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Quaternion-based H∞ attitude tracking control of rigid bodies with

time-varying delay in attitude measurements

J. Cavalcanti, L.F.C. Figueredo, J.Y. Ishihara

Abstract— The problem of attitude and angular velocity
tracking in the presence of exogenous disturbances and where
feedback measurements are subjected to unknown time-varying
delays is addressed. Sufficient conditions which guarantee sta-
bility and disturbance attenuation performance in the H∞ sense
are provided. Results are presented in the form of LMIs, which
allow the conditions to be simply and efficiently computed. Us-
ing a simple quaternion-based linear state feedback controller
and a feedforward term to compensate the nonlinearities of the
system dynamics, simulation results illustrate that the control
law is able to effectively track desired trajectories and reject
disturbances even in the presence of large time-varying delays.

INTRODUCTION

Rigid body attitude control is a critical issue to a breadth

of engineering applications such as satellite attitude synchro-

nization, aircraft systems and rigid robotic manipulators [2],

[4], [10], [19]. The subject has been actively studied for

decades, and extensive literature is available [9], [10], [15],

[17], [18]. Nevertheless, only recently results concerning

time-delays in the attitude feedback have been derived.

Time-delays often occur in several applications wherein

attitude control is key. Indeed, multiple sources might be

responsible for introducing time-delays into the system,

such as communication and processing delays which cause

feedback delays, as well as actuation delays due to the

actuator dynamics. For instance, in the context of satellites,

gas jet propulsion systems where electrical and mechanical

delays occur in the valve circuits or by deactivation of mag-

netometers in the presence of magnetotorques. The influence

of time-delays ranges from performance deterioration—such

as oscillatory motion [15]—to actual system instability [1].

However, despite the detrimental effects caused by time-

delays, in the context of attitude control, results are still

scarce. Indeed, inherent non-linearities pose serious chal-

lenges which make existing time-delay analysis techniques

[5], [8], [12]–[14], [20] not directly applicable to the attitude

problem.

In [1], a velocity-free controller is proposed to the attitude

regulation problem considering the effect of a known con-

stant time-delay in the feedback loop. The authors of [3] also

address attitude regulation, but the proposed controller uses

both attitude and angular velocity measurements, and time-

delay is unknown but constant and upper-bounded. Recently,

a solution to the same problem from [3]—attitude regulation

with unknown constant upper-bounded delays—was derived

in [11] using a conventional proportional-derivative con-

troller where delays affect both attitude and angular velocity

measurements. Notwithstanding, exogenous disturbances and

performance specifications were not taken into account. Such

issues were addressed by the authors of [16] in the context of

attitude regulation subjected to unknown time-varying delays

wherein the presented Linear Matrix Inequality (LMI) con-

ditions guarantee robust stability and disturbance rejection in

the H∞ sense. However, rigid body dynamics are neglected,

that is, the conditions are only valid for kinematic control.

It should be noted that none of the previous works address

the more general problem of attitude tracking. Indeed, to the

best of author’s knowledge, the work from [2] is the only

to address the tracking problem in the presence of delay.

The authors therein assume constant and known delays solely

on the attitude feedback loop, and an unknown but constant

inertia matrix. The inertia matrix uncertainty is dealt with

by estimating the inertia matrix’s independent elements in

the regressor form. Discrepancies between the actual system

and the error state are dealt as a disturbance artificially

induced by the controller. However, the design is specific

to this artificial disturbance and cannot be easily extended

for limiting the impact of general exogenous disturbances in

tracking performance.

In this sense, it is still an open problem an analysis suitable

for real-world applications of attitude tracking where a rigid

body must have a satisfactory performance in following a

desired trajectory in spite of presence of time-varying delays

and exogenous disturbances.

In this work, the problem of robust tracking attitude and

angular velocity where attitude feedback measurements are

liable to time-varying unknown delays is considered. To

describe the attitude kinematics, the unit quaternion represen-

tation is adopted, which is nonminimal and singularity-free.

The main result stems from a careful choice of Lyapunov-

Krasovskii functional and exploiting particular characteristics

from the unit quaternion manifold. The proposed criterion

consists of sufficient conditions which, in addition to sta-

bility, provide an upper bound for exogenous disturbance

attenuation. Results are presented in the form of LMIs,

which can be readily tested using efficient computational

tools. Simulations illustrate the effectiveness of the proposed

controller under severe conditions of delay and aggressive

profiles of desired trajectories, even when initial conditions

provoke large initial errors.

PROBLEM STATEMENT

The attitude kinematics of a rigid body can be represented

using unit quaternions. The quaternion algebra H is a four

dimensional associative algebra over R. An element q∈H can

be written as q=
[

η ǫT
]T

, where η∈R and ǫ=
[

ǫ1 ǫ2 ǫ3
]T

∈



R3 denote the scalar and vector parts of q, respectively. A

quaternion is said to be pure if its scalar part is zero, i.e., η=
0. In particular, unit quaternions belong to the 3-dimensional

unit sphere embedded in R4

S3=
{

q∈R4|η2 + ‖ǫ‖
2
=1

}

(1)

and form, under quaternion multiplication, a Lie

group—Spin(3). The identity element of the group is
[

1 0
]

and the norm equals usual Euclidean norm, ‖q‖=
√

qT q.
The quaternion-based attitude kinematics expressed in the

body frame to a coordinate in the inertial frame can be
described as

q̇ (t)=

[

η̇ (t)
ǫ̇ (t)

]

=
1

2

[

−ǫ (t)T

η (t) I+ ǫ (t)∗

]

[ω (t) + r (t)] (2)

where q, ω and r denote a unit quaternion, a pure quater-

nion–which represents the angular velocity in the body

frame–and a disturbance acting upon the system, respec-

tively. The term ǫ∗ represents a skew-symmetric matrix that

satisfies ǫ∗ω=ǫ×ω. Note that, for all ǫ∈R3, ‖ǫ∗‖≤‖ǫ‖ holds,

where ‖.‖ is the induced matrix norm of .

Since ‖q (t)‖=1, for all t≥0, (1) implies that

|η (t)|≤1, ‖ǫ (t)‖≤1, ∀t≥0. (3)

Let J>0 denote the inertia matrix of the rigid body and
u a vector-sum of external torques—the actual control input.
The rigid body satisfies Euler’s rotational dynamics

Jω̇ (t)=−ω (t)× Jω (t) + u (t) . (4)

Throughout this paper, it is assumed that J is constant

and known and that angular velocity measurements are in-

stantaneously available. Nevertheless, attitude measurements

are assumed to be available after an unknown, time-varying

delay d:R+→R+ which admits the existence of constants τ

and ν such that

0≤τ≤d (t)≤ν, ∀t≥0.

In this context, this paper addresses the problem of attitude

and angular velocity tracking, where the objective is to

design u such that q and ω asymptotically track a desired

bounded reference trajectory, given by some qd and ωd. This

suggests the definition of an error quaternion which accounts

for the discrepancy between the desired attitude qd and the

actual one, q

qe=q−1
d q. (5)

From (5) it follows that

q̇e (t)=

[

η̇e (t)
ǫ̇e (t)

]

=
1

2

[

−ǫe (t)
T

ηe (t) I+ ǫe (t)
∗

]

[ωe (t) + r (t)] , (6)

where ωe (t)=ω (t) − ω̄d (t), ω̄d=q−1
e ωdqe. Then, ωe (t)

satisfies1

Jω̇e=−ω × Jω + J
(

ωe × ω̄d − ˙̄ωd

)

+ u. (7)

Thus, if with an appropriate choice of u the system (6)-(7)

is asymptotically stable, the tracking error converges to zero

and, consequently, the original system follows the desired

trajectory. Nevertheless, the presence of a disturbance r (t)
acting upon qe (t) motivates obtaining conditions which, in

addition to stability of system (6)-(8), guarantee some degree

1Throughout the paper, whenever time-dependency is clear, (t) is dropped
in order to simplify notation.

of perturbation attenuation. For this purpose, disturbance

attenuation is considered in the H∞ sense.

Definition 1: Given a scalar γ>0, H∞ disturbance rejec-

tion performance is achieved with H∞ norm bound γ if the

following conditions hold

1) The closed-loop system (6)-(8) is asymptotically stable

when r (t)≡0;

2) The disturbance r (t) is attenuated below a desired

level in the sense of H∞ with index γ: under

null initial conditions, if r (t)∈L2 [0,+∞), ‖ǫe (t)‖≤
γ ‖r (t)‖ holds.

Since J , ω̄d, ˙̄ωd are precisely known and ω, ωe can be
measured, the nonlinear dynamics of (7) can be cancelled
out by introducing a feedforward term to the control law.
In addition, attitude and angular velocity proportional terms
take care of actual stabilization, yielding the following con-
trol law

u=ω × Jω − J
(

ωe × ω̄d − ˙̄ωd

)

− κ1ǫe (t− d(t))− κ2ωe, (8)

where κ1, κ2∈R are the constant proportional and derivative

gains, respectively.
The upcoming analysis will make use of the indicator

function χ:[τ, ν]→{0, 1}, given by

χ (s):=

{

1, s∈[τ, µ]

0, s∈(µ, ν]
, µ=

ν + τ

2
. (9)

Lemmas

The following lemmas will support the derivation of the

paper’s main article.

Lemma 1: Let q∈S3 be such that (6) holds. Then,

‖ǫ̇e (t)‖
2
≤
1

4
‖ωe (t) + r (t)‖

2
, ∀t≥0. (10)

Proof: According to (6), from (3) it follows that

‖ǫ̇e (t)‖
2=ǫ̇e (t)

T
ǫ̇e (t)

=
1

4
[(ηe (t) I+ ǫe (t)

∗) (ωe (t) + r (t))]
T

× [(ηe (t) I+ ǫe (t)
∗) (ωe (t) + r (t))]

=
1

4

{

ηe (t)
2 (ωe (t) + r (t))T (ωe (t) + r (t))

+ [ǫe (t)
∗ (ωe (t) + r (t))]

T
[ǫe (t)

∗ (ωe (t) + r (t))]
}

=
1

4

[

ηe (t)
2‖ωe (t)+r (t)‖2+ ‖ǫe (t)

∗ (ωe (t)+r (t))‖
2
]

≤
1

4

(

ηe (t)
2 + ‖ǫe (t)

∗‖
2
)

‖ωe (t) + r (t)‖2

≤
1

4

(

ηe (t)
2 + ‖ǫe (t)‖

2) ‖ωe (t) + r (t)‖2

≤
1

4
‖ωe (t) + r (t)‖ ,2

where it was used that (ǫe × (ωe + r)) · (ωe + r)=0 and
∥

∥ǫe (t)
∗
∥

∥≤‖ǫe (t)‖.
Lemma 2: Let P∈Sn×n be a positive definite matrix.

Then, for all vectors x, y∈Rn and all ρ∈R, with ρ>0,

2xT
Py≤ρx

T
Px+

1

ρ
y
T
Py

holds.
Proof: Let ρ̃ be any given constant scalar. Since P>0,

one obtains

0≤

(

ρ̃x−
1

ρ̃
y

)T

P

(

ρ̃x−
1

ρ̃
y

)

=ρ̃
2
x
T
Px− 2xT

Py +
1

ρ̃2
y
T
Py,



and the result follows considering ρ=ρ̃2.

H∞ ATTITUDE TRACKING CONTROL

This section presents conditions which guarantee stability

of system (6)-(8) and disturbance rejection performance in

the H∞ sense according to Definition 1. Such conditions

are cast as LMIs obtained from the following Lyapunov-

Krasovskii function candidate

V (t)=

4
∑

i=1

Vi (t) , (11)

where

V1=2a
[

ǫ
T
e ǫe + (1− ηe)

2
]

+ bω
T
e Jωe + 2cǫTe Jωe, (12)

V2=

∫ t

t− τ

2

[

ǫe(s)
ǫe

(

s− τ
2

)

]T

M

[

ǫe(s)
ǫe

(

s− τ
2

)

]

ds

+

∫ t−τ

t−µ

[

ǫe(s)
ǫe (s− µ+ τ)

]T

N

[

ǫe(s)
ǫe (s− µ+ τ)

]

ds, (13)

V3=

∫ 0

−τ

∫ t

t+β

τ ǫ̇e(s)
T
rǫ̇e(s)dsdβ, (14)

V4=

∫

−τ

−µ

∫ t

t+β

(µ− τ) ǫ̇e(s)
T
sǫ̇e(s)dsdβ

+

∫

−µ

−ν

∫ t

t+β

(ν − µ) ǫ̇e(s)
T
tǫ̇e(s)dsdβ. (15)

The functional (11) contains some well-known terms
which extract useful delay information allowing a less
conservative analysis to be conducted [5], [6], [14]. First,
however, the positiveness of (11) must be assessed. Since
terms (13)-(15) consist of quadratic expressions, positiveness
of the corresponding matrices and scalar variables suffice
to guarantee positiveness. In the case of (12), positiveness
conditions reveal themselves as follows. Suppose a>0 and
b>0. According to Lemma 2,

V1=2a
[

ǫ
T
e ǫe + (1− ηe)

2
]

+ bω
T
e Jωe + 2cǫTe Jωe

≥2aǫTe ǫe + bω
T
e Jωe + 2cǫTe Jωe

≥
2a

λmax (J)
ǫ
T
e Jǫe + bω

T
e Jωe − cǫ

T
e Jǫe − cω

T
e Jωe

=

(

2a

λmax (J)
− c

)

ǫ
T
e Jǫe + (b− c)ωT

e Jωe.

Since the positiveness of the quadratic coefficients is
enough to conclude positiveness, the following conditions
guarantee (11) be positive

a>0, b>0, b>c, r>0, s>0, t>0,

2a>λmax (J) c,M=

[

M11 M12

∗ M22

]

>0, N=

[

N11 N12

∗ N22

]

>0.

(16)

Theorem 1: For given scalars τ, ν such that 0≤τ≤ν, and

κ1, κ2, the system (6)-(8) is stable with disturbance rejection

upper bound γ>0 if there exist scalars a, b, c, r, s, t and

matrices M,N satisfying (16) as well as free-weighting

matrices Fl such that the following LMIs hold

Ω̄ + Ωl|D̄l
+ FlGl + G

T
l F

T
l <0; (17)

for all D̄l∈{0, 1} and l∈{1, 2}, where

Ω̄=

























Ω1,1 Ω1,2 Ω1,3 0 0 Ω1,6 Ω1,7 0 Ω1,9

∗ Ω2,2 Ω2,3 0 0 0 0 0 0
∗ ∗ Ω3,3 Ω3,4 0 0 0 0 0
∗ ∗ ∗ Ω4,4 Ω4,5 0 0 0 0
∗ ∗ ∗ ∗ Ω5,5 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 Ω6,7 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω7,7 0 Ω7,9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω9,9

























with

Ω1,1=M11 − rI+ I, Ω3,4=N12,

Ω1,2=M12, Ω4,4=N22 −N11,

Ω1,3=rI, Ω4,5=−N12,

Ω1,6=− cκ1I, Ω5,5=−N22,

Ω1,7=(a− cκ2) I, Ω6,7=− bκ1I,

Ω1,9=aI, Ω7,7=cJJ
T+(m+c−2bκ2) I,

Ω2,2=M22 −M11, Ω7,9=(m+ c) I,

Ω2,3=−M12, Ω9,9=(m+ c) I− γ
2
I,

Ω3,3=N11 −M22 − rI,

m=
1

4

[

τ
2
r+ (µ− τ)2 s+ (η − µ)2 t

]

,

Ω1|D̄1
=− t (J4 − J5)

T (J4 − J5)− sJ
T
8 J8,

Ω2|D̄2
=− s (J3 − J4)

T (J3 − J4)− tJ
T
8 J8,

and Gl=
[

Ḡl GlD̄l
0
]

Ḡ1=

[

0 0−I 0 0 I 0
0 0 0 I 0−I 0

]

, G1D̄1
=

[

D̄1I
(

1− D̄1

)

I

]

,

Ḡ1=

[

0−I 0 0 0 I 0
0 0 I 0 0−I 0

]

, G2D̄2
=

[

D̄2I
(

1− D̄2

)

I

]

, (18)

where Jk∈R
3×27, k∈{1, · · · , 9}, are block entry matrices

with nine elements whose k-th element is the identity and

all the others are null, e.g., J9=
[

0 0 0 0 0 0 0 0 I
]

.

Proof: Supposing (11) is valid, it is left to show that the
derivative of (11) along the trajectories of qe (t) is negative

definite. Then, V̇ =
∑4

i=1 V̇i with

V̇1=−4aη̇e +
d

dt

(

bω
T
e Jωe

)

+
d

dt

(

2cǫTe Jωe

)

, (19)

V̇2=

[

ǫe(t)
ǫe

(

t− τ
2

)

]T [

M11 M12

∗ M22

] [

ǫe(t)
ǫe

(

t− τ
2

)

]

−

[

ǫe
(

t− τ
2

)

ǫe (t− τ)

]T [

M11 M12

∗ M22

] [

ǫe
(

t− τ
2

)

ǫe (t− τ)

]

+

[

ǫe(t− τ)
ǫe (t− µ)

]T [

N11 N12

∗ N22

] [

ǫe(t− τ)
ǫe (t− µ)

]

−

[

ǫe(t− µ)
ǫe (t− ν)

]T [

N11 N12

∗ N22

] [

ǫe(t− µ)
ǫe (t− ν)

]

, (20)

V̇3(t)=τ
2
ǫ̇e(t)

T
rǫ̇e(t)− τ

∫ t

t−τ

ǫ̇e (r)
T
rIǫ̇e (r) dr, (21)

V̇4 (t)=V̇4(0) (t) + V̇4(I) (t) ,

V̇4(0) (t)=(µ− τ)2 ǫ̇e (t)
T
sǫ̇e (t) + (ν − µ)2 ǫ̇e (t)

T
tǫ̇e (t) ,

(22)

V̇4(I)(t)=− (µ− τ)

∫ t−τ

t−µ

ǫ̇e (r)
T
sIǫ̇e (r) dr

− (ν − µ)

∫ t−µ

t−η

ǫ̇e (r)
T
tIǫ̇e (r) dr, (23)



where it was used the fact that ǫTe ǫe+(1− ηe)
2
=2− 2ηe to

obtain V̇1.
Using (6)-(7) and Lemma 2, and considering control law

(8) one obtains
d

dt

(

bω
T
e Jωe

)

=−2bκ1ǫe (t− d(t))T ωe − 2bκ2ω
T
e ωe

d

dt

(

2cǫTe Jωe

)

=2cωT
e Jǫ̇e + 2cǫTe [−κ1ǫe (t− d(t))− κ2ωe]

≤c

[

ω
T
e

(

JJ
T
)

ωe + ǫ̇
T
e ǫ̇e

]

− 2cκ1ǫ
T
e ǫe (t− d(t))

− 2cκ2ǫ
T
e ωe

≤−2cκ1ǫ
T
e ǫe (t− d(t))− 2cκ2ǫ

T
e ωe

+ cω
T
e

(

JJ
T + I

)

ωe + 2cωT
e r + cr

T
r

and it follows that

V̇1≤−2cκ1ǫ
T
e ǫe (t− d(t)) + ǫ

T
e (2aI− 2cκ2I)ωe + 2aǫTe r

− 2bκ1ǫe (t− d(t))T ωe + ω
T
e

[

c

(

JJ
T
)

+ (c− 2bκ2) I
]

ωe

+ 2cωT
e r + cr

T
r. (24)

The analysis of terms (21)-(22) rely on the use of Lemma
1 and Jensen’s Lemma [7]

V̇3≤τ
2
ǫ̇e(t)

T
rǫ̇e(t)−

[
∫ t

t−τ

ǫ̇e (r) dr

]T

rI

[
∫ t

t−τ

ǫ̇e (r) dr

]

≤
τ2r

4

(

ω
T
e ωe + 2ωT

e r + r
T
r
)

+

[

ǫe(t)
ǫe (t− τ)

]T [

−rI rI

rI −rI

] [

ǫe(t)
ǫe (t− τ)

]

, (25)

V̇4(0)≤

[

(µ− τ)2 s+ (η − µ)2 t

4

]

(

ω
T
e ωe + 2ωT

e r + r
T
r
)

.

(26)

Nevertheless, the analysis of (23) is more fruitful when

split considering different delay intervals. Take two equally-

spaced subintervals [τ, µ] and (µ, ν]. At this point, indicator

function comes into play, allowing one to rewrite (23)

explicitly in terms of those two subinterval scenarios. Indeed,

defining

S1 :={d (t)∈R+ :χ=1} , S2 :={d (t)∈R+ :χ=0} ,

results in

V̇4=V̇4(0) + V̇4(S1) + V̇4(S2),

with V̇4(S1)=χV̇4(I) and V̇4(S2)=(1− χ) V̇4(I). Consider the

first scenario. Since d (t)∈[τ, µ], then χ=1 implies V̇4(S2)≡

0, and V̇4(S1) can be conveniently rewritten to use convex
analysis

V̇4(S1)=−χ






(µ− τ)

t−d(t)
∫

t−µ

ǫ̇e (r)
T
sǫ̇e (r) dr + (µ− τ)

×

t−τ
∫

t−d(t)

ǫ̇e (r)
T
sǫ̇e (r) dr + (ν−µ)

t−µ
∫

t−ν

ǫ̇e (r)
T
tǫ̇e (r) dr






. (27)

Let ξ11 (t):=
µ−τ

d(t)−τ

∫ t−τ

t−d(t)
ǫ̇e (r) dr and ξ12 (t):=

µ−τ
µ−d(t)

∫ t−d(t)

t−µ
ǫ̇e (r) dr. Joining (26) with (27) yields an

expression which can be bounded by Jensen’s inequality [7]

V̇4≤

[

(µ− τ)2 s+ (η − µ)2 t

4

]

(

ω
T
e ωe + 2ωT

e r + r
T
r
)

− χ
{

ξ
T
11 (D1sI) ξ11 + ξ

T
12 (1−D1) sIξ12

+ [ǫe (t−µ)−ǫe (t−ν)]T tI [ǫe (t−µ)−ǫe (t−ν)]
}

, (28)

where the introduction of D1 (t):=
d(t)−τ

µ−τ
∈[0, 1] exposes the

convexity of V̇4 in relation to d (t)∈S1. Thus, V̇4 attains its

maximum at the edges of D1—0 or 1.

Merging inequalities (20), (24), (25) and (28) yields

LMI conditions Ω̃ such that V̇S1≤ζ̃T1 Ω̃ζ̃1, where ζ̃T1 =
[

ǫTe ǫe
(

t− τ
2

)T
ǫe(t−τ)

T
ǫe(t−µ)

T
ǫe(t−ν)

T
ǫe(t−d (t))

T

ωT
e ξT11 ξ

T
12 r

T
]

. Since at each extrema of D1 either ξ11 or

ξ12 will be weighted by a zero matrix, the corresponding

null row and column can be eliminated and a new vector

ζ1 not containing the state multiplied by zero—ξ11 or

ξ12. Now, let Gl=
[

Ḡl GlD̄l
0
]

, with Ḡ1 and G1D̄1
defined

according to (18), such that ζT1 G1=0.

At this point, Finsler’s Lemma [14] can be invoked by

considering a free-weighting matrix F1, such that ζT1 Ωζ1<
0 if, and only if, Ω̂=Ω + F1G1 + G T

1 FT
1 <0. Thus, this

equivalence maintains the convexity of Ω̂ with relation to

D1—Ω̂ attains its maximum at either D̄1=0 or 1. Therefore,

if (17) holds, V̇S1<0 and the system (6)-(7) is stable for the

first delay scenario.

The second delay scenario is amenable to considerations

similar to those made in order to prove stability for the first

scenario. Thus, if conditions (17) from Theorem 1 are ful-

filled, V̇S2 is negative definite and, consequently, regardless

the scenario of delay considered—S1 or S2—V̇ is negative

definite. Therefore, the system (6)-(7) is asymptotically sta-

ble, fulfilling condition 1 of Definition 1.

In addition, if (17) is satisfied for the conditions presented

in Theorem 17, then

V̇ + ǫTe ǫe − γ2rT r<0 (29)

must hold. From the definite-positiveness of V and the

definite-negativeness of V̇ , it follows from (29) that
∫ +∞

0

ǫTe ǫe<γ2

∫ +∞

0

rT r,

if null initial conditions are assumed. Thus, condition 2 of

Definition 1 is fulfilled since

‖ǫe (t)‖
2
2<γ2 ‖r (t)‖

2
2 , ∀t≥0.

SIMULATION RESULTS

This section assesses the effectiveness of the proposed

quaternion-based H∞ controller under different time-delays,

disturbances, and system characteristics.

First, we demonstrate the attitude and angular velocity

stabilization–that is, stabilizing the system to a desired con-

stant attitude, qd=1–subjected to time-varying delays and

disturbances. To this aim, a simulated scenario is proposed

considering the cube satellite introduced by [11] with inertia

matrix given by

J=10−2





4.65−0.07 0.04
0.07 4.86 −0.21
0.04−0.21 4.82



 , (30)

attitude feedback time delays varying within [0, 100] ms,

and exogenous disturbance behavior described by r(t)=r1(t)



TABLE I: Exogenous disturbance profiles r1(t) and r2(t).

r1(t)
0≤t[s]≤10
︸ ︷︷ ︸

10≤t[s]≤20
︸ ︷︷ ︸

20≤t[s]≤30
︸ ︷︷ ︸

30≤t[s]
︸ ︷︷ ︸

0.3 sin(1.15t) 0.012 0.3 sin(1.15t) N (0, 0.035)

r2(t)
0≤t[s]≤12
︸ ︷︷ ︸

12≤t[s]≤24
︸ ︷︷ ︸

24≤t[s]≤32
︸ ︷︷ ︸

32≤t[s]
︸ ︷︷ ︸

0.05 sin(3t)
+N (0, 0.025)

N (0, 0.045) 0.05 sin(3t) 0.015
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Error norm

time (s)

Fig. 1: Norm of the attitude stabilization error ǫe(t)
compared to the exogeneous disturbance r1(t)

from Table I. The control gains from Theorem 1 are set to

k1=5 and k2=1. The simulated attitude error is shown and

compared against the exogenous disturbance in Figure 1. It

is clear that the proposed controller succeeded in reducing

the disturbance influence upon the system attitude, whereas

maintaining its stability. Indeed, the disturbance to attitude

error attenuation numerically attained from the simulation,

γsim=0.20, is smaller than the upper bound for the H∞

norm provided by Theorem 1, γthm=1.01.

Furthermore, to illustrate the effectiveness of the proposed

criterion in the more challenging problem of tracking a

desired attitude and angular velocity, we set a different simu-

lation scenario with a desired angular acceleration described

by

ẇd=



















0.3 sin(1.25t) , if t0 ≤t≤ 15 s;

0.01, if 15 s ≤t≤ 20 s;

0.15 sin(10t) , if 20 s ≤t≤ 30 s;

0.06 sin(4t) , if 30 s ≤t;

The initial values for the desired attitude and desired an-

gular velocity are respectively given by qd(t0)=[0.298 −
0.536 0.318 0.723] and wd(t0)=[0 0.1 0.05], whereas

the initial configuration for the system is given by q(t0)=
[1 0 0 0] and w(t0)=[0 0 0]. The system inertia matrix is

assumed to be the same from the previous scenario (30), but

the time-delay configuration is now given by d(t)∈[0, 150]
ms and the disturbance behavior described by r(t)=r2(t)
from Table I. We also consider different control gains, k1=10
and k2=1.

The simulated attitude tracking error (qe=q−1
d q) is shown

and compared against the exogenous disturbance in Figure

2. Despite the large exogenous disturbance over the closed-

loop system, it is easy to see that the proposed controller

successfully tracks the desired attitude, as shown in Figure

3. The numerical calculation for the disturbance attenuation

0 10 20 30 40 50 60
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0.2

0.4

0.6

0.8
Exogenous disturbance norm

Error norm

time (s)

Fig. 2: Norm of the attitude tracking error ǫe(t) compared

to the exogeneous disturbance r2(t) (red dashed line)
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Fig. 3: Quaternion elements q=[η ǫ1 ǫ2 ǫ3] (black solid

line) compared to the time-varying desired quaternion (red

dashed line) over time subjected to disturbance r2(t)

from the simulation yields γsim=0.37, which is smaller than

the upper bound provided by Theorem 1, γthm=1.25. Lastly,

Figure 3 shows the angular velocity tracking, that is, the

system angular velocity over time compared to the desired

velocity. From Figures 2,3 and Table I, it is easy to see

that the angular velocity error is directly influenced by the

exogenous disturbance, that is, the velocity error is larger for

t<24 s and it is reduced afterwards—which coincides with

the start of the last profiles for r2(t).

CONCLUSION

This work addressed the problem of rigid body attitude

and angular velocity tracking subjected to exogenous dis-

turbances and unknown time-varying delays in the attitude

0 10 20 30 40 50 60

−.4

0

0.4

0.8 Angular velocity

Desired angular velocity

time (s)

Fig. 4: Plot shows the angular velocity tracking subjected

to disturbance r2(t). Angular body velocity (black solid

line) compared to the time-varying desired angular velocity

(red dashed line) over time



feedback loop. The result, based on the exploitation of the

unit quaternion manifold characteristics, enlarges the appli-

cability of attitude control theory to more realistic scenarios

and conditions. Sufficient conditions guaranteeing attitude

tracking and H∞ disturbance rejection were presented in

the form of LMIs, which enable the conditions to be readily

tested. The proposed controller was simulated to illustrate its

effectiveness on tracking desired attitude and angular velocity

trajectories regardless of large exogenous disturbances, and

initial orientation and angular velocities.
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