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1. Introduction

In this paper we construct several explicit families of noncongruence subgroups of

Bianchi groups and numerically test whether the asymptotic behaviour of torsion

in their first homology groups agrees with the conjectural behaviour put forward

by Bergeron and Venkatesh [4,5] in the case of congruence subgroups.

Let OK denote the ring of integers of a number field K. It is a result of Serre (see

[18]) that the group PSL2(OK) has noncongruence subgroups if and only if K = Q

or K is an imaginary quadratic field. In the latter case, we call the group PSL2(OK)

a Bianchi group. There is an extensive literature on the noncongruence subgroups of

PSL2(Z). Starting with the work of Atkin and Swinnerton-Dyer [2], the arithmetic

of modular forms associated to these subgroups has received considerable attention

and continues to do so. On the other hand, to the best of our knowledge, studies on

noncongruence subgroups of the Bianchi groups are quite sparse in the literature

(see [7,10]), and arithmetic of their associated modular forms is mostly unexplored

(see [21]). We hope that our explicit families will help future studies.

In the recent years torsion in the homology of arithmetic groups has received

much attention. A conjecture of Bergeron and Venkatesh [4,5] says that, in the

case congruence subgroups of Bianchi groups, torsion in the homology should
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grow exponentially with respect to the volume (see Lê [14] for a similar conjec-

ture for fundamental groups of hyperbolic 3-manifolds arising from knot comple-

ments). There is significant amount of numerical evidence related to this conjecture

(e.g. [8,19,20]). These works deal with congruence type arithmetic groups and non-

arithmetic groups. We consider the following extension of the conjecture of Bergeron

and Venkatesh which also covers noncongruence type arithmetic subgroups.

Conjecture 1.1. Let {Γn}n be a sequence of finite index subgroup of some fixed

Bianchi group. Assume that {Γn}n is Benjamini-Schramm convergent. Then

lim
n→∞

log|
(

Γab
n

)

tor
|

vol(Γn\H)
=

1

6π
.

In Section 3, we construct five families of noncongruence subgroups. Two of

them are obtained by fixing a noncongruence subgroup and intersecting it with a

family of congruence subgroups. The other three families will be constructed, see

Theorem 3.1, by looking at kernels of certain explicit surjective homomorphisms

from the congruence subgroups Γ0(p) to Fq. Observe that the congruence closure

index is bounded for the first two families. By increasing the prime q, we make sure

that the congruence closure index is unbounded for the remaining three families. We

discuss the notion of Benjamini-Schramm convergence in Section 6. In particular,

we prove that all of the families that we construct are convergent in this sense, see

Proposition 6.4. In Section 7, we proceed to numerically test Conjecture 1.1 on the

families that we construct. The data we collect give support to Conjecture 1.1.

Let us finish this introduction by mentioning an interesting aspect of the torsion

homology growth problem for noncongruence subgroups which does not arise in our

experiments. As we mentioned earlier, the work of Bergeron and Venkatesh focuses

on congruence arithmetic groupsa. Noncongruence subgroups, just like congruence

ones, are arithmetic as well. However as they are invisible to adelic methods, they do

not fully enjoy the rich theory that surrounds congruence subgroups. A particular

instance is the difference in the nature of Hecke action: it is known (see [21]) that, as

in the case of PSL2(Z) (see [3]), the action of Hecke operators on the cohomology of

a noncongruence subgroup factors over the cohomology of its congruence closure. In

the congruence case, the philosophy of Bergeron and Venkatesh is that the action of

the Hecke operators prevents the free part of the integral cohomology from having

any influence (via the so-called regulators) on the asymptotic growth of torsion. It is

therefore natural to ask whether, due the defect in the action of the Hecke operators,

the free part has any influence in the noncongruence case. The optimistic conjecture

above says no. As we explain in Section 7, our experiments fail to shed any light on

this issue.

aAlthough their arguments apply to cocompact lattices in general.
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2. Bianchi Groups

Let H := {(z, r) ∈ C×R | r > 0} denote the 3-dimensional upper-half space. When

H is equipped with the hyperbolic metric d induced from the line element ds defined

by

ds =
dx2 + dy2 + dr2

r2
,

with z = x + iy, then H becomes a model of hyperbolic 3-space. To make the

computations easier, we can use quaternions to represent points in H. Let 1, i, j, k

be the standard R-basis for the Hamilton’s quaternions H =
(−1,−1

R

)

. Then H can

be seen as a subset of H via

(z, r) 7→ z + rj.

Then the real Lie group SL2(C) acts on a point p = z + rj ∈ H via the rule
(

a b

c d

)

· p = (ap+ b)(cp+ d)−1

where all the operations take place inH. Observe that the center {±Id} acts trivially
so that the action descends to PSL2(C). From now on, we shall adapt the standard

abuse of the notation and denote elements of PSL2(C) simply as matrices. The

action can be extended to the boundary P1(C) = C ∪ {∞}. If (x : y) is an element

of P1(C), then
(

a b

c d

)

· (x : y) = (ax+ by : cx+ dy).

Let Kd = Q(
√
−d) be an imaginary quadratic field where d > 0 is a square free

integer and let Od be its ring of integers. The groups PSL2(Od) are called Bianchi

groups. These groups are discrete subgroups of PSL2(C) and thus they act properly

discontinuously on H.

There is a distinguished class of finite index subgroups of PSL2(Od) that we

define now. Given an ideal a, the principal congruence subgroup of level a is defined

as the kernel of the natural surjection PSL2(Od) → PSL2(Od/a), which is denoted

by Γ(a). Any subgroup that contains a principal congruence subgroup is called a

congruence subgroup. Besides the principal congruence subgroups, there are some

important congruence subgroups such as

Γ0(a) :=
{(

a b
c d

)

∈ PSL2(Od) | c ≡ 0 (mod a)
}

.

For a congruence subgroup Γ of PSL2(Od) the level of Γ is defined as the largest

ideal aΓ of Od such that Γ(aΓ) ≤ Γ. It can be easily seen that the level of Γ0(a) and

Γ(a) is a.

We shall extend the notion of level from congruence subgroups to all finite

index subgroups. This can be done in either an algebraic way or, equivalently, in

a geometric way. For a more leisurely discussion, see [11,16]. We start with the
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algebraic approach. Given a nonzero ideal a of Od, we define the subgroup M(a) of

unipotent elements of PSL2(Od) as

M(a) :=

{(

1 a

0 1

)

| a ∈ a

}

and we denote the normal closure of M(a) in PSL2(Od) by Q(a), that is, the

intersection of all normal subgroups of PSL2(Od) that contain gM(a)g−1 for all

g ∈ PSL2(Od). It can be shown that there is a nonzero ideal a of Od such that

Q(a) ≤ Γ where Γ is a finite index subgroup of PSL2(Od). The level of Γ, denoted

L(Γ), is defined as the maximal ideal aΓ with this property. So we can say that

L(Γ) is the largest ideal a such that the intersection of all conjugate subgroups of

Γ contains M(a).

Geometrically, the level of a subgroup Γ can be defined in terms of the cusp

widths of the hyperbolic 3-fold associated to Γ. It is well-known that a Bianchi

group PSL2(Od) acts on P1(Kd) as a set of linear transformations with finitely

many orbits, in fact, the number of orbits is equal to the class number of Kd. A

cusp of Γ is a Γ-orbit in P1(Kd). For example, if p is a prime ideal of residue degree

one, then Γ0(p) has two cusps, namely [0] and [∞]. For each g ∈ PSL2(Od), let cg
denote the largest ideal a with the property that

gM(a)g−1 ≤ Γ.

cg is called the cusp width of the cusp [g · ∞]. It follows that

L(Γ) =
⋂

g∈PSL2(Od)

cg.

The following theorem gives a characterization of congruence subgroups and is a

key tool in identifying noncongruence subgroups.

Theorem 2.1 (Grunewald-Schwermer [11]). The subgroup Γ ≤ PSL2(Od) is

a congruence subgroup if and only if Γ(aΓ) ≤ Γ.

The following proposition, which will be used later when computing levels, is

given in [21] without a proof. We prove it here for the sake of completeness. Put

a =

(

1 1

0 1

)

, b =

(

0 1

−1 0

)

, u =

(

1 w

0 1

)

,

where w =
√
−d if d 6≡ 3 (mod 4) and w = 1+

√
−d

2 otherwise.

Proposition 2.2. Let I and J be two proper nonzero ideals of Od such that I ⊆ J

and m,n ∈ Z. We have

(1) M(I) ≤ Q(I) ≤ Γ(I).

(2) M(I) ≤ M(J), Q(I) ≤ Q(J), and Γ(I) ≤ Γ(J).

(3) If w = 1+
√
−d

2 , that is if d ≡ 3(mod 4), then

M(〈m+ nw〉) = 〈amun, a−n(d+1)/4um+n〉.
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(4) If w =
√
−d, that is if d 6≡ 3(mod 4), then

M(〈m+ nw〉) = 〈amun, a−ndum〉.

Proof. (1) and (2) is clear. We will give the proof of (3). (4) can be done similarly.

Since amun and, a−n(d+1)/4um+n is an element of M(〈m+ nw〉), we have

〈amun, a−n(d+1)/4um+n〉 ≤ M(〈m+ nw〉).

For the other side, let X ∈ M(〈m+ nw〉). Then X is of the form
(

1 (m+ nw)(x+ yw)

0 1

)

=

(

1 mx+ w(my + nx) + nyw2

0 1

)

=

(

1 mx+ w(my + nx) + ny(w − n(d+ 1)/4)

0 1

)

=

(

1 (mx− ny(d+ 1)/4) + w(nx+ (m+ n)y)

0 1

)

.

Thus X can be written in the form

(am)x(un)x(a−n(d+1)/4)y(um+n)y ∈ 〈amun, a−n(d+1)/4um+n〉.

Hence the result follows.

Let H be a subgroup of PSL2(Od). We define the congruence closure of H as the

smallest congruence subgroup of PSL2(Od) containingH. Accordingly, we define the

congruence closure index (c.c.i.) of H as the index of H in its congruence closure.

3. Construction noncongruence subgroups of Bianchi groups

3.1. Bounded congruence closure index

It is a simple observation that the intersection of a congruence subgroup and a non-

congruence subgroup is again a noncongruence subgroup. This leads to a straight-

forward way of constructing families of noncongruence subgroups with bounded

congruence closure index. Indeed, fix a noncongruence subgroup H and a sequence

{Γn}n of congruence subgroups and consider the family {Γn ∩ H}n. The congru-

ence closure of Γn ∩H is inside Γn, thus the c.c.i. is bounded by [PSL2(Od) : H].

Noncongruence subgroups of small index can be easily found as we will discuss

below.

3.2. Increasing congruence closure index

We will now obtain families of noncongruence subgroups of PSL2(Od) for d = 2, 7, 11

in which the congruence closure index is increasing. More precisely, we will consider

the congruence family {Γ0(pn)}n with prime levels pn and consider special normal

subgroups with increasing prime index such that each subgroup is noncongruence.
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We will use the following theorem (compare with [13, Prop. 18]) to construct these

special normal subgroups.

Theorem 3.1. Let p be a prime ideal of Od of residue degree one over the rational

prime p and q ≥ 5 a rational prime such that q does not divide p(p − 1) and the

discriminant of Kd/Q. Let H be a normal subgroup of Γ0(p) with index q. If the

level of H is p〈q〉, then H is a noncongruence subgroup.

Proof. Assume that H is a congruence subgroup. By Theorem 2.1, H contains the

principal congruence subgroup Γ(p〈q〉). As H
/

Γ(p〈q〉) is normal in Γ0(p)
/

Γ(p〈q〉)
with the same index q, the simple cyclic group Cq ≃ Γ0(p)/H is a composition

factor of Γ0(p)
/

Γ(p〈q〉). We will obtain a contradiction by showing that this cannot

be the case.

We have the normal series

Γ0(p)/Γ(p〈q〉) ⊃ Γ(p)/Γ(p〈q〉) ⊃ 〈I〉.

Therefore the composition factors of Γ(p)/Γ(p〈q〉) are the union of those of

Γ0(p)/Γ(p〈q〉)

and of

Γ0(p)/Γ(p〈q〉)
/

Γ(p)/Γ(p〈q〉) ∼= Γ0(p)/Γ(p).

Now, the order of Γ0(p)/Γ(p) is p(p− 1)/2. By assumption we have q ∤ p(p− 1) and

so the composition factors of Γ0(p)/Γ(p) can not be of order q.

It remains to show that Cq cannot be a composition factor of Γ(p)/Γ(p〈q〉).
Observe that for any ideal n, the group Γ(n) is isomorphic to the group

SΓ(n) :=
{(

a b
c d

)

∈ SL2(Od) | a− 1 ≡ b ≡ c ≡ d− 1 ≡ 0 (mod n)
}

,

its counterpart inside SL2(Od). Indeed, if Γ(n) is the preimage of Γ(n) inside

SL2(Od) under the standard map π : SL2(Od) → PSL2(Od), then

Γ(n) = π
(

Γ(n)
)

= Γ(n)/{±Id} ≃ SΓ(n).

The quotient SΓ(p)/SΓ(p〈q〉) is equal to the kernel of the natural surjection from

SL2(Od/p〈q〉) onto SL2(Od/p), which in turn is isomorphic to SL2(Od/〈q〉) since

q 6∈ p. We obtain that

Γ(p)/Γ(p〈q〉) ≃ SΓ(p)/SΓ(p〈q〉) ≃ SL2(Od/〈q〉).

Case 1: Assume that q is inert in Od. Then we have

Γ(p)/Γ(p〈q〉) ∼= SL2(Fq2).

Since PSL2(Fq2) is simple for any prime q, a composition series for SL2(Fq2) is

{Id} ⊳ {±Id} ⊳ SL2(Fq2).
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Thus the composition factors for SL2(Fq2) are C2 and PSL2(Fq2). So for q ≥ 3, Cq

cannot be a composition factor for Γ(p)
/

Γ(p〈q〉).
Case 2: Assume that q splits in Od. Now we have

Γ(p)/Γ(p〈q〉) ∼= SL2(Fq)× SL2(Fq).

If Cq is a composition factor for SL2(Fq) × SL2(Fq) then, by the Jordan-Hölder

Theorem, it must be also a composition factor for SL2(Fq). Since PSL2(Fq) is simple

for q ≥ 5, a composition series for SL2(Fq) is

{Id} ⊲ {±Id} ⊲ SL2(Fq).

Therefore the composition factors for SL2(Fq) are C2 and PSL2(Fq). Hence for

q ≥ 5, Cq cannot be a composition factor for SL2(Fq)× SL2(Fq).

Remark 3.2. The reviewer kindly informed us that Theorem 3.1 is essentially

known: it follows immediately from the fact that any congruence subgroup contain-

ing the derived subgroup [Γ0(p),Γ0(p)] must contain the subgroup Γ0(p
3). This fact

in turn follows from “super-strong approximation”.

4. Explicit families with fixed congruence closure index

In this section we will consider two noncongruence subgroups of small index given

in [11]. We construct families of noncongruence subgroups by intersecting these two

groups with families of congruence subgroups. The resulting families will have fixed

congruence closure index.

4.1. Family 1.

A presentation of PSL2(O7) can be given as

PSL2(O7) = 〈a, b, u | (ba)3 = b2 = aua−1u−1 = (bau−1bu)2 〉.

There is an index 3 normal subgroup H of PSL2(O7) generated by the elements

a, b, ubu−1, u3, u−1bu.

We see that M(3O7) ≤ Q(3O7) ≤ H. The ideal 3O7 is a prime ideal so the max-

imal ideal a where Q(a) ≤ H is 3O7 and hence the level of H has to be 3O7 by

Proposition 2.2. If H is a congruence subgroup, that is Γ(3O7) is contained in H,

then PSL2(O7

/

3O7) = PSL2(F9) must contain a normal subgroup of index 3 which

is not the case. Hence H is a noncongruence subgroup with index 3 (see [11, Page

213]).

Let S = {pn}n be a sequence of prime ideals in O7 with prime norm, one prime

ideal chosen over every rational prime splitting in Q(
√
−7). Let Γn = Γ0(pn) ∩H.

Obviously each Γn is an index 3 subgroup of Γ0(pn) and is noncongruence.
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4.2. Family 2.

The group PSL2(O11) has a presentation

PSL2(O11) = 〈a, b, u | (ba)3 = b2 = aua−1u−1 = (bau−1bu)3 〉.
The abelianization of PSL2(O11) is isomorphic to Z

/

3Z× Z. Hence there is a sur-

jective homomorphism φ : PSL2(O11)
ab → Z

/

2Z. Let H be the kernel of φ. Then

H is an index 2 subgroup generated by the elements

a, b, u−2, ubu−1.

Here u 6∈ H, and this implies that the level of H is 2O11 by Proposition 2.2.

If Γ(2O11) were contained in H, then PSL2(O11

/

2O11) would have a subgroup

of index 2, where O11

/

2O11 is a field, which is not the case. Therefore H is a

noncongruence subgroup (see [11, Page 213]).

Let S = {pn}n be a sequence of prime ideals in O11 with prime norm, one prime

ideal chosen over every rational prime splitting in Q(
√
−11). Let Γn = Γ0(pn)∩H.

Then it is clear that Γn is an index 2 subgroup of Γ0(pn) and is noncongruence.

5. Explicit families with increasing congruence closure index

In this section we will consider three families of noncongruence subgroups. These

subgroups will be constructed via Thm. 3.1 using explicit surjective homomorphisms

from the congruence subgroups Γ0(p) to finite fields Fq. These explicit homomor-

phisms arise simply from the “boundary cohomology”. We thank the referee for

pointing out this fact which greatly simplified our description of the homomor-

phisms.

5.1. Families 3,4,5

Let d = 2, 7, 11 and let w = 1+
√
−d

2 if d = 7, 11 and w =
√
−d if d = 2. For

d = 7, 11, we have already seen presentations for PSL2(Od). For d = 2, a well-

known presentation is

PSL2(O2) = 〈a, b, u | (ab)3 = b2 = aua−1u−1 = (bu−1bu)2 〉.
In all three cases, it is clear that the map φ : PSL2(Od) → Z sending a, b to 0 and

u to 1 is a homomorphism.

Let S = {pn}n be an infinite sequence of prime ideals in Od with prime norm,

one prime ideal chosen over every rational prime splitting in Od. For p ∈ S, the

elements {Id, bai} for 0 ≤ i ≤ p−1 form a system of coset representatives for Γ0(p)

in PSL2(Od) (here p is the rational prime that p is over). Identify Od/p ≃ Fp =

{0, 1, . . . , p− 1} and let t denote the image of w in Od/p. Using the Reidemeister-

Schreier algorithm (see [12]), we obtain the following generators for Γ0(p)

a, u, batub, bapb, bakba−k∗b

where 1 ≤ k, k∗ ≤ p− 1 and kk∗ ≡ −1 mod p.
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We restrict φ to the subgroup Γ0(p) to obtain a homomorphism φ(p) : Γ0(p) → Z

sending the generators u, batub to 1 and all the rest to 0. For a positive integer

m ≥ 2, we can compose φ with the reduction map Z → Z/mZ and obtain the

homomorphism φ(p,m) : Γ0(p) → Z/mZ.

Let q be a prime and let H(p, q) be the kernel of φ(p, q). Let us compute its

level. Since H(p, q) is a normal subgroup, we can determine the number of cusps of

H(p, q) by looking at whether the cusp ∞ splits into cusps in H(p, q) or not. For

this purpose, we shall need a set of coset representatives for H(p, q) in Γ0(p); we use

{Id, u, u2, . . . , uq−1}. Since for every k ∈ N, uk stabilizes ∞, we have only two cusps,

0 and∞. As Γ0(p)∞ = 〈a, u〉 and Γ0(p)0 = 〈bapb, batub〉, we haveH(p, q)∞ = 〈a, uq〉
and H(p, q)0 = 〈bapb, (batub)q〉. Then the level of H(p, q) is p〈q〉, see [16].

If we choose q ≥ 5 a rational prime which is not ramified in Od and is such that

q ∤ p(p− 1), then by Theorem 3.1 we see that H(p, q) is a noncongruence subgroup.

6. Torsion homology growth

In this section, we will report on our experiments on the growth of torsion in the

homology of noncongruence subgroups of Bianchi groups.

The following is a special case of a conjecture of Bergeron and Venkatesh [4] [5,

Conjecture 6.1.] which treats general congruence arithmetic groups.

Conjecture 6.1. Let {Γn}n be a sequence of congruence subgroups of a fixed

Bianchi group PSL2(Od). Then

lim
n→∞

log|
(

Γab
n

)

tor
|

vol(Γn\H)
=

1

6π
.

We wish to test the analogue of this conjecture for noncongruence subgroups

of Bianchi groups. An important ingredient to formulate the analogue is the BS-

convergence notion of [1], named after Benjamini and Schramm. Recall that for a

hyperbolic manifold M and positive real number R, the R-thin part M<R of M is

the part of M in which the local injectivity radius is less than R. A sequence {Mn}n
of hyperbolic 3-manifolds of finite volume BS-converges to the universal cover H if,

informally speaking, “the injectivity radius of Mn goes to infinity at almost every

point”, that is, for every R > 0,

lim
n→∞

vol((Mn)<R)

vol(Mn)
= 0.

For convenience, we will say that a sequence {Γn}n of cofinite discrete subgroups

of PSL2(C) is BS-convergent if the sequence {Γn\H}n of associated hyperbolic 3-

manifolds BS-converge to H. In [17, Theorem A], Raimbault proves that the for any

sequence {Γn}n of congruence subgroups of Bianchi groups (not necessarily inside

a fixed Bianchi group) is BS-convergent. Thus the following conjecture extends the

scope of Conjecture 6.1 to include noncongruence subgroups as well.

Conjecture 6.2. Let {Γn}n be a sequence of finite index subgroups of a fixed
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Bianchi group PSL2(Od). Assume that {Γn}n is BS-convergent. Then

lim
n→∞

log|
(

Γab
n

)

tor
|

vol(Γn\H)
=

1

6π
.

Remark 6.3. As the notion of BS-convergence is more flexible, one can relax the

above by not requiring the Bianchi group to be fixed.

We will test this conjecture on our families of noncongruence subgroups.

6.1. BS-convergence

In this section, we prove that the five families that we have constructed above are

BS-convergent. For this end, we will use the notion of trace convergence of Farber,

see [9,15] which equals BS-convergence when the sequence members Γn are all inside

a fixed Bianchi group.

Say we have a sequence of finite-index subgroups {Γn}n of a cofinite discrete

subgroup G of PSL2(C). The permutation action of G on the right cosets of Γn

gives rise to an action of G on the C-vector space C[Γn\G] with basis Γn\G. For

g ∈ G, let tr(g,Γn) be the trace of the operator given by the action of g on C[Γn\G].

We say that {Γn}n is trace convergent if

tr(g,Γn)

[G : Γn]
→ 0

as n → ∞ for every nontrivial g ∈ G. It is well-known that a sequence {Γn}n
as above is BS-convergent if and only if it is trace convergent, see [15]. Note that

BS-convergence does not need the necessity to be inside a fixed G.

Proposition 6.4. Let {Hn}n be a trace convergent sequence of finite index sub-

groups of a fixed Bianchi group G. For every n, let Kn be a finite index subgroup

of Hn. Then the sequence {Kn}n is trace convergent as well.

Proof. Let kn := [Hn : Kn]. We will show that for any g ∈ G,

tr(g,Kn) ≤ kn · tr(g,Hn). (6.1)

Assuming this, let us see how the claim follows. Noting that [G : Kn] = kn ·[G : Hn],

we have

tr(g,Kn)

[G : Kn]
≤ kn · tr(g,Hn)

[G : Kn]
=

tr(g,Hn)

[G : Hn]

If g 6= 1, then tr(g,Hn)
[G:Hn]

→ 0 as n → ∞ by hypothesis, implying tr(g,Kn)
[G:Kn]

→ 0 as

n → ∞ as desired.

Let us now prove (6.1). Since the action of g on C[Hn\G] arises from the per-

mutation action of g on the coset space Hn\G, the trace of G equals the number

of cosets of Hn in G fixed by g. Similarly, the trace of g on C[Kn\G] equals the
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number of cosets of Kn in G fixed by g. Let Kng
′ be a coset in Kn\G fixed by g,

that is,

Kng
′g = Kng

′.

Since Kng
′ is contained only in the coset Hng

′ in Hn\G, we have to have

Hng
′g = Hng

′.

Since every coset of Hn in G splits into kn cosets of Kn in G, it follows that

tr(g,Kn) ≤ kn · tr(g,Hn).

It follows immediately from the above proposition that all our families are BS-

convergent since the sequence of congruence subgroups {Γ0(pn)}n is BS-convergent,

and thus trace convergent, by Raimbault’s above mentioned result [17, Theorem A].

7. Numerical experiments

In this section, we report on the torsion homology growth experiments we conducted

using the families above. We will group the families, under light of Remark 6.3, into

two groups according to the nature of the congruence closure index.

7.1. Experiment 1: fixed congruence closure index.

Here we work with Family 1 and Family 2. Let p be a prime ideal of Od of degree 1.

The index of Γ0(p) in PSL2(Od) is p+1. The elements ai, 0 ≤ i ≤ p−1, and b form

a system of coset representatives for Γ0(p) in PSL2(Od). From these matrices we

obtain the following generating system for Γ0(p) by using the Reidemeister-Schreier

algorithm:

ap, bab, ua−t, bub, aibaj (7.1)

where ij ≡ 1 (mod p) and i, j ∈ F∗
p and t ∈ Fp such that w = t = −x

y in Fp for

p = (x+ yw)(x+ yw). We automated this in Magma [6] and computed the ratios

log|
(

Γab
n

)

tor
|

vol(Γn\H)
(7.2)

for all pn ∈ S with norm less than or equal to 15000 and 18000 for d = 7, 11,

respectively. There are 1895 such ideals in total. We plotted the ratios (7.2) against

the index of Γn in PSL2(Od) in Fig. 1. There is a clear convergence to 1
6π .
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10000 20000 30000 40000
index

0.048

0.05
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0.054

0.056

0.058

0.06

log(torsion)/volume

1/(6*pi)
cuspidal rank=0
cuspidal rank>0

Fig. 1. The growth of torsion for the Γn’s.

It is also interesting to compare the behaviour of the rank of the free part of

the abelianization (this is related to the so-called “regulator”, see [4]). It is easy to

compute that Γn also has only two cusps using the fact that Γ0(pn) with pn ∈ S

has two cusps, namely [0] and [∞]. Existence of two cusps imply that the ranks of

the abelianizations of Γn and of Γ0(pn) are at least 2.

We computed the ranks of the abelianizations of Γn and of Γ0(pn); within the

range of our computations, they always have the same rank. We will call the rank of

Γab
n minus cusp contribution as cuspidal rank. As was observed in [19], the cuspidal

rank is typically 0, see also [8,20]. We tabulated the ranks in Table 1 where the

first column represents the cuspidal rank and the second column corresponds to the

number of primes in S in which we observed this cuspidal rank frequency. In Fig.

2, we plot the cuspidal rank against the index.

Table 1. Distribution of
cuspidal rank of Γab

n .

cuspidal rank frequency

0 1700/1895
1 148/1895
2 41/1895
3 4/1895
5 1/1895
6 1/1895
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10000 20000 30000 40000
index0

1

2

3

4

5

6

7

cuspidal rank

noncongruence

Fig. 2. Cuspidal rank of Γab
n against the index.

7.2. Experiment 2: increasing congruence closure index.

In this experiment, we work with the families for which the congruence closure index

is increasing (see Section 5).

Using Magma, we computed the ratios

log|
(

H(p, q)ab
)

tor
|

vol(H(p, q)\H)
(7.3)

for 103 different noncongruence subgroups H(p, q) over the three fields with d =

2, 7, 11. We increased p and q simultaneously in order to make sure that the con-

gruence closure index was increasing. The table below lists the tuples (p, q).
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Table 2. The tuples (p, q).

d = 2

(17, 11), (19, 13), (41, 17), (43, 19), (59, 23), (67, 29), (73, 31), (83, 37), (89, 41),

(97, 43), (107, 47), (113, 53), (131, 59), (137, 61), (139, 67), (163, 71), (179, 73),
(193, 79), (211, 83), (227, 89), (233, 97), (241, 101), (251, 103), (257, 107),

(281, 109), (283, 113), (307, 127), (313, 131), (331, 137), (337, 139), (347, 149),
(353, 151), (379, 157), (401, 163)

d = 7

(23, 13), (29, 11), (37, 17), (43, 19), (53, 23), (67, 29), (71, 31), (79, 37), (107, 41),
(109, 43), (113, 47), (127, 53), (137, 59), (149, 61), (151, 67), (163, 71), (179, 73),

(191, 79), (193, 83), (197, 89), (211, 97), (233, 101), (239, 103), (263, 107),
(277, 109), (281, 113), (317, 127), (331, 131), (337, 137), (347, 139), (359, 149),
(373, 151), (379, 157), (389, 163), (401, 167), (421, 173), (431, 179), (443, 181),

(449, 191)

d = 11

(23, 13), (31, 11), (37, 17), (47, 19), (53, 23), (59, 31), (67, 29), (71, 37), (89, 41),
(97, 43), (103, 47), (113, 53), (137, 59), (157, 61), (163, 67), (179, 71), (181, 73),

(191, 79), (199, 83), (223, 89), (229, 97), (251, 101), (257, 103), (269, 107),

(311, 109), (313, 113), (317, 127), (331, 131), (353, 137), (367, 139)

We plotted the ratios (7.3) against the index of noncongruence subgroups H(p, q)’s

in PSL2(Od)’s in Fig. 3. It seems to converge to 1
6π .

0 10000 20000 30000 40000 50000 60000 70000 80000
index

0.02

0.03

0.04

0.05

0.06

0.07

0.08

log(torsion)/volume

1/(6*pi)
cuspidal rank =0
cuspidal rank>0

Fig. 3. The growth of torsion of H(p, q)’s against the index.

We see that H(p, q) has only two cusps using the fact that Γ0(pn) where pn is

a prime ideal in Od with prime norm has two cusps. Existence of two cusps imply

that the ranks of the abelianizations of H(p, q) and Γ0(pn) are at least 2.
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We computed the ranks of the abelianizations of H(p, q) and of Γ0(pn); within

the range of our computations and we see that they always have the same rank.

We tabulated the ranks in Table 3. In Fig. 4, we plot the cuspidal rank against the

index.

Table 3. Distribution of
cuspidal rank of H(p, q).

cuspidal rank frequency

0 93/103
1 7/103
2 3/103

10000 20000 30000 40000 50000 60000 70000 80000
index

0.5

1

1.5

2

2.5

cuspidal rank

noncongruence

Fig. 4. Cuspidal rank of H(p, q)’s against the index.

Remark 7.1. In order to try to gain insight into the regulator growth issue that

was discussed at the end of the Introduction, we computed the ranks of all H(p, q)

with pq ≤ 30000 within the families 3, 4, 5. Unfortunately, as in the examples above,

the rank always equaled the rank of the congruence closure.
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