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Abstract Metrics have been used to investigate the
relationship between wavefunction distances and den-

sity distances for families of specific systems. We ex-
tend this research to look at random potentials for time-
dependent single electron systems, and for ground-state

two electron systems. We find that Fourier series are a

good basis for generating random potentials. These ran-

dom potentials also yield quasi-linear relationships be-

tween the distances of ground-state densities and wave-

functions, providing a framework in which Density Func-
tional Theory can be explored.

Keywords Quantum mechanics · Metric spaces ·
Quantum dynamics · Density-Functional Theory

1 Introduction

Calculating many-body physics exactly is a great chal-

lenge due to the exponentially increasing numerical cost

of storing the wavefunction with increasing particle num-

ber. To overcome this problem, Density Functional The-

ory (DFT) [1,2] uses the density as a basic variable to

describe the system’s ground-state properties. At the

heart of DFT lies the Hohenberg-Kohn theorem where

the ground-state wavefunction and density are demon-

strated to have a one-to-one mapping [3]. Although this

is a key concept for DFT, the relationship is not fully
understood. Here we follow on from previous research
[4–7], using these metrics to further understanding of

this one-to-one mapping of density and wavefunction.

Metrics are used as a measure of distance, and in

particular “natural” metrics have previously been used
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to study density distances and wavefunction distances.

The relationship between these two distances for fami-

lies of closely related systems in their ground state was

shown to be quasi-linear; linear for most distances, but

deviating from this linear relationship close to the max-

imum distances to ensure these distances are reached

together in the wavefunction and density [4,5]. Recent

work has extended this to show that this relationship

extends beyond related systems to families of unrelated

single-electron systems, and has been expanded further

to look at time-dependent systems using the metrics.

This has been used to characterise quantum dynamics

and adiabaticity in single-electron quantum systems [7].

Here we show how to generate the random systems

used in Ref. [7], ensuring the electrons remain con-

fined whilst still providing a range of systems with rich

physics to explore. We then apply metrics to time de-

pendent single electron systems, looking at the mapping
between wavefunctions and densities. As the number of
electrons increases, the relationship between the wave-
function and the density gets increasingly more com-

plicated, and so it is the natural progression to look at

larger systems using these metrics. Therefore we move

on to applying these techniques to two-electron ground-

state systems. We explore the wavefunction-density map-
ping for DFT using the metrics, and compare inter-
acting and non-interacting results, which can be useful

when considering Kohn-Sham systems in DFT [8].

2 Random potentials for quantum systems

Much of the work looking at solving quantum systems

exactly uses very well known systems, such as the Hub-

bard model or Hooke’s atom [4,5,9]. However, the iDEA

code has the ability to numerically exactly solve any 1,
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2 or 3 electron system in one dimension for the density

and the wavefunction [10]. We therefore look at meth-

ods of randomly generating a wide range of systems,

“random potentials”, to be solved exactly by iDEA.

By generating a wide range of systems, we can ex-
plore systems with diverse physics. There are not the

constraints of just varying one or two parameters of

the Hamiltonian, such as the frequency of the Hooke’s

atom.

However, we still require some constraints. The po-

tential must be confining overall, and the shape must

be smooth so the system is still physical. Using these

requirements, we look at using polynomials and Fourier

series with randomly generated coefficients to produce

the random potentials.

2.1 Polynomials

To generate the random potentials using polynomials,
we used polynomial series up to even powers, to ensure

the confinement of the electrons. Each term in the series
was then assigned a random coefficient from a uniform
distribution. However it was seen that these were in-

sufficient for producing varied secondary wells in the

potential, ‘microwells’, and the potential was predomi-

nantly flat. This was exacerbated when an x10 confin-
ing potential was applied to affirm the electron confine-

ment.

2.2 Fourier series

To improve on the polynomial series for obtaining ran-

dom potentials, we turn to a Fourier series with random

coefficients. Since the electrons still need to be confined,

an overall potential of x10 is applied, but scaled by
1/1011 to ensure the oscillations from the Fourier se-

ries are still dominant. An x2 confining potential was

also investigated but it was found to be too dominating

at the edges of the system.

The form of the Fourier series is:

Vext =
x10

1011
+ Λ

3
∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

, (1)

where Λ is the confining strength of the potential mi-
crowells, L is half the system size (in atomic units1)

and an and bn are random numbers from a uniform
distribution ranging from −L/3 to L/3.

As we can see from Fig. 1, Eq. 1 yields a wide va-
riety of confining potentials. Note that these potentials

1 We denote atomic units using a.u., where h̄ = m = e =
4πε0 = 1.
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Fig. 1 A range of potentials generated using Eq. 1, shifted
so the ground-state energy lies at 0 (shown by the horizontal
dotted line).

all have three microwells due to Eq. 1 being a Fourier

series up to 3 terms of cos(x) and sin(x). For more wells,

the series just needs to be extended to the number of

microwells desired. To increase (decrease) the tunnel-

ing between wells, Λ can be decreased (increased). The
system size can also be increased to accommodate more

microwells if necessary. Eq. 1 is a versatile method for

generating a wide range of physical quantum systems.

We see that this formulation gives a wide range of
potentials leading to diverse static and dynamic be-

haviours. This way of generating systems, therefore,
enables broader studies of quantum phenomena. This
is enhanced by the iDEA code’s ability to exactly solve

any potential for one, two or three electron systems.

3 Metrics

Metrics are a useful way to measure the distance be-

tween quantities. In Ref. [4], “natural” metrics for cal-

culating the wavefunction distance and density distance

were developed from conservation laws. While other
metrics could in principle be used, this protocol for de-
riving metrics ensures that they are at the same time

not arbitrary and physically sound. These “natural”

metrics are:

Dψ (ψ1, ψ2) =

[

2N − 2

∣

∣

∣

∣

∫

ψ∗

1
ψ2 dr1 . . . drN

∣

∣

∣

∣

]
1

2

; (2)

Dn (n1, n2) =

∫

|n1(r)− n2(r)|d3r . (3)

It has been studied how these metrics can show the

relationship between ground state densities and wave-

functions for families of systems where one parameter

is varied [4,5]. These results showed that there was a

quasi-linear relationship for these related systems, the
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gradient of which was dependent on the number of elec-

trons, N (up to N = 8) [4]. More recent research has
extended this to show that this relationship holds be-

yond related families of systems, to families of unre-

lated, random potentials of one electron. This is then

used to determine adiabaticity in quantum systems [7].

We will extend the use of metrics to look at this rela-

tionship for single electron random systems under very

fast dynamics. This opens up questions about the er-

godicity of wavefunctions and densities in metric space.

We will also see here how this relationship also holds

for two-electron random systems in their ground-state,

providing a good basis for the use of metrics to compare

any two systems of N -electrons in their ground-state.

This can then be used for investigating the one-to-one

mapping of the density and wavefunction, at the heart
of DFT, or for characterising quantum dynamics and
adiabaticity (as has already been shown for single elec-

tron systems), among other applications.

4 Time-dependent single electron

random-potential systems

In this section, we apply the metrics to a range of ran-
dom potentials (see Table A in Appendix A for the pa-
rameters used in Eq. 1 to generate these random poten-

tials), focusing on the time-dependent single-electron

systems. It is noted that for ground-state single-electron

systems, the linear relationship is seen with a gradient

of∼1.5 [7], as reported by the black dashed line in Fig. 2

A family of 10 random single electron systems is per-

turbed by a constant, uniform, electric field of strength

0.01 a.u. at t = 0. This relatively strong electric field

creates a current flow that is highly position- and time-

dependent. These systems’ dynamics were compared to

a reference system within the family, at each time step.

Fig. 2 shows how the systems evolve with respect to
each other, in terms of the density distance and wave-
function distance.

Under this highly out-of-equilibrium regime, the ra-

tio between the density distance and wavefunction dis-
tance (between any two systems) does not remain lin-
ear, but in fact begins to explore the region below the

ground-state line (Fig. 2). This suggests a non-ergodic

nature of quantum dynamics in metric spaces. Also

from this exploration of the lower triangle, it can be

seen that the wavefunction distance is, on average, af-

fected more than the density distance under out-of-
equilibrium dynamics.

There is no guarantee that two similar densities,
with a small distance between them, correspond to two

similar wavefunctions, and the exploration of this lower
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Fig. 2 Density distance (D(n1(x, t), n2(x, t))) against wave-
function distance (D(ψ1(x, t), ψ2(x, t))) for a family of ran-
dom systems experiencing an electric field of strength 0.01
a.u. at t = 0. The field induces a strongly out-of-equilibrium
dynamics. The ‘ground-state line’, along which the systems
would align if in the ground-state or if adiabatic, is shown
by the black dashed line (y = 1.55x). The distances between
the ground-states at t = 0 are marked by the black crosses,
and indeed can be seen to lay close to the ground-state line.
Once the perturbation is applied, the distances, seen by the
red trails, no longer remain on the ground-state line.

triangle corresponds to these situations. However the

reverse of two similar wavefunctions corresponding to
two very different densities, which would lead to the
upper triangle being explored, is not observed.2 This

provides intricate details of the mapping between den-
sities and wavefunctions.

5 Ground-state two electron random-potential

systems

It was seen that the ground-state quasi-linear relation-
ship between wavefunction distances and density dis-
tances was not just for families of related systems, but

also indeed holds for families of single-electron random

systems. We now investigate whether this is the case for

systems of 2 electrons with random potentials (see Ta-

ble A in Appendix A for the parameters used in Eq. 1 to
generate these random potentials), for both interacting
and non-interacting systems.

It must be noted that Eqs. 2 and 3 are normalised
to the number of electrons,

√
N and N respectively, but

Figs. 3 and 4 normalise the metrics to 1. This is for ease

2 The Runge-Gross theorem does not prohibit two systems,
propagated by (possibly different) time-dependent potentials
from different initial many-body states from having the same
density at some later instant. Such a case would provide a
trajectory that touches the very bottom of the lower triangle
in Fig. 2: Dn = 0 while Dpsi 6= 0. This provides further
support for time-evolution in the metric space of Fig. 2. being
predominantly concentrated away from the upper triangle.
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Fig. 3 The relationship between the distances of densities
and distances of wavefunctions for a family of two-electron
random-potential systems is seen to be quasi-linear with a
gradient of ∼1.06 (black dashed line).

of comparison with the quasi-linear relationships found

in Ref. [4].

5.1 Interacting systems

We generate a family of 10 random potentials with two

interacting electrons, using Eq. 1 with Λ = 0.1 and
L = 15, and then compare every system to every other

system in the family using Eqs. 2 and 3. We obtain the

results shown in Fig. 3 using the iDEA code, which uses

the reduced Coulomb interaction: 1/(|x− x′|+ 1).

These two-electron ground-state results display a

striking linearity between the wavefunction distances

and the density distances, even though the families of

systems vary by several parameters (unlike previous

studies where families of systems only varied by one

parameter, such as the frequency in the Hooke’s atom

[4]).

The ratio of this relationship, for these interact-

ing two electron random systems, is ∼1.06, consistent
with the one of ∼1 found in Ref. [4], for the isoelec-

tronic Helium series, Hooke’s atom and the two elec-

tron Hubbard model. The relationship between the ra-

tio of the distances and the number of electrons, seen

in [4], is also observed for unrelated random systems,

supporting that this may be a general property for

comparisons of any systems. This can be used to gain
insight into the one-to-one mapping between densities
and wavefunctions, in turn improving understanding of

the Hohenberg-Kohn theorem for DFT.

5.2 Non-interacting systems

Considering the same family of systems as used in Sec. 5.1

but with non-interacting electrons yields the results
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Fig. 4 For a family of two electron non-interacting random
systems, the relationship between the density distances and
wavefunction distances is also seen to be quasi-linear with a
gradient of ∼0.97 (black dashed line).

shown in Fig. 4. We see the ratio of distances to be
∼0.97, which is very similar to the value seen for the

interacting two-electron random-potential systems, and

to the value found in [4] for families obtained by varying

a parameter in the Hamiltonians. The striking linearity

for both interacting and non-interacting systems opens

up many opportunities for these metrics to be used to

investigate relationships for a wide range of many-body

systems.

The quasi-linear relationship for the ratio of dis-

tances remaining in non-interacting systems enables ap-

plications of metrics for Kohn-Sham systems within

DFT. Some work in this direction has been done in

Ref. [11] and using metrics for Kohn-Sham systems is

currently being investigated.

We note that, while the individual points change

between the interacting and non-interacting graphs, the

overall trend is similar, therefore using this method one

can gain information on the effect of interactions for

individual systems, as well as on the general trend of

families of systems.

6 Conclusion

We have seen how a Fourier series combined with a
tailored confining potential, provides a wide range of
random potentials with the ability to explore many dif-

ferent quantum systems displaying diverse physics.

From these random potentials, we use metrics to

gain insight into the relationship between the density

and wavefunction mapping for time-dependent single

electron systems. This mapping is also at the core of

time-dependent DFT [12,13], where metrics have the

potential to play a role at furthering understanding. We

see that the wavefunction distance is impacted greater
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than the density distance by highly out-of-equilibrium

dynamics, and that the quantum systems explored are

non-ergodic in metric space.

Extending the use of these random potentials, we

have shown that families of two-electron random sys-

tems in their ground state still have a quasi-linear re-

lationship between wavefunction distance and density
distance, proportional to the number of electrons (the
normalisation of the wavefunction has an impact on this
relationship, so care needs to be taken when comparing

across research). This is seen to be true in both interact-

ing and non-interacting cases, leading to the possibility

of using metrics to investigate Kohn-Sham systems for

DFT.

We have seen that Hohenberg-Kohn and Runge-

Gross theorems can be described by the metrics for

the one and two particle random systems. This has

already highlighted the intricate relationship between

wavefunctions and densities in a visual way. As the

number of electrons increases, this relationship becomes
more complicated. Therefore metrics have the potential
to provide further insight into, and visually represent,
this relationship with the Hohenberg-Kohn theorems

for ground states, the Runge-Gross theorems for the

time-dependent systems, the link between the ground

states and time-dependent systems, and also looking at

approximations used for Kohn-Sham systems.
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A System parameters

Table A gives details of the parameters of Eq. 1 for the sys-
tems used in Figs. 2, 3 and 4. Half the system size, L, is 15
a.u., and so a to f represent number drawn from a uniform
random distribution from -0.5 to 0.5, where Λ = 0.1 has been
incorporated into the random number distribution for this
table.

The single electron random-potential systems span a range
of characteristics which, in the presence of the applied field,
range from ballistic motion (including reflections from the
system edge) within a broad well, to field-induced tunnelling
through a barrier.
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