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Disguised Bionic Sonar Signal Waveform Design
with Its Possible Camouflage Application Strategy
for Underwater Sensor Platforms

Jiajia Jiang, IEEE Member, Zhongbo Sun, Fajie Duan, Wei Liu, IEEE Senior Member, Xianquan Wang,
Chunyue Li, Lingran Bu, Xiao Fu, Tingting Huang and Ling Ma

Abstract— The covertness of an active sonar is a very important
issue and the sonar signal waveform design problem is studied to
improve covertness of the system. Many marine mammals
produce call pulses for communication and echolocation, and
existing interception systems normally classify these biological
signals as ocean noise and filter them out. Based on this, a
disguised sonar signal waveform design approach with its
camouflage application strategy for underwater sensor platforms
is proposed by utilizing bio-inspired steganography. We first
construct bionic sonar signal waveforms which are very close to
the true whale whistle, and then embed these constructed bionic
sonar signal waveforms into the true whale call trains to hide the
real sonar signal waveforms. According to the time-frequency (TF)
structure of the true whale whistle, a bionic sonar signal model is
established to generate the proposed sonar signal waveforms. A
single sonar signal is used to measure the range of the target and a
combination of two sonar signals is utilized for measuring its
speed. A high-performance range and speed measurement
algorithm is deduced in detail. Based on the constructed signal
waveforms and the characteristics of false killer whale call trains,
a camouflage application strategy is designed to improve the
camouflage ability of the sonar signal sequence. Finally,
simulation results are provided to verify the performance of the
proposed method.

Index Terms—Covert sonar; sonar waveform design; bionic
sonar; disguised sonar waveform design.

[. INTRODUCTION

y sending out signals for target detection, an active sonar

system unavoidably risks being detected and identified by

the others, too. In the last few decades, many methods have

been proposed to improve the stealth capability of active sonar
systems through signal waveform design [1-12].

Some methods try to constantly change the parameters of the

transmitted signals to increase of the identification difficulty,
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such as period-hopping [2], frequency-hopping [3-4],
time-hopping [5] and so on. Although they can improve the
covertness of signals, there is still much further work to be done
since those changed-parameters signals have some distinct
features. For example, for frequency-hopping signals, each
pulse could be continuous-wave (CW) or linear frequency
modulated (LFM); however, the CW pulses have the feature of
being of rectangle in the time domain and single frequency in
the frequency domain, while LFM pulses are of both rectangle
in the time domain and linearly changed frequency in the
frequency domain [6]. As a result, these signals can be
identified and classified easily in practice [11-12].

Some other methods use low signal noise ratio (SNR) signals
with LFM [6], FM-CW [7-8], or other stealth signals, such as
pseudorandom [9-10] or chaotic codes [10] to increase the
difficulty of being detected. Achieving a high degree of
covertness, these signals can still be detected by some methods,
such as envelope detection, energy detection and energy
spectral density analysis methods, etc. [13-14]. Besides, a sonar
system using the low SNR signals requires a long-time energy
accumulation process for target detection, which severely
affects the detection efficiency.

Due to the similarity of considered problems, many ideas in
radar signal waveform design [15-17] can also be employed
here, and for the specific covert signal waveform design
problem, those ideas in radar also fall into the above two
categories [4, 9].

Another direction for sonar waveform design is the
nature-inspired approach. Given nature’s ability to address
complex, large-scale problems with robust, adaptable, and
efficient solutions resulting from many years of evolution,
researchers look to natural systems for inspiration and methods
to solve problems in human-created artificial environments.
Based on the bio-sonar systems in nature, Rolf Muller et al
presented a detailed review and discussion about bio-inspired
engineering, and pointed out that bioinspired engineering could
capitalize on some of its strengths to serve as a model system
for basic automation methodologies for the bioinspired
engineering process in future research [18]. In [19], Chris
Capus et al. designed a novel and interesting bio-inspired
wideband sonar signal waveform based on the double
down-chirp structure of clicks of bottlenose dolphin, evaluated
its performance and obtained excellent results. In [20], inspired
by the vocalization of humpback whales and dolphins, Timothy
Leighton and Paul White proposed a possible sonar scheme for
targets detection in bubble clouds, and a possible radar scheme



for the detection of buried explosives and catastrophe victims.
And the relevant experimental results showed the validity of
their schemes. In [21], by using the idea of camouflage similar
to this paper, a bio-inspired steganography for secure
underwater acoustic communications was proposed by us based
on the sperm whale calls and about 37.5bit/s communication
rate is completed through lake experiments. In [22], inspired by
what little is known about dolphin echolocation receiving
mechanisms, Peter Dobbins proposed a very interesting and
new concept for a sonar receiver based on a pair of endfire array
model from dolphin’ teeth, and showed that endfire array beam
patterns had minimal near-field degradation and a pair of
endfire arrays could be used in a monopulse mode for angular
localization. These results are very enlightening to us. In [23],
Rolf Miiller et al. compared beamwidth in biosonar and
engineered sonar with each other and to the theoretical
beamwidth limit for the respective ratio of sonar aperture size
and wave-length and obtaind some very interesting and
instructive results. In [24], Michele Vespe et al. introduced a
range of strategies employed by bats and considered how these
might be exploitable in future radar systems. These bio-inspired
ideas and in-depth analysis are very interesting and
inspirational. However, to our best knowledge, the covertness
issue has not been considered yet in this context.

As can be seen in [25-27], present interception systems
almost always classify biological signals as ocean noise and try
to filter them out. Based on this, we propose a covert sonar
signal waveform design approach with its possible camouflage
application strategy by utilizing bio-inspired steganography.
By analyzing the time-frequency (TF) structures of whistles
emitted by false killer whales, it is found that the TF structures
of hyperbolic frequency modulated (HFM) signals are very
similar to those of false killer whales. Therefore, based on the
HFM signal model, a bionic sonar signal model is presented,
which is then utilized to construct disguised and bionic sonar
signal waveforms to accomplish disguised and covert active
sonar detection tasks. The main contributions of this paper can
be summarized as follows:

(1) Different from conventional parameter-changing or low
SNR sonar signal waveforms, a new type of disguised, and
bionic sonar signal waveform design is proposed;

(2) According to the TF characteristics of false killer whale
calls, an imitation sonar signal mode is presented, with a very
good match to the true whistle of false killer whales.

(3) A computationally efficient target range and speed
measurement algorithm employing the characteristics of time
resolution and Doppler tolerance of the constructed bionic
sonar signal waveforms is developed.

(4) The proposed approach overcomes the trade-off between
long-range detection and covertness. It can obtain covertness
camouflage even if the SNR of the transmitted signals is very
high. On the other hand, it can improve the covertness by
reducing the SNR for a short range target detection task.

II. ANALYSIS AND PREPROCESSING OF FALSE KILLER WHALE
CALLS

A. Characteristics of false killer whale calls

When navigating, communicating, hunting, and avoiding
predators in dark or limited vision waters, false killer whales
produce clicks and whistles [28-30], as shown in Fig. 1.
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Fig. 1. Clicks and whistles produced by the false killer whale.
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The clicks are produced in series, quite variable in structure
and have frequency peaks from 20 kHz to 120 kHz [28-29].
Whistles are characterized by a continuous waveform, which
appears on a TF spectrogram as a single tone with little or no
harmonic or side-band structure. The frequency of whistles
ranges from about 4 kHz to 10 kHz [30]. Whistles, with relative
long-time duration, are believed to serve as some sort of
communication or social cohesion roles. The frequency
distribution of whistles is close to the frequency distribution of
mid-frequency sonar signals, which is beneficial for remote
target detection.

B. Preprocessing and statistical analysis of false killer whale
calls

The original high quality call of 7 minutes and 25 seconds,
produced by a false killer whale, was recorded with a 44.1ksps
sampling rate. Unavoidably, the signal was polluted by the
Gaussian ocean ambient noise [31], and as can be seen from the
TF spectrograms in Figs. 1 and 2, the whistles of false killer
whales are short-time stationary. In such a case, a Wiener filter
[32] can be utilized to remove the background noise of the
recorded signal. The Wiener filter is based on a priori SNR
estimation; the first 0.25 seconds of the original call train is
utilized to model the noise, and then the original call train is
transformed into the short-time Fourier transform (STFT)
domain by using a 60% overlapping Hamming window with a
N=1102 samples length (25 ms). The time-domain waveforms of
partial original and denoised false killer whale call trains are
shown in Fig. 2(a), and their TF spectrograms are shown in Fig.
2(b) and 2(c), respectively. Comparing Fig. 2(a), 2(b) and 2(c), it
can be seen that the ocean ambient noise has been filtered out
effectively.



Fig. 2. (a) Part of the original and denoised false killer whale call trains with normalized amplitude (NA); (b) TF spectrogram of the original false killer whale call
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train; (c) TF spectrogram of the denoised false killer whale call train.

Table 1. Six types of whistles

III. BIONIC SONAR SIGNAL MODEL

Type Dejscrliption Number A HFM signal with a duration 7" can be written as [34]
Type-1 Hyperbolic-like up-sweep 80 )
Type-2 Hyperbolic-like double up-sweep 15 5, (t) =4 (t)exp j27r(—ln (1 +bf;t )j 0<t<T (1)
Type-3 Parabolic-like up-sweep 6 b
Type-4 Parabolic-like down-sweep 4 .
Type-5 Sine-like 5 where b= (f, — f;;)/(f, f,T) defines a unique sweep factor
Type-6 Harmonic-like down-sweep 4 and A(z) denotes the signal envelope. The instantaneous
. frequency is defined as
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Fig. 3. Six types of TF spectrogram and waveform representations.
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To analyze the TF characteristics of every whistle of false
killer whales, the endpoint detection technique in [33] based on
the short-time energy is used to collect all whistles from the
denoised call train, and 114 whistles are obtained in total. Then,
by comparing the shapes of the TF spectrograms of whistles,
the TF spectrograms of 114 whistles are classified into six
distinct types artificially, as shown in Table 1 and Fig. 3.

As can be seen in Table 1, the Type-1 whistles constitute
about 70% of all whistles. This indicates that it is more
representative to construct the bionic and disguised sonar signal
waveforms by imitating the Type-1 whistles.

In addition, as seen from Fig. 3, the TF shape of Type-1
whistles is very similar to that of the HFM signal waveforms.
Therefore, in the next section, we propose a bionic sonar signal
model based on the HFM model.

and f};, respectively. Clearly, the curvature of the HFM signal

waveform only depends on its frequency range and duration.
However, when trying to fit the TF shape of the Type-1
whistle using the HFM signal waveform, we find that there
exists a clear mismatch between them, as shown in Fig. 4. This
mismatch is caused by the different curvatures between the
Type-1 whistle and the HFM signal waveform. However, once
the frequency range and the duration of an HFM signal
waveform are fixed, its curvature cannot be changed any more.
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Fig. 4. TF spectrograms of Type-1 whistle and HFM.



To have a close match to the true whistle, based on the HFM
signal model, a novel bionic sonar signal model is proposed as
follows

5.(f) = A(t)exp{]liz(%ln (1+bth)+,;zH 0<t<T (3)
where f,
instantaneous frequency is defined as

fi

o1
1, (t) =5[zln(l+bfg)+fct}: vy

which continuously and monotonically goes from the start
£ (0)=fL + 1. to the
f:(T)= fy + f. within a pulse duration in a hyperbolic way.

plays the part of the carrier frequency. The

+fe “4)

frequency end frequency

The proposed bionic sonar signal model is equivalent to the
HFM signal model when f, =0 and therefore more general.

Most importantly, due to the introduction of f,¢ in (3), the
curvature of the TF spectrogram of s, (t) now depends on its
frequency range, duration and the parameter f, . When the
frequency range and the duration of s, (t) are fixed, its

curvature can be adjusted by changing f, , which is very

important for us to imitate the TF shape of the true whistle as
closely as possible.

9000

. . ! T ~
e f=-5000HzZ F
—_~ gﬁ(
\Irjj, 8500 r _fé=0(HFM) “fﬁ»f;’ﬁﬁ,
> [=5000Hz | =
$ 8000 27
=
8‘ P
O >
T 7500 ) et
7000 il ' : -
0 0.1 0.2 0.3 0.4 0.5
time(s)

Fig. 5. TF spectrograms of s (t) .

For example, the instantaneous frequency curves of s, (7)

with three different f, parameters, the frequency range from
7000 to 9000 Hz and the duration T = 500ms , are shown in Fig.
5. It can be seen that with the change of f,, the curvature of the
TF spectrogram of s (¢) changes constantly. Therefore, one
can imitate and match the TF shape of the true whistle as closely
as possible by adjusting f on the condition that the frequency
range and the duration are fixed.

So far the signal envelope A(t) has not been considered yet.
It can be seen from Figs. 2 and 3 that different from the
conventional sonar signal waveforms (e.g. CW, LFM, HFM),
the whistle envelopes are not rectangular, and varied with
different irregularity for different whistles. In order to fit the

envelopes of the whale whistles, an envelope extraction method
based on STFT is presented next.

Firstly, the STFT of the denoised whistles is calculated. The
discrete-time signal x(n)

x(n)= a(n)cos[¢(n)} (5)
where a(n) and ¢(n) are the envelope and phase of x(n) .

The STFT of x(n) is defined as

of the denoised whistle can be
defined as

o0

X(r,0)= > x(nw(n—7)exp(-jon)

n=—0

(6)

where w(n) is a Hamming window with a N-sample length.
This definition can be understood and visualized by cutting
x(n) into small segments with the window function in the time
domain, and x(n) is expected to be relatively constant in
amplitude and frequency over N samples. These segments are
indexed with m, and x(7) is assumed to have M such segments.
X (w) is the discrete Fourier transform (DFT) for the m-th

segment, and the extracted envelope a,.(n) of x(n) is

obtained from X,, (@).
Secondly, the start time point of the m-th segment is
indexed by 7,,, the amplitude of x(n) at z,, is a(z, )=4,,,

and the peak value of X, (@) is 4,, =max |Xm (a))| . Since

4,, 1s modulated by the Hamming window and DFT, an

amplitude recovery factor K, is required to restore the

amplitude of the segment. The Hamming window is defined as
[35]
w[n]=A-(1-2)cos[2zn/N] n=0,1,.,N

with 4 =0.54 . The DFT of w[n] is

W (o) :w(w)+%[1) [a)—%]+D(a)+ %”ﬂ ®)

where

(7

D(w)=exp(jw/2)-sin(Nw/2)sin(w/2)
The amplitude spectrum of the Hamming window is
Wo(@)=|W (o)

. (N . (N . (N
sm| —ow sSin| —w +rx simn| —w—n
(2 j 1-4 (2 j (2 j (10)
A + '
. (o 2 . (o &
S| — sm| —+—
(ZJ [2 N)

Using the L'Hospital rule, the amplitude of the Hamming
window at @ =0 is given by
W,(0)=NA (11)
Since the amplitude spectrum obtained from DFT will be
scaled by the factor N , it is necessary to multiply the result
with 1/ N to eliminate the coefficient N in equation (11).

Then, the amplitude correction factor of the Hamming window
is

)

K, =1/4 (12)



The amplitude correction factor of the DFT is

K,=2/N (13)
Then one can obtain the amplitude recovery factor X, as
K. =Ky K,=2/AN 14)

Finally, let a, (7, )= K,4,, and the amplitude of a, (7)

is restored to the same level as the whale whistle envelope.
Using the piecewise cubic Hermit interpolation to add the

remaining points of a, (n) , the extracted envelope of x(n) is

obtained.
° 15
g 15
S 10
£ 10
< 5
5
e 20
ene, 10 0.3 04 03
Y, o 0102% o
) el
Fig. 6. TF diagram of the Type-1 whale whistle.
0| ' —— Whistle A
o ’ Extracted envelope
© 0.1, 1
=2
E_ 0
< 0.1
-0.2

0.1 0.2 0.3 0.4 0.5

time(s)
Fig. 7. Waveform of the Type-1 whale whistle and the corresponding extracted
envelope.
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Fig. 8. (a) The false killer whistle A, (b) the TF spectrogram of the false killer
whistle A, (c) the constructed bionic sonar signal waveform C, (d) the TF
spectrogram of the constructed bionic sonar signal waveform, (e) the false killer
whistle B, (f) the TF spectrogram of the false killer whistle B, (g) the
constructed bionic sonar signal waveform D, (h) the TF spectrogram of the
constructed bionic sonar signal waveform.

The type-1 false killer whistle (see Fig. 2(a)) was selected to
verify the effectiveness of the envelope extraction method
described above. As shown in Fig. 6, the ridge of the

three-dimensional (3-D) time-frequency diagram of a,(7,,)

basically coincides with the points of a, (rm ) , and the points of
a, (rm) are sparser. After interpolation, the extracted envelope
a, (n) and the waveform of the whale whistle are shown in Fig.

7, where it can be seen that a, (n) matches the envelope of the

whale whistle well.

Based on the bionic sonar signal model proposed above, the
construction of 80 bionic sonar signal waveforms
corresponding to 80 Type-1 whale whistles listed in Table 1 is
achieved. For visualization, we choose two representative false
killer whistles A and B (please see the two whistles in Fig. 2 (a))
to serve as the reference waveforms to be matched and imitated.
The true whistles and their TF spectrograms and the
constructed bionic sonar signal waveforms C and D and their
TF spectrograms are shown in Fig. 8. It can be seen that the
constructed bionic sonar signal waveforms can highly match
the true whale whistles in terms of not only envelopes but also
TF spectrograms.

IV. TIME RESOLUTION, DOPPLER TOLERANCE AND
CROSS-CORRELATION OF THE CONSTRUCTED BIONIC SONAR
SIGNAL WAVEFORMS

Time resolution (corresponding to range resolution) and
Doppler tolerance (related to Doppler resolution) are two key
indicators for radar and sonar signal waveform design [24].

For sonar applications, when B <0.1f, , the signal is
considered to be narrowband [36], where B is the bandwidth
and f, is the center frequency of the signal. Based on this
criterion, it can be verified that all of the 80 constructed bionic
sonar signal waveforms are wideband. Therefore, the wideband
ambiguity function (WAF) is used to examine the time
resolution and Doppler tolerance [37].

WAF, (a,7) = [s(t)s" (e (t—7) it (15)
where a=(c—-v)/(c+v)=1-2v/c is the Doppler scale
factor, 7 = 2R/ c is the propagation time delay, R is the target
range (or distance), ‘*’ is the complex conjugate operator, v is
the relative speed between the sonar system and the target, and



¢ is the sound speed in water.
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The range resolution (corresponding to the time resolution)
and speed tolerance (corresponding to the Doppler tolerance) of
the 80 constructed bionic sonar signal waveforms are computed
and the results are shown in Fig. 9.

It can be seen that all the constructed bionic sonar signal
waveforms have excellent range resolution and speed tolerance;
however, their WAF has certain coupling in the time-Doppler
plane. For visualization, the WAF of the constructed bionic
sonar signal waveform C corresponding to whistle A in Fig. 8(a)
is provided in Fig. 10.
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Fig. 10. WAF diagram of the sonar signal C.

It is well-known that a good time resolution means that a
sonar signal waveform can be used for high-accuracy range
measurement of targets, while a good Doppler resolution
allows high-accuracy speed measurement of targets. On the
contrary, a good Doppler tolerance means that the sonar signal
waveform is insensitive to the relative movement between the
sonar system and the target, and therefore a low speed
resolution. Based on the above analysis and results, one can
know that a single constructed bionic sonar signal waveform
can be used for achieving high range resolution and resolving
multiple closely located targets, but cannot be used for high
speed resolution. In order to solve this speed measurement
issue, a speed estimation method through a combination of two
constructed bionic sonar signal waveforms with low
cross-correlation between them is proposed next.

The 80 constructed bionic sonar signal waveforms can be used

to form Cgy =3160 combinations. Then, the cross-correlation

between two constructed bionic sonar signal waveforms in each
combination is calculated. With a threshold value of 0.4 for the
cross-correlation, 326 combinations are obtained, and therefore
can be used to measure the speed of targets using the following
method.

V.SPEED AND RANGE ESTIMATION

A. Effect of Doppler on sonar signal waveforms

Before presenting the range and speed estimation methods,
we first review the effect of Doppler on sonar signal
waveforms.

When a transmitted sonar signal arrives at a moving target
with a constant speed, it is reflected back by the target, and the
return echo signal will be Doppler-distorted, which means the
duration of the return echo signal will be compressed or
stretched, and its frequency range will be shifted [24, 38].
Suppose that the relative speed between the sonar system and
the target is v (where v >0 for moving away from the target
and v <0 for moving towards the target), and the initial range
of the target is R , the return echo signal from the target can be
expressed as

s, (1) =~as, (at)

16
=x/&A(at)exp{jZﬂ{%ln(l+abth)+afct}}0StST/a (16)

Ignoring noise and propagation loss, the instantaneous
frequency of s, (t) is written as

_9)1 __afy
fr(t)—at[bln(l+abth)+afCt} l+abth+afC (17)

We define two new parameters Af and At as
A =(a=1)f, ==,/ (c+V) (18)
At=(1-a)/(abfy) =20y T [ (c=v)(fy = 1) (19)

Combining (4) and (17)-(19), the following relationship can
be obtained

1 (6)=f,(t+Ar)+ Af (20)

Equation (20) indicates that the instantaneous frequency of
the return echo signal s, (¢) can be obtained through shifts in
time and frequency axis of the transmitted sonar signal s, (t) ,

as shown in Fig. 11.
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However, since the duration of signal is changed by the
compression or stretching caused by the Doppler effect, there is

a partial overlap between the TF spectrogram of s, (t) and that
of the shifted s,(7) in time and frequency. In Fig. 11, after
sy (1) is shifted by Af and Ar, a segment of the TF
spectrogram (from point a to point b) of s, (t) becomes

coincident with part (from point ¢ to point d) of s, (), and for



this case, there appears a maximum cross-correlation peak
between s, (¢) and s, (7).

In addition, f, (1+At¢) does not change the shape of the TF

spectrogram of f (t) , and only causes a shift of the spectrogram

along the time axis. In other words, the Doppler mismatch of
s, (t) is only caused by Af according to (20). Therefore, to

solve the mismatch issue between s, (7) and s, (¢), and then
obtain a maximum cross-correlation peak between s, (7) and
s, (t) , we only need to accurately compensate Af through the

shift of carrier frequency f,.

B. Speed and range estimation

In the proposed method, we use a single signal waveform to
measure the range of the target and a combination of two signal
waveforms with low cross-correlation between them to
estimate the speed of the target, as shown in Fig. 12.

waveform C wav;form D
1 |
YLy

echo echo

_ T%///
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Fig. 12. Doppler speed measurement principle when the sonar system and the
target move in opposite directions.

Based on the Doppler speed measurement principle, the
following relationship can be obtained:

T =-YT=al~1-2v/ 0T

2]

c+v

where 7, is the time difference between the transmitted

waveform C s, (t) and waveform D S, D1 (t), T is the time
difference between the return echo s, - (¢) of waveform C and

the return echo s, ,, () of waveform D.

Further, based on (21), the speed of the target can be
estimated through

vl -T)-c/2T

In order to obtain an accurate estimate V' of the speed v, a

(22)

good estimate Tr' for 7, needs to be obtained. In the following,
a three-step estimation process of 7 is presented.
First Step: Assume that at time ¢, the end of the return echo

of waveform C arrives at the sonar receiver; at time ¢, , the end

of the return echo of waveform D arrives at the sonar receiver;
the time difference between the end of waveform C and the end

of waveform D is 7 ; the time difference between the end of the
return echo of waveform C and the end of the return echo of

waveform D is 7. Then,

T.=t —t,

»

(23)

t

between waveform C and its return echo signal, and the

, can be estimated through the cross-correlation peak

estimation is denoted by 7_ (Af.), which is a function of Af, .

Likewise, #, can be estimated through the cross-correlation
peak between waveform D and its return echo signal, and the
estimation is denoted by 7, (Af)).

The accuracy of 7., (Af..) depends on the degree of mismatch

between waveform C and its return echo signal; when the
degree of mismatch is large, the accuracy of 7. (Af.) will be

low; on the contrary, the better the mismatch is compensated,

the more accuracy of t_a(Afc) will become. The same is true

for 7, (Af)).
Meanwhile, the following relationships can be obtained

]:'1 =?D1(AfD)+AtD _[YCl(Afc)-i_AtC]
:_L)l(MD)_?C'l(Mc)'f_(AtD _AtC)

where T, is a coarse estimation of T, without compensation of

and Az,

24

the Doppler effect; Af,. are the time shifts
corresponding to waveforms C and D, respectively; Af,. and

Af,, are the corresponding frequency shifts. And A¢. and At
are obtained by (25) and (26) based on (11), a=1-2v/c¢ and
b=(fy =) (FLfuT) -
A =(=a)/ ab.f, = f, T-(a=1)/(f,, = fy ) (25)
&, =(1=a)/abyf,, = fy, Tp(@ =D/ (f,, = fy, ) (26)
where b, =(f, ~f )/ fy T+ by=(f, ~fu )i fin Ty
fLC and f, 4, are the start frequency and the end frequency of

waveform C, respectively, f; I and f, 4, are those of waveform

D, T, is the duration of waveform C and 7 is the duration of

waveform D.
Af.. and Af}, are obtained by (27) and (28) based on (10).

A, =(a=-1)f, . (27)
Af, =(a-1f,,

and f , are the part of carrier frequencies

(28)
where  f, c

corresponding to waveforms C and D, respectively.
Since Af,. and Af, are functions about ¢ , and Af. and

At are also functions about ¢ , (24) can be rewritten as
Ty =t [ A ()] =10, [ A ()] +[ AL () - At ()]

where ¢, denotes the true Doppler scale factor caused by the

29)

relative speed V.
Since ¢, is unknown, the values of Af.(¢,) and At (o)

cannot be obtained yet. Considering that both waveforms C and



D have excellent Doppler tolerance, rough estimations 7., of

T, can be obtained by ignoring Az, («,) and At («,) .
T, =1,[4, (a)] =1, [ ()]

LACH)

cross-correlation between waveform C and its return, and

1[4, ()]

importantly, the estimated 7_ [Af.(,)] is coarse due to a large

(30)

can be estimated by computing the

can be estimated in the same way. Most

mismatch between waveform C and its return. The same is true
fOI' t_DI [Afn (al )] .

Substituting (30) into (21), a coarse estimate &, for &, can
be obtained.
(31
Second Step: Substituting &, into (25), (26), (27) and (28),

a,=T,/T,

we can obtain coarse estimations Af.(a,) , At (a,) ,
Afo(a,) and Af,(a,) for At (), At (a)), Af(a)
and Af,,(a,), respectively.

Given (20) and relevant results in Section V-A, after
waveform C s . (7) is shifted by Af .(a,), S - (f) becomes
Ss,CZ (t)

. 1

Sl (t)=A4.(0)expl ]27[(17 In(+b.f, O+ [ 1+ 4, (2,)0)] (32)

and the matching between 5 -, (t) and S,.c (z) will be better

than that between s, (t) and S,.c (¢) , because part of the

carrier frequency is compensated preliminarily. In other words,
the cross-correlation peak between s_.,(¢) and s, .(¢) will be

larger and more accurate than the cross-correlation peak
between s ., (¢) and s, .(¢) . Likewise, the cross-correlation

peak between s_,,(¢) and s,,(#) will be larger than that

betweens, 1, (#) and s, (7).

Further, assume that the estimated time corresponding to the
cross-correlation peak between the waveform s_ ., (¢) and the

return echo s, .(¢) of waveform C is 7_[Af.(,)], and the

estimated time corresponding to the cross-correlation peak
between the waveform §_,,(¢) and the return echo s, ;) (¢) of

waveform D is 7, [Af.(&,)] . According to (29), one can
obtain
Ty =1, [&f, ()] =1, [ A ()] +[ A, () - At ()]
Because 7. [Af.(,)] and 7, [Af.(e,)] are more accurate

than 7_[Af.(e,)] and 7, [Af.(e,)] . respectively, and the

(33)

coarse estimations Af.(«,) and Af (a,) of At.(a;) and

At () can be computed by the estimated «, (see (31)), one
can obtain a more accurate estimation 7, of 7 than 7T, based
on (33).
Then, similar to (31), a more accurate estimation value o,
than «, can be obtained
a;=T5/T, (34)
Third Step: Similar to the processing procedure above the
Second Step, a more accurate estimation 7, than 7T, can be
obtained
T, =118, ()] =1, [ & ()] +[AL (o) - At ()] (35)
And a more accurate estimation &, than a; is given by
a,=T,/T, (36)
Repeating the above process multiple times, one can obtain
Ty =1, [, (@) 1= T [ @y THIAL (1)) = At ()] BT)
ay=Ty/T, (38)
The larger N is, the closer 7, =7, and «, areto 7. and
«, , respectively, and N can be decided according to the

estimation error requirement. This is an iterative process and
the estimation accuracy improves as the number of iterations
increases.

Finally, based on (22), the speed of the target can be
estimated

Vi=(T -T,)c/2T, (39)
The estimation value R’ for range R can be obtained by
R~ {1, [&. (a(N—l) N—ty}e/2 (40)

where £, denotes the time instant that the end of waveform C is

sent out from the sonar system.

VI. POSSIBLE CAMOUFLAGE APPLICATION STRATEGY

In a real world, false killer whales can produce various clicks
and whistles from time to time [28-30]. If the sonar system only
transmits the same combination composed of two bionic sonar
signal waveforms from time to time, the lack of diversity will
generate an obvious repetitive feature distinctive from that of a
true false killer whale. This is because that the bionic sonar
signal waveforms are only constructed according the whistles
of false killer whales instead of clicks.

In order to solve the above issues and improve the
camouflage ability of target detection process, a possible
camouflage application strategy is designed as shown in Fig.
13.

Wo Wi W2 WaWa Ws We W7z Ws Wo
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Fig. 13. Possible camouflage application strategy.
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In Fig. 13, W;, W,, W, and W, are the bionic sonar signal
waveforms. W, and W, form a combination, Wy, and W,
form another one, and these combinations are used to estimate

the range and speed of targets based on the measurement
principle in Section V-B. W, W;, W,, W, W; and W, are
the true false killer whale clicks, and W5, W, and W, are the
true false killer whale whistles selected randomly from Type-2,
Type-3, Type-4, Type-5 or Type-6. These clicks and whistles
are used to disguise the constructed bionic sonar signal
waveforms, and called “camouflage cloak”. No click is present
between two constructed bionic sonar signal waveforms which
form a combination, such as between W, and W, . But one or

more clicks can be added between one bionic sonar signal
waveform and another true whistle (such as W, and Wy), or
between two true whistles (such as Wy and W,).

According to the above camouflage application strategy, one
can know that all constructed bionic sonar signal waveforms,
all true whistles and all clicks are different from each other.

That is to say, there is no obvious repetitive feature in the signal
pulse sequence in Fig. 13, which can improve the camouflage
ability of the sonar signal sequence. In addition, other types of
whistles (namely Tpye-2, Tpye-3, Tpye-4, Tpye-5 and Tpye-6)
and different true clicks are used in the sonar signal sequence in
Fig.13, which can increase the diversity of whistles and clicks,
and further improve the camouflage ability of the sonar signal
sequence. It can be see from Fig.14 that the sonar signal
sequence is very close to the true call train of false killer
whales.

Since there are no clicks between the two constructed bionic
sonar signal waveforms, while there are one or multiple clicks
between the bionic sonar signal waveform and another true
whistle, or between two true whistles, the two constructed
bionic sonar signal waveforms can be identified and decoded
when there are no clicks between two long-duration call pulses
(namely bionic whistle or true whistle). For visualization, a
segment of a constructed bionic sonar signal sequence is shown
in Fig. 14.
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Fig. 14. (a) The TF spectrogram of the true call train, (b) the TF

On the one hand, the constructed bionic sonar signal
waveforms are very close to the true false killer whale whistles
in terms of time domain waveform, frequency distribution and
TF distribution; on the other hand, complying with the
characteristic of the inter-pulse interval of the false killer whale
true call train, the constructed bionic sonar signal waveforms
and the “camouflage cloak” are formed into a new sonar signal
sequence, which ensures that the inter-pulse interval of the
constructed sonar signal sequence is consistent with the false
killer whale true call train.

The conventional methods achieve the covert operation for
active sonar detection by reducing the SNR of the transmitted
sonar signals. This is because that it is very difficult for the
enemy’s interception systems to detect the low SNR signals.
However, the proposed method achieves the covert operation
through camouflage strategy. That is to say, based on the fact
that the present interception systems almost always classify
biological signals as ocean noise and try to filter them out
[25-27], the proposed method uses the constructed bionic sonar
signal waveforms (they are very like the true whale call) to serve
as the sonar signals, and thus achieves the covert operation
through camouflage strategy. Further, by employing the
proposed bionic sonar signal waveforms, although high SNR

spectrogram of the constructed bionic sonar signal sequence.

sonar signals have to be used for long range detection, the
covertness of the system will not be affected significantly. On the
other hand, when facing a short range target detection task, the
system can achieve further improved covertness by reducing the
SNR of the transmitted bionic sonar signals similar to the
principle of conventional methods which use low SNR signals
for covert operation.

It is noteworthy that although no click is placed between two
constructed bionic sonar signal waveforms, this does not affect
the camouflage performance of the constructed bionic sonar
signal waveform; this is because that in the true false killer whale
call trains, there exit similar whistle waveforms between which
there is no click; meanwhile, there are also many whistle
waveforms between which there is one or multiple clicks.

VII. REMARKS

What is noteworthy is that the proposed camouflage
technology should be used in some sea area where the false killer
whales exist or people do not sure if the false killer whales exist.
In fact, the fake killer whales live widely in the world's major
oceans except the Arctic Ocean, and thus the scope and sea area
of application of the proposed camouflage strategy is extensive.



In addition, the proposed disguised bionic sonar signal
waveform design method may not be perfect, but it is an
interesting attempt and can enlighten other researchers to
further research and improve this kind of disguised bionic sonar
signal waveform design method, and explore the relevant
technology by using other whale species.

VIII.SIMULATIONS AND EXPERIMENTS

A. Speed and range estimation

In this section, we examine the performance of the proposed
method through computer simulations.

Please note that the existing conventional methods are to
design covert sonar signal waveforms by changing the
parameters or suppressing the SNR of sonar signal waveforms,
however, in this paper, the proposed method is an entirely
different and new method, and is to design covert sonar signal
waveforms by using the true whale calls (disguised bionic sonar
signal waveform). In other words, under the same conditions, it
is very difficult or even impossible to compare the covert
performance of designed sonar signal waveforms between the
existing conventional methods based on parameter-changing
or low SNR signals and the proposed method based on the
disguised bionic sonar signal waveform. Therefore, in the
following simulations and experiments, we only evaluate the
performance of the proposed method from multiple aspects
instead of comparison with other existing conventional
methods.

The underwater acoustic channel (WATTCH) model in [39]
is used to simulate the practical oceanic environment. The
modeling starts with calculating the fast Fourier transform
(FFT) of the sonar waveform, which yields the
frequency-dependent amplitude and phase representation of the
waveform. A set of eigen-rays is then generated through
BELLHOP [40-41], and they represent all of the significant
contributing acoustic paths between the source and the receiver
[42]. Seawater density, seafloor density and wind speed are set
to be 1.024 g/em?, 1.469 g/cm® and 5m/s, respectively. The
target moves at a relative speed of v=5m/s away from the
sonar system source. Other key parameters are shown in Fig. 15,
with the sound speed profile for the simulated shallow-water
model given in Fig. 16.
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Fig. 16. Sound speed profile

Fig. 15. Simulation setup
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Fig. 17. (a) A combination waveform composed of two constructed bionic
sonar signal waveforms C and D, (b) the TF spectrogram of the constructed
combination, (c) the two received return echoes, (d) their TF spectrogram, (e)
the estimated time difference between the two received return echoes after three
iterations.

In the first simulation, the constructed bionic sonar signal
waveforms C and D (Fig. 17(a)) are used to form a combination
to measure the range and speed of the target. Their TF
spectrograms are shown in Fig. 17(b). The combination is
transmitted at an SNR of 10dB. Assume that the reflection
coefficient of the target is one. After the waveforms pass
through the underwater acoustic channel, they are reflected by
the target, through the underwater acoustic channel again, and
then their return echoes arrive at the sonar receiving system. Fig.
17(c) shows the received return echoes, which have a different
time domain envelope from the transmitted waveforms C and D
owing to the impact of the underwater acoustic channel. Fig.
17(d) shows the TF spectrogram of the received return echoes.
Using the range and speed estimation methods presented in
Section V, the time length of sonar waveforms arriving at the
target and then coming back to the sonar receiving system and
the time difference between the received two return echoes are
obtained, respectively, and then the estimated range and speed
of the target are obtained.
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Next, fixing the SNR of the transmitted sonar signal
waveforms at 10dB, the effect of the number of iterations
(please see (37)-(40)) on the estimation accuracy for range and
speed is examined. The root-mean-square error (RMSE) results
[43] of the estimated range and speed with 100 independent
Monte Carlo runs [43-44] are shown in Fig. 18. It can be seen
that with the increase of the number of iterations, the estimation
accuracy improves continuously. However, the first three
iterations have the most impact on the result, while the
improvement becomes less beyond that. This indicates that in
practice, for a low-complexity implementation, three iterations
could be employed with a satisfactory performance.
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Fig. 19. (a) Waveforms of the two received return echoes, (b) their TF
spectrogram, (c) the estimated time difference between the two received return
echoes after three iterations.

In the second simulation, the low SNR case is evaluated and
the SNR of the transmitted sonar signal waveforms is set to
-10dB. All other parameters are the same as in the first
simulation. The combination of two constructed bionic sonar
signal waveforms C and D is transmitted. Fig. 19 shows the
waveforms of the two received return echoes, their TF
spectrogram and the estimated time difference between the two
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received return echoes after three iterations. It can be seen that
even at a low SNR value, a high estimation performance can
still be achieved by the proposed method.
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Fig. 20. Estimation performance of the range and speed at different SNRs and
different speeds of the target.

In the third simulation, the estimation performance is
evaluated as the SNR varies from -20dB to 30dB on the
condition that the speed of the target is 5m/s and 10m/s,
respectively. Other simulation parameters are the same as in the
first simulation. The RMSE results with 100 independent
Monte Carlo runs are shown in Fig. 20, where it can be seen
that as the SNR increases, the RMSE of the estimated range and
speed decreases continuously. The estimation performance
under the target’s speed of 5m/s is superior to that of 10m/s,
which is because that the return echoes under a speed of 10m/s
have larger deformation caused by the Doppler effect, and thus
results in that the cross-correlation results have larger errors.

B. Camouflage ability evaluation

In the fourth experiment, the camouflage ability of the
constructed waveforms is examined. Support Vector Machine
(SVM), which is widely used in small sample recognition
problems and underwater acoustic signal recognition [45], was
used as classifier to classify the constructed bionic sonar signal
waveforms and the first type of true whistles in Table 1. We
utilized the five order polynomials to fit the ridge of the TFs of
both the constructed sonar signal waveforms and the first type
of true whistles, and then five coefficients and residual error of
the five order polynomials were used as feature parameters to
train the classifier. K-fold cross-validation is a traditional and
effective method to evaluate the performance of a classifier
over a dataset [46-47]. In this paper, 4-fold cross-validation was
used for classification evaluation, 80 false killer whale whistles
were randomly partitioned into four equal sized datasets Wi,
Ws2, Ws3 and Wss, and each of the four datasets contains 20
whale whistles. Likewise, 80 constructed bionic sonar signal
waveforms were also randomly divided into four equal sized
datasets Ssi, Ss2, Ss3 and Ss4. In each cross-validation process, a
subsample, which included three sets of the whale whistles and
three sets of the sonar signal waveforms, was used as training
data for the SVM classifier, and then the remaining whale
whistles and sonar signal waveforms were classified and
recognized by the SVM classifier. The cross-validation process
is then repeated three times, and each group of the whale
whistles (namely Wsi, Ws2, Ws3 and Ws4) and sonar signal
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waveforms (namely Ssi, Ss2, Ss3 and Ss4) were used once as the
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classified data.

Table 2.Confusion matrices’ results of the four-fold cross-validation of SVM classifiers

Classifier

serial number Training data Classified data Sonar signals (%)  Whale whistles (%)
L WaWeWaSaSass  Wase g% .
2 WM WaSiSaSe  Wese g3 32
S WS Sas Wase g 22
C WeWeWaSaswSi  Was gm0

Table 2 shows the experimental conditions and confusion
matrices’ results of the four-fold cross-validation of SVM
classifiers. For the first SVM classifier, 50% of Ss4 were
classified as the bionic sonar signal waveforms and 45% of Wss

were classified as the whale whistles. Therefore, the
classification rate of the first SVM classifier is
(50%%20+45%%*20)/(20+20)=47.5%. Similarly, the

classification rates of the remaining three SVM classifiers are
55.0%, 45.0% and 52.5%, respectively. Based on above results,
one can see that the bionic sonar signal waveforms have an about
50% probability of being classified as the true whale whistles,
and the true whistles of false killer whales also have an about
50% probability of being classified as the bionic sonar signal
waveforms, which indicates that the SVM classifier cannot
distinguish the bionic sonar signal waveforms from the true
whistles of false killer whales, that is to say, the constructed
bionic sonar signal waveforms are very close to the true whistle
of false killer whales.

IX. CONCLUSION

Different from conventional parameter-changing or low
SNR sonar signal waveforms for covert operations, a new type
of bionic sonar signal waveform design with its possible
camouflage application strategy has been proposed by highly
imitating the false killer whale whistles to construct the bionic
and disguised sonar signal waveforms. According to the time
resolution and Doppler tolerance of the proposed bionic sonar
signal waveforms, a computationally efficient target range and
speed estimation algorithm was developed and evaluated. The
covertness of the constructed sonar signal waveforms and their
camouflage application strategy were designed and improved
from multiple aspects (time domain waveform, frequency
distribution, TF distribution, inter-pulse interval and diversity
of the signal waveforms). Most important of all, the proposed
approach can solve the trade-off problem between long-range
detection and covertness. It can keep a satisfactory level of
covertness by means of camouflage even if the SNR of the
transmitted signals is very high. On the other hand, it can
improve the covertness further by reducing the SNR for a short
range target detection task. The proposed bionic sonar signal
waveform design technology can be used widely in the
underwater sensor platforms.

In this paper, only 80 Type-1 whistles are imitated. In the
future research work, other types of whistles will be imitated
through in-depth studies.
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