingos, T. (2008). Consumer and producer environmental responsibility: Comparing two

approaches. Ecological Economics, 66, 533–546.

Rose, A. (1990). Reducing conflict in global warming policy: The potential of equity as a unifying principle.

Energy Policy, 18, 927–935.

Subak, S. (1995). Methane embodied in the international trade of commodities. Global Environmental Change,

5(5), 433–446.

Thoma, G., Popp, J., Nutter, D., Shonnard, D., Ulrich, R., Matlock, M., et al. (2013). Greenhouse gas emissions

from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa

2008. International Dairy Journal, 31, 3–14.

UN Global. (2011). The ten principles. United Nations Global Compact. Available online at: https://www.un

globalcompact.org/what-is-gc/mission/principles. Accessed 19 June 2018.

Vergé, X. P. C., Maxime, D., Dyer, J. A., Desjardins, R. L., Arcand, Y., & Vanderzaag, A. (2013). Carbon foot-

print of Canadian dairy products: Calculations and issues. Journal of Dairy Science, 96(9), 6091–6104.

Viguier, L., Vielle, M., Haurie, A., & Bernard, A. (2006). A two-level computable equilibrium model to assess

the strategic allocation of emission allowances within the European Union. Computers & Operations

Research, 3, 369–385.

Wyckoff, A. W., & Roop, J. M. (1994). The embodiment of carbon in imports of manufactured products—im-

plications for international agreements on greenhouse gas emissions. Energy Policy, 22, 187–194.

Zhou, P., & Wang, M. (2016). Carbon dioxide emissions allocation: A review. Ecological Economics, 125,

47–59.

123

http://faculty.chicagobooth.edu/workshops/omscience/pdf/Autumn%202016/GREEN%20r1.pdf
https://www.unglobalcompact.org/what-is-gc/mission/principles

	A unified cooperative model for environmental costs in supply chains: the Shapley value for the linear case
	Abstract
	Abstract
	1 Introduction
	2 Literature review
	2.1 Contribution of the paper

	3 Cooperative responsibility models for environmental supply chains
	3.1 Desirable properties for cost allocation rules
	3.2 Additional remarks

	4 Linear supply chains and pollution responsibility
	5 The Shapley allocation for linear supply chains
	6 Applications
	7 Conclusions and future works
	Acknowledgements
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

	References


