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Dual quaternion-based bimodal global control for robust rigid body
pose kinematic stabilization

Paulo P. M. Magro, Hugo T. M. Kussaba, Luis F. C. Figueredo andJoão Y. Ishihara

Abstract— A hybrid bimodal controller for rigid body pose
stabilization within the group of unit norm dual-quaternio ns is
proposed in this paper. Using two binary logic state variables,
this hysteresis-based controller represents a middle termsolu-
tion between the memoryless discontinuous controller and the
fixed-width hysteretic one. The proposed strategy is novel within
the dual-quaternions framework and addresses three common
difficulties that appears in the literature of pose and attitude
stabilization: global stability, robustness against chattering
and against unwinding. The efficacy and performance of the
proposed controller are illustrated with numerical examples.

I. INTRODUCTION

In the study of aerospace and robotic systems, the Lie
groups of rigid body motions SE(3) and its subgroup SO(3)
of proper rotations arise naturally. Stemming from the sem-
inal work of [1] about control theory on general Lie groups,
much of the literature has been devoted to the control
of systems defined on SO(3) and SE(3). Although it is
usual to design controllers for these systems using matrices
to represent elements of these Lie groups [2], [3], it has
been noted by some authors that controllers designed using
another type of representation, namely, the unit quaternions
for SO(3) and the unit dual quaternions for SE(3), may
have advantages regarding computational time and storage
requirements [4], [5].

It is important to note that since in this cases the state
space of a dynamical system is not the Euclidean space
R

n but a general manifold, some difficulties to design a
stabilizing controller to the system can arise. For instance,
the topology of the manifold may be an obstacle to the
existence of a global asymptotically stable equilibrium point
in any continuous vector field defined on the manifold [6]. In
particular, it is impossible to design a continuous feedback
that globally stabilizes the attitude of a rigid body [6].

To avoid this topological obstruction in SO(3), one should
resort to non-continuous feedback: this is what was done,
for instance, in [7], [8]. As noted in [9], however, non-
hybrid strategies are prone to chattering and are not robust
to arbitrarily small measurement noise since it is impossible
to use pure discontinuous state feedback to achieve robust
global asymptotic stabilization of a disconnected set of points
[10].

To tackle the problem of robust global attitude control, a
quaternion-based hybrid controller with hysteretic memory
was suggested in [9]. However, the cost for using the

This work is partially supported by the Brazilian agencies CAPES, CNPq and
FINATEC. The authors are with the Department of Electrical Engineering, University
of Brası́lia, UnB, 70910-900, Brası́lia, DF, Brazil, ppmmagro@uol.com.br, htkuss-
aba@ieee.org, figueredo@ieee.org, ishihara@ene.unb.br .

hysteretic controller is longer rotation trajectories forsome
initial attitudes leading to a higher average settling timeor
energy consumption. For satellites and other systems with
limited energy, this problem is yet more critical [11].

The aforementioned problems also occur in the dual
quaternion framework, as the Lie group of unit dual quater-
nions is a double cover for the Lie group of rigid body
motions SE(3) [12], [13]. Moreover, in [13] it was verified
that the lack of robustness in the context of dual quaternions
is even more important, as the discontinuity of the controller
not only affects the rotation of the rigid body, but may
also degrade the trajectory of its translation. The problemof
energy consumption also aggravates in this context, as the
coupled translation and rotation movements consume more
energy. Thus, to address the robust global stability problem
of rigid bodies we propose a hybrid control law, called
bimodal, that extends the hysteretic controller suggestedby
[13] and represents a compromise in terms of cost between
the memoryless discontinuous controller and the hysteretic
one.

II. PRELIMINARY

A. Quaternion

The quaternion algebra is a four dimensional associative
division algebra overR invented by Hamilton [14], which
naturally extends the algebra of complex numbers. The
elements 1,̂i, ĵ, k̂ are the basis of this algebra, satisfying

î2 = ĵ2 = k̂2 = îĵk̂ = −1

and the set of quaternions is defined as

H ,

{

q = η + µ1 î+ µ2ĵ + µ3k̂ : η, µ1, µ2, µ3 ∈ R

}

.

For ease of notation, it may be denoted as

q = η + µ, with µ = µ1î+ µ2ĵ + µ3k̂

In addition, it may be decomposed into a real component
and an imaginary component:ℜ(q) , η andℑ(q) , µ such
thatq = ℜ(q)+ℑ(q). The quaternion conjugate is given by
q∗ , ℜ(q)−ℑ(q).

The multiplication of two quaternionsq1 = η1 + µ1 and
q2 = η2 + µ2 is given by

q1q2 = (η1η2 − µ1 · µ2) + (η1µ2 + η2µ1 + µ1 × µ2).

Pure imaginary quaternions are given by the set

H0 , {q ∈ H : ℜ(q) = 0}
which are very convenient to represent vectors ofR

3.



The quaternion norm is defined as‖q‖ ,
√
qq∗. Unit

quaternions are defined as the quaternions that lie in the
subset

S3 , {q ∈ H : ‖q‖ = 1} , 1 = 1 + 0î+ 0ĵ + 0k̂.

The setS3 forms, under multiplication, the Lie group
Spin(3), whose identity element is1 and group inverse is
given by the quaternion conjugateq∗. As the unit quaternions
q and −q represent the same rotation, the unit quaternion
group double covers the rotation group SO(3).

B. Dual Quaternions

Similarly to how the quaternion algebra was introduced
to address rotations in the three-dimensional space, the dual
quaternion algebra was introduced by Clifford [15] and Study
[16] to describe rigid body movements. This algebra is
constituted by the set

H , {q + εq′ : q, q′ ∈ H} ,

whereq andq′ are called the primary part and the dual part
of the dual quaternion andε is called the dual unit which is
nilpotent—that is,ε 6= 0 and ε2 = 0. Given q = η + µ +

ε(η′ +µ′), we defineℜ(q) , η+ εη′ andℑ(q) , µ+ εµ′,
such thatq = ℜ(q)+ εℑ(q). The dual quaternion conjugate
is q∗ , ℜ(q)− εℑ(q).

The multiplication of two dual quaternionsq
1
= q1+εq′

1

andq
2
= q2 + εq′

2 is given by

q
1
q
2
= q1q2 + ε(q1q

′

2 + q′

1q2).

The subset of dual quaternions

S = {q + εq′ ∈ H : ‖q‖ = 1, qq′∗ + q′q∗ = 0} (1)

forms a Lie group [17] called unit dual quaternions group,
whose identity is1 = 1 + ε0, 0 = 0 + 0î + 0ĵ + 0k̂ and
group inverse is the dual quaternion conjugate.

An arbitrary rigid displacement characterized by a rotation
q ∈ Spin(3), followed by a translationp ∈ H0, with p =
px î+ py ĵ + pzk̂, is represented by the unit dual quaternion
[12], [18]

q = q + ε
1

2
qp.

As the displacementq is equally described by−q, the unit
dual quaternions group double covers SE(3).

C. Rigid Motion Description

Using Hamilton convention [19], letq represent the rigid-
body attitudeR ∈ SO(3), defined as the relative rotation
of a body-fixed frame to a reference frame. The quaternion
kinematic equation is

q̇ =
1

2
qω, (2)

whereω ∈ H0 is the angular velocity expressed in the body
frame [18].

Similarly, the unit dual quaternionq describe the coupled
attitude and position. The kinematic equation of a rigid body
motion is given by [18]

q̇ =
1

2
qω, (3)

whereω is called twist and is given by

ω = ω + ε [ṗ+ ω × p] (4)

andp is the translation expressed in the body frame.
Let q , q + εq′ andω , ω + εω′. It is straightforward

to notice that (3) embodies both equation (2) andṗ = ω′ −
ω × p.

III. HYBRID POSE CONTROL

The problem of robust and global pose stabilization of
rigid-bodies is not simple. Firstly, there is no continuous
feedback controller capable of globally asymptotically sta-
bilizing an equilibrium point on the manifold of the unit
dual quaternion groupS [13].

Secondly,S double covers SE(3), that is,q and −q

corresponds to the same pose in SE(3), and this leads, when
a continuous dual quaternion based controller is used, to a
phenomenon similar to “unwinding” in SO(3) [6]: the body
may start at rest arbitrarily close to the desired final pose
and yet travel to the farther stable point before coming to
rest.

Lastly, even using a (memoryless) discontinuous state
feedback, it is impossible to achieve robust global asymptotic
stabilization of a disconnected set of points resulted fromthe
double covering of the SE(3)[9], [10].

There are few works on unwinding avoidance in the
context of pose stabilization using unit dual quaternions [12],
[20], [21], [22]. All of them are based on a discontinuous
feedback approach and are prone to chattering for initial
conditions arbitrarily close to the discontinuity.

Inspired on the hysteresis-based hybrid control of [9] ap-
plied only to attitude control stabilization, [13] extended it to
render both coupled kinematics—attitude and translation—
stable.

According to [9], there is a price to pay for robust
global asymptotic stabilization of attitude using the hysteretic
controller—a region in the state space where the hybrid
control law pulls the rigid body in the direction of a longer
rotation. The pose controller suggested by [13] inherits the
same behavior. We propose a hybrid control law, called
bimodal, devised to reduce this price. Actually, the bimodal
control halves the hysteresis width in certain situations and
is a middle term solution between the hysteretic hybrid
control and the discontinuous control (equivalent to the
hysteretic control with zero-width hysteresis). This control
may be especially useful in applications which use low-cost
sensors and requires larger hysteresis width due to attitude
measurement noise magnitude. For such applications, the
standard deviation in attitude error may reach 10◦ [23].



A. Hybrid Hysteretic Controller

The hysteretic controller strategy for plant (3), suggested
by [13], uses only one state variableh ∈ Xc , {−1, 1} that
determines the rotation direction so the system is regulated
either to−1 or 1 (see Fig. 1).

The state of the system is represented byx1 = (q, h) ∈
X1 , S ×Xc. The controller is given by the feedback law

ω , −k1hµ− εk2ηµ
′, (5)

wherek1, k2 > 0 are the control gains and the dynamics1 of
h is defined by

ḣ = 0 x1 ∈ C1 , {x1 ∈ X1 : hη ≥ −δ} ,
h+ ∈ sgn(η) x1 ∈ D1 , {x1 ∈ X1 : hη ≤ −δ} , (6)

whereh+ is the value associated toh just after the state
transition and

sgn(η) =











{1} , η > 0,

{−1} , η < 0,

{−1, 1} , η = 0.

The parameterδ ∈ (0, 1) represents the hysteresis half-
width and provides robustness against chattering caused by
noise in the output measurement. Note that, as commented
in Section II-C, the primary part of (3) equals (2). As a
consequence, the rotation evolves as the control suggested
by [9]. Whenhη gets negative, the feedback determines that
the body rotates in the longer rotation direction until a safe
distance is achieved to prevent chattering, i.e., untilhη ≤ −δ.

The closed-loop hybrid system, denoted asH1, is formed
of equations (3), (5) and (6).

10-1 δ0 1−δ−1

η

h = −1

h = 1

‖µ‖

Fig. 1. State space representation of the hysteretic controller (with one state
variableh). Arrows indicate the direction of the rotation so the attitude is
regulated to1 or −1.

B. Hybrid Bimodal Controller

The proposed bimodal controller strategy uses two state
variables (h,m) ∈ Xc × Xc as shown in Fig. 2. The
stateh determines the rotation direction as in the hysteretic
controller. The statem is introduced in order to adapt the
hysteresis widthδa ∈ {δ/2, δ} of the on-off control for state
h in such a way that the width gets shorter whenever the
attitude is relatively far from the chattering prone region
(η = 0).

1Along the text, the dynamics representations follows the hybrid systems
framework of [24].

Let the state of the system be represented byx2 =
(q, h,m) ∈ X2 , S × Xc × Xc. The bimodal controller
is given by the feedback law (5) and the dynamics ofh and
m are defined by

ḣ = 0
ṁ = 0

}

x2 ∈ C2,

h+ ∈ sgn(η − hδ/2)
m+ ∈ h sgn(η − hδ/2)

}

x2 ∈ D2,
(7)

C2 , {x2 ∈ X2 : (hη ≥ −δ) and

(m = −1 or hη ≥ −δ/2) and (m = 1 or hη ≤ 3δ/2)} ,
D2 , {x2 ∈ X2 : (hη ≤ −δ) or

(m = 1 andhη ≤ −δ/2) or (m = −1 andhη ≥ 3δ/2)} ,
wherem+ andh+ are values associated tom andh, respec-
tively, just after state transition. Note thatC2 = X2 \D2.

The closed-loop hybrid system, denoted asH2, is formed
of equations (3), (5) and (7).

δ 10

= 1 m = −1

m = 1

−3δ/2−1 3δ/2

δ/2 10−1

−δ

−δ/2

h = −1

h = 1

‖µ‖

h = 1

h = −1

‖µ‖

η

η

Fig. 2. State space representation of the bimodal controller (with two state
variables,h and m). Arrows indicate the direction of the rotation so the
attitude is regulated to1 or −1.

IV. STABILITY ANALYSIS

In this section, we prove that the proposed hybrid bimodal
control globally asymptotically stabilizes the pose of a rigid
body even in the presence of measurement noise.

Theorem 4.1: Let δ ∈ (0, 1) andk1, k2 > 0. The compact
set A2 defined below (8), is globally asymptotically stable
for the closed-loop hybrid systemH2.

A2 =
{

x2 ∈ X2 : q = h1,m = 1
}

. (8)

Proof: For easy presentation, let us first considerδ ∈
(0, 2/3]. Let q , η + µ+ ε(η′ + µ′) andV : X2 → R,

V (x2) = 2(1− hη) + ‖p‖2/4. (9)

As m = 1 wheneverq = ±1 and asp = 0 if and only
if η′ = 0 and µ′ = 0, we have thatV (x2) > 0 for x2 ∈



X2 \ A2 andV (x2) = 0 for x2 ∈ A2. Hence functionV is
positive definite onX2 with respect toA2.

The time derivativeV̇ of V is given by

V̇ (x2) = −2hη̇ + p · ṗ/2 (10)

= −h2k1‖µ‖2 − k2ηp · µ′/2 (11)

= −k1‖µ‖2 − k2η(q
∗q′) · µ′ (12)

= −k1‖µ‖2 − k2η
2(η′2 + ‖µ′‖2) (13)

So,V̇2 is negative definite onX2 with respect toA2. Besides,
observing that the time derivative of‖p‖2 is lower than or
equal to zero, we can conclude that the distance of the body
along time always decreases, except whenη = 0.

Along jumps, whenx2 ∈ D2, sinceq+ = q,

∆V (x2) = V (x+

2 )− V (x2) = −2η(h+ − h).

Let D2 = D2a ∪D2b ∪D2c, where

D2a , {x2 ∈ X2 : hη ≤ −δ} , (14)

D2b , {x2 ∈ X2 : m = 1 andhη ≤ −δ/2} , (15)

D2c , {x2 ∈ X2 : m = −1 andhη ≥ 3δ/2} . (16)

Thus,

∆V (x2) =

{

≤ −4δa, x2 ∈ D2a ∪D2b,

0, x2 ∈ D2c,

whereδa = δ for x2 ∈ D2a\D2b andδa = δ/2 for x2 ∈ D2b.
From Theorem 7.6 of [25], it follows that the compact

setA2 is stable since∆V (x2) ≤ 0 and V̇ (x2) < 0 for all
x2 ∈ X2.

To conclude that the setA2 is globally asymptotically
stable, it is necessary to apply Theorem 4.7 of [25] to
prove that the setA2 is the largest invariant set inW =
W1 ∪ W2, whereW1 , {x2 ∈ C2 : V̇ (x2) = 0} and
W2 , ∆V −1(0) ∩G2(∆V −1(0)), G2(x2) , x+

2 . It follows
that W1 = A2, ∆V −1(0) = D2c and G2(∆V −1(0)) =
{x2 ∈ X2 : m = 1 and hη ≥ 3δ/2}. Thus,W2 = ∅,
W = A2 and any solutionx2(t) approaches the largest
invariant setA2.

This controller restricts parameterδ to (0, 2/3]. For the
caseδ ∈ (2/3, 1), the system still behaves as proposed until
the first jump. Afterward, it will behave as the hysteretic
controller, sincem will remain fixed thereafter.

Following we will show that the analysis of either the
presence of Zeno solutions (infinite number of jumps in a
finite amount of time) or chattering are only related to the
rotation.

The rotation evolution follows the primary part of (3). As
pointed out in Section II-C, it follows the same kinematic
equation for quaternions (2). Substituting (5) into (2),

q̇ =
1

2
(η + µ)(−k1hµ)

=
1

2
(k1h‖µ‖2 − k1hηµ).

Note thatq̇ depends only onq and the dynamics ofh. On
the other hand, the dynamics ofh andm depend only on

the body rotation(η). Hence, we conclude not only that
the rotation is independent of the translation but also that
jumps on state variablesh andm depend only on the rotation
evolution.

The proof that no Zeno solutions occur even when “outer
perturbations”—that includes both measurement and model-
ing errors [26], [9] are taken into account—is similar to the
proofs of Theorem 5.3 and Theorem 5.4 of [9] and will not
be proved here.

A. Chattering Analysis

Due to noise present in measurements, chattering is pos-
sible to occur when jumps map the state back into the jump
set, i.e., whenG2(D2) ∩ D2 6= ∅, G2(x2) = x+

2 . As the
number of discrete states is higher than one,h andm, the
immediate consecutive jumps must also be analyzed to make
sure the following states are mapped to the jump set again.
Considering that the outputq is corrupted by noise of max-
imum magnitudeα, the verification should be concentrated
on intersectionsGα

2 (D
α
2 ) ∩Dα

2 , Gα
2 (Gα

2 (D
α
2 ) ∩Dα

2 ) ∩Dα
2 ,

and so on until a loop or an empty set is achieved, whereGα
2

andDα
2 are the setsG2 andD2, respectively, expanded to

accommodate noise of maximum magnitudeα as exemplified
in [26, Example 5.3].

Theorem 4.2: Let α > 0, δ > 2α, δ ∈ (0, 1). Then, either
Gα

2 (D
α
2 ) ∩ Dα

2 = ∅, or Gα
2 (G

α
2 (D

α
2 ) ∩ Dα

2 ) ∩ Dα
2 = ∅ for

systemH2.
This proof is not presented here due to space restrictions.
The theorem affirms that after two jumps, at most, the state is
mapped outside the jump set and no loop (chattering) occurs.

V. NUMERICAL SIMULATIONS

This section presents simulation2 results to compare per-
formance among the discontinuous controller, the hysteretic
controller, and the proposed bimodal controller. To this aim,
two different scenarios considering an initial pose definedin
a region near180◦ away from the desired attitude have been
depicted whereby the different behavior is expected.

To maintain fairness, all simulated controllers have been
implemented with the same control gainsk1 = 1 andk2 = 1.
The initial state of the hysteretic controller has been set to
h(0) = 1 and the ones of the bimodal controller were set to
h(0) = 1, m(0) = 1. The hysteresis parameter defined both
for the hysteretic and bimodal controllers was set toδ = 0.4.
Please note that by setting the hysteresis parameter toδ = 0
yields a discontinuous control law.

Moreover, to illustrate the robustness of the proposed con-
troller and the performance of all three controllers, additional
measured noise have been included to the value ofq (qm)
and was calculated as follows:qm = (q + bê) / ‖q + bê‖,
ê = e/ ‖e‖, where each component ofe ∈ R

4 was chosen
from a Gaussian distribution of zero mean and unitary
standard deviation andb ∈ R was chosen from a uniform
distribution on the interval[0, 0.2].

2All simulations have been performed in MATLAB ambient, using
ordinary differential equation solver with variable integration step (ode45)
restricted to a maximum step of 1 ms.
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Fig. 3. Rotation comparison between the discontinuous and bimodal
controllers.

In the first scenario, the performance of the proposed
bimodal controller is investigated against perturbationson
the measurement signal and compared to the discontinuous
controller. The initial pose in this case was set toq(0) = 0+
(1î+2ĵ+3k̂)/

√
14 andp(0) = −0.24î+1.76ĵ+6.2k̂. Figs.

3 and 4 illustrate the results from both controllers. Clearly,
the chattering phenomenon occurs solely when using the
discontinuous control law whereby the resulting controller
takes more than0.5 s to set the final equilibrium point (in
this case to−1)—in other words, it takes a considerable
amount of time to travel away from its discontinuity atη = 0.
The translationp was also affected. During the period of
chattering, the system got stuck around the initial condi-
tions resulting in a convergence lag. The proposed bimodal
controller, on the other hand, presents a robust response as
expected for both rotation and translation convergence.

The last scenario compares the state evolution between
the hysteretic and the bimodal controller. To investigate the
liability of the controllers to being pulled to the direction of
longer rotation, the initial conditions wereq(0) = −0.2 +√
1− 0.22(1î+2ĵ+3k̂)/

√
14 andp(0) = −0.24î+1.76ĵ+

6.2k̂. The consequence of such initial conditions is that it
belongs to the hysteresis region from the hysteric controller
and therefore the result from such controller travels to the
further antipodal equilibrium. As shown in Figs. 5 and 6, the
hysteretic and bimodal controllers made the rigid body takea
different direction of rotation from the beginning. Regarding
the energy spent, if we take the area below the graph of the
angular velocity norm,‖ω‖, it is possible to affirm that the
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Fig. 4. Evolution of the translation components ofp = pxî+ px ĵ + pxk̂

for the discontinuous and bimodal controllers.

bimodal controller spent less energy.

VI. CONCLUSIONS

This work presented a novel control strategy for robust
global rigid body kinematic stabilization using a dual quater-
nion framework. To address the topological obstruction to
global stability inherent to any rigid body representation—
which renders the unwinding phenomenon in the case of unit
quaternions and unit dual quaternions—this paper exploited
an hybrid control technique based on hysteresis, which en-
sures solution without chattering, in addition to introducing
a novel state memory variable that reduces the liability of
having the solution trajectory travel to the farther antipodal
equilibrium.
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