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Abstract Purpose The primary goal of this article is

to achieve an automatic and objective method to com-

pute the Pfirrmann’s degeneration grade of interverte-

bral discs (IVD) from MRI. This grading system is used

in the diagnosis and management of patients with low

back pain (LBP). In addition, biomechanical models,

which are employed to assess the treatment on patients

with LBP, require this grading value to compute proper

material properties.

Materials and Method T2-weighted MR images of

48 patients were employed in this work. The 240 lum-

bar IVDs were divided into a training set (140) and a

testing set (100). Three experts manually classified the

whole set of IVDs using the Pfirrmann’s grading system
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and the ground truth was selected as the most voted

value among them. The developed method employs ac-

tive contour models to delineate the boundaries of the

IVD. Subsequently, the classification is achieved using a

trained Neural Network (NN) with eight designed fea-

tures that contain shape and intensity information of

the IVDs.

Results The classification method was evaluated using

the testing set, resulting in a mean specificity (95.5%)
and sensitivity (87.3%) comparable to those of every

expert with respect to the ground truth.

ConclusionsOur results show that the automatic method

and humans perform equally well in terms of the classi-

fication accuracy. However, human annotations have in-

herent inter- and intra-observer variabilities, which lead

to inconsistent assessments. In contrast, the proposed

automatic method is objective, being only dependent

on the input MRI.

Keywords Classification, IVD, Degeneration, MR,

2D, Automatic, Active Contour Model, Neural Network

1 Introduction

Intervertebral disc (IVD) degeneration or Degenerative

Disc Disease (DDD) is associated with genetic and en-

vironmental factors [1]. In addition, It is believed that

many IVD disorders have a mechanical origin, which
produce , in many cases, changes in the IVD morphol-
ogy and histology [2]. Thus, the quantification of the

degeneration has been used to estimate the material

properties of the IVDs in order to perform biomechani-

cal and mechanobiological simulation of the spinal con-

ditions and treatments [3].

Since the biological process of IVD degeneration and

its clinical consequences are still unclear in many de-

http://dx.doi.org/10.1007/s00586-016-4654-6
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tails, there have been some studies to correlate DDD

with other disorders, such as low back pain [4,5] or os-

teoarthritis of the facet joint [6].

These studies are often performed with the recruit-

ment of hundreds or even thousands of subjects. In the

everyday clinical practice, the follow-up of disc degen-
eration, in a given patient, may be important in un-
derstanding the progress of the patient’s symptoms. In
addition, the manual classification of disc degeneration

suffers from a relatively high intra- and inter-observer

variability. Therefore, a reliable method for the auto-

mated classification of IVD degeneration would be a

very helpful and time saving tool.

In the literature, different grading system has been

proposed [7,8,9,10]. In this article, the Pfirrmann grad-

ing system [8] was selected because it is widely used in

clinical practice, and most of the methods performing

automatic classification of IVD degeneration use this

grading system. This criterion divides the degeneration

into five degrees as depicted in Fig. 1.

Grade I Grade II Grade III 

Grade IV Grade V 

Fig. 1 Example of the five degrees of degeneration.

In the literature, most of the methods dealing with

the automatic classification of IVDs according to their

degree of degeneration, only consider healthy and un-

healthy discs [11,12,13,14,15,16]. This separation cor-

responds to the difference between degrees I, II and III,

IV, V in the Pfirrmann classification.

In contrast, Lootus et al.[17], proposed a method

to perform a three level classification of the IVD by
using a ±1 precision. Thus, neighbour grades are con-

sidered to be the same, reducing the clinical applica-

bility. Their approach extracts the IVD region using a

vertebral body segmentation approach. Subsequently,

a group of features is extracted from the IVD region

and the degeneration grade is estimated using a regres-

sion model. A recent work, developed by Ruiz-España

et al.[18], produces a full classification of the IVDs using

the intensity across the height of the IVD. Although,

these intensities are well-suited as features, they are not

decisive on their own.

In addition, previous methods do not provide a de-

tailed evaluation of the performance, hindering the com-

parisons with their approaches. In contrast, we present

a comprehensive evaluation, specifying the results by

different IVD positions and degeneration degrees.

The proposed method employs our previous work on
IVD segmentation and classification [19]. The algorithm

employed a novel extension of Active Contour Models
to perform an automatic segmentation of IVDs allowing
the extraction of intensity and shape-based features.
However, this preliminary set of features did not encode

the Pfirrmann’s rationale about the degeneration.

The contributions of the current article are:

– The addition of a new set of features to better ex-

plain the intensity changes in the nucleus following

Pfirrmann’s rationale, providing more accurate re-

sults.
– The selection of a optimal classifier by performing

a comparison of different techniques and evaluating
their performance.

– A in-depth evaluation of the performance of the

method.

Initial image 

Original image with 

segmentation 

contour 

Contour and 

regions 
Degree 3 

Image with 

automatic degree 

Features 
extraction 

Segmentation Fuzzy  
C-means 

Automatic 
Classification 

Neural Network 
Classifier 

Fig. 2 Workflow of the proposed method.

2 Materials and Method

2.1 Data

The database comprises of 48 T2-weighted MR images
with 0.68× 0.68 mm2 in-plane resolution and an inter-

slice space of 4.5mm. The entire cohort was collected

at the National Center for Spinal Disorders (Budapest,
Hungary) using an open MR machine of 0.4 T MRI sys-
tem (Hitachi, Twinsburg, OH). Patients were 25 males

and 23 females with a mean age of 44 (age interval: 27-

62 years). The images were selected from the database
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of the European MySpine project, which had received

approval of the institutional review board. In addition,

a written informed consent from each subject was re-

trieved.

The IVDs were grouped according to their degree of

degeneration, given by the Pfirrmann’s classification [8]

(grades I to V), and corresponding lumbar level (Table

1). This classification was performed by three indepen-

dent experts and the most voted values were selected
as the gold standard (Table 1). In the case, that none
of the experts coincide, the median value was selected.

Degeneration Grade I II III IV V

Discs in L1-L2 postions 0 14 30 3 1

Discs in L2-L3 postions 0 21 21 6 0

Discs in L3-L4 postions 5 17 17 7 2

Discs in L4-L5 postions 4 10 13 17 4
Discs in L5-S1 postions 2 6 19 9 12

Discs per degeneration 11 68 100 42 19

Table 1 Degeneration Grade in the Dataset

2.2 Intervertebral Disc Segmentation

We employ our previous method, presented in [19]. This

method requires the IVD centre position as input to

automatically compute the IVD region (ROI). The in-

tensity in this ROI is scaled between 0 and 255. This

step normalizes the intensity respect to the patients,

since the ligaments will get values close to 0 value and

the spinal cord close to 255. Subsequently, an ellipse is

initialized at the centre of the ROI and is warped by a

modified active contour model (ACM) with a new geo-

metrical energy in order to find the contour of the IVD.

Finally, a post-processing based on fuzzy C-means [20]

is applied to improve the details of the IVD contour.

2.3 Classification of the degree of degeneration

The study addressed in this article aims to classify the

IVDs into healthy (Grade I and II), low-level degener-

ation (Grade III), high-level degeneration (Grade IV)

and collapsed space (Grade V). There exist two differ-

ent components that are to be optimized: features and

classifier.

Grades I and II were merged due to the large inter-

variability found among the three experts. Furthermore,

our database contains a small number of cases hindering

the classification between these two grades. Neverthe-

less, these grades are considered to be healthy, and in

general, it is rare to find IVDs of grade I in adults, since

IVDs undergo the process degeneration with age.

2.3.1 Features

In his article [8], Pfirrmann classified the degree of de-

generation into five categories employing the following

information (Pfirrmann’s features):

P1: Signal intensity in the nucleus.
P2: Homogeneity of the intensity. Is there any cracks

or dark spots in the nucleus?
P3: Distinction of the nucleus and annulus.

P4: Height of the IVD.

In this article, a set of eight features was employed to

classify the IVDs in an attempt to emulate the idea

behind Pfirrmann’s rationale.
Three images were employed to compute the pro-

posed set of features.

– Image A: Original T2-weighted image.

– Image B: Image resulting from fuzzy clustering
applied to the segmented region of the studied IVD.

– Image C: Image as a result of a fuzzy clustering,
considering the whole ROI for the studied IVD as

explained in section 2.2.

In both derived images B and C, the fuzzy clustering

method created an image with the probability that a

pixel belonged to the darkest cluster within the seg-

mentation area. The number of clusters was selected as
2, since the classification should separate between annu-
lus and nucleus. Considering only the segmented region,
Image B (Figure 3), allows a large intensity separation

between the nucleus and annulus, providing informa-

tion between grade 3 and 4. On the other hand, the

use of the whole ROI , Image C (Figure 3), provides

large intensity separation between annulus and nucleus

when the grade are 1 or 2, and permits the integra-

tion of spots and cracks information that improve the

separation between grade 2 and 3.

In addition, it was defined a region A within the

IVD to roughly represent the nucleus. This region was

described as an ellipse with a short axis of 0.9× b and

a long axis 1.5 × b (red ellipse in the images in Figure
3).

The eight features and their relationship with the

Pfirrmann’s features are depicted in Table 2.

2.3.2 The Classifier

Although the selection of the set of features is the most

important information to perform proper classifications,

in this work we compared the specificity that different

classifiers achieved on the training set.
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Features Explanation Pfirrmann’s

features

Feature 1 (F1) MIA of image B P1

Feature 2 (F2) MIA of image C P1

Feature 3 (F3) SDA of image B P2

Feature 4 (F4) SDA of image C P2

Feature 5 (F5) RIA of image A P3
Feature 6 (F6) RIA of image B P3

Feature 7 (F7) RIA of image C P3

Feature 8 (F8) Flatness of the IVD P4

MIA: Mean intensity in region A.

SDA: Standard deviation of the intensities in the

region A.

RIA: Ratio between the mean intensity in region A
and the mean intensity in the whole IVD except
region A.

Table 2 Description of the eight features used for the clas-
sification of the IVD according to their degeneration grade.
The third column shows their correspondence with the Pffir-
mann features. The flatness of the IVD was computed as the
ratio between the short axis (b) and long axis (a) of the fitted
ellipse to the IVD segmentation.

Table 3 shows the specificity of the IVD classifica-

tion according to their degree of degeneration, employ-
ing a group of classifiers and parameters. The results,

shown in the table, are organized according to the sen-
sitivity that was achieved in the training set. The clas-
sifiers and their parameters are:

– NN-1: Neural network (NN) with a random ini-

tialization. This classifier contained 1 hidden layer
with 12 neurones

– Ad: Adaboost with 10 iterations

– SVM-1: Support Vector machine with a polyno-
mial of order 3

– LR: Logistic Regression with a polynomial of order
3

– SVM-2: Support Vector machine with Gaussian

radial bases

– NN-2: Neural network (NN) with Swarm optimiza-

tion. This classifier contained 1 hidden layer with 12
neurones

Classifiers NN-1 Ad SVM-1 LR SVM-2 NN-2

Sensitivity 0.86 0.89 0.90 0.90 0.90 0.91

Table 3 Sensitivity obtained with different Classifiers.

Although the performance of the classifiers is not

very different, we selected the NN-2.

Long A
xis 

S
hort A

xis 

Image A  

Image B 

Image C  

Fig. 3 Representation of the eight features for the classifi-
cation of the IVD. The first and third features are the mean
and variance intensity of the pixels within the small ellipse
(region A) in Image B and the second and fourth ones are the
same values in Image C. The next three features are the ratios
between the intensity in the small ellipse and the intensities
in the segmented area but the small ellipse, in Images A, B
and C. The last feature is the long axis divided by the short
axis of the large ellipse

2.4 Evaluation of the method

Three experts manually labelled the cohort of 240 IVDs

and the most voted value for each IVD was selected as
the ground truth. For the creation of the ground-truth,
the experts were allowed to look through the different

slices of the same image. However, in the case of the

automatic method, the mid-sagittal slice was the only

input.

This dataset was divided into a training and valida-

tion set (140 IVDs) and testing set (100 IVDs). This di-

vision was performed automatically, trying to preserve

the same relative quantity of the five different type of

degeneration at each lumbar position using the method

implemented in [21].

The inter-observer variability was computed as the

mean of the specificity and sensitivity of each observer
compared to the ground truth. In order to evaluate
the performance of the proposed automatic method, its

specificity and sensitivity were also computed against

the ground-truth and compared with the inter-observer

variability,

Specificity(Spe) =
TN

TN + FP
(1)

Sensitivity(Sen) =
TP

TP + FN
(2)
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where TP, TN, FP and FN are the number of true pos-

itives, true negatives, false positives and false negative,

respectively. In addition, we present their 95% confi-

dence interval (CI). This CI was computed assuming

a Gaussian approximation of the binomial distribution

(mean ± 2×standard deviation), since it is a common
approach that can be used for benchmarking.

Var(Spe) =
Spe(1-Spe)

TN+FP
, Var(Sen) =

Sen(1-Sen)

TP+FN
(3)

Observe that when the number of samples is small
or the Sensitivity or specificity are close to 0 or 1, this

approximation fails. Thus, we also employed a Wilson

confidence interval (WCI), which has better coverage

than the ’exact’ interval (Clopper-Pearson interval) and

it does not have any Bayesian influence (Jeffrey inter-

val) [22].
Furthermore, we employed the Rao’s score test [23]

to measure the similarity between the inter-observer

variability and our results, since this test has been proved

to be the most powerful test when the tested values are

close to each other.

3 Results

Table 4 presents both the Gaussian approximation of

the CI (GCI) of the sensitivity (sen) and specificity

(spe), as well as the respective WCI obtained from the

testing set (section 2.4). Observe that the confidence

intervals for the global specificity were not computed

since these intervals are only valid for binomial distri-

butions and the global specificity involves a multinomial

distribution.

In order to compare the inter-observer variability
and the results from the proposed method, the score

test was used. The p-values obtained with this test were

always above 0.97, meaning that no significant differ-

ence is found between the manual and the proposed

automatic classification.
The algorithm was tested in a Windows 64 bit com-

puter with Intel(R) Xeon CPU E5620 at 2.40 Ghz with

8 GB of RAM. The code was written in MATLAB

achieving an elapsed time of 1.13 seconds per disc, in-

cluding the segmentation step.

In order to provide the relative influence of each
feature, Table 5 presents the sensitivity and specificity

of each feature together with the eighth feature. Ob-

serve that at least two features are necessary to train

the classifier and since the eighth feature only provides

meaningful information for the separation between the

fifth degree and the rest, it was considered the most

appropriate for this test.

4 Discussion

The proposed method aims at classifying IVDs accord-

ing to their degree of degeneration using the mid-sagittal

slice of T2 weighted MR images. The advantage of such

method is the avoidance of manual intervention for this

classification. This classification plays a key role, to-

gether with the IVD segmentation, for automatically

detecting spinal diseases, as well as for the patient-

specific predictive systems to treat various spinal patholo-

gies [24]. In addition, physic-based simulation of the

spine requires the grading values to perform properly.

The sensitivity and specificity of the proposed method

was estimated on a 100-IVD testing set, providing also

their Wilson confidence intervals (Table 4). In addition,

the score test could not prove that the values were not

equivalent to those achieved by the experts.

Overall, the proposed method achieved accurate re-

sults with no subjectivity. And, although the CI ranges

are wide, showing that more cases of highly degenerated

discs are required, the lowest value of all the intervals

is still above 60%, which proves its reliability. Notice

that the observers interval are narrower than the au-
tomatic method because they were obtained using the
whole dataset instead of the testing set. The robustness
of the classifier was also proved by checking that it al-

ways kept the error within ±1. This means that if the
real degeneration grade was 3, it would never choose

1 or 5 or that it would obtain 100% of sensitivity and

specificity with ±1 accuracy. This evaluation strategy
was also employed in [17], in which the sensitivity was

reported as 85.8% with ±1 accuracy.

An interesting observation is that the method does
not seem to perform better when the three experts are

in agreement. This was proved by observing that the
values obtained in Table 4 were similar when only eval-
uating the IVDs that the three experts graded with

the same degeneration. . A possible interpretation is

that the agreement is randomly distributed, without a

subjacent factor related to the difficulty or ambiguity

of the image. In case the inter-observer agreement de-

pended on this hypothetical subjacent factor, it would
indicate that the accuracy of the automatic method did
not show any significant correlation with it.

Another observation is that the classification method

seems not to be influenced by the standard range of ac-
curacy in automatic segmentations. Although, we did
not perform an in-depth evaluation of it, the employed
segmentation technique provided results with different

levels of accuracy, a dice similarity index from 85% to

95%. This difference in quality did not seem to influence

the performance of the classifier. Nevertheless, lower ac-

curacy in the segmentation may influence it.
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Degeneration Grade I & II III IV V Global

GCI Sen Observers 81.3%±8.0% 85.0%±6.4% 90.0%±7.9% 100%±0% 85.2%±4.6%

GCI Spe Observers 94.8%±3.0% 92.7%±3.9% 94.2%±2.9% 97.8%±1.7% 94.4%

GCI Sen Proposed method 87.5% ± 11.7% 85.7%±10.8% 83.3%±17.6% 100%±0% 87.3%±4.4%
GCI Spe Proposed method 93.1% ± 6.0% 88.3% ±8.3% 97.7%±3.2% 100%±0% 95.5%

WCI Sen Observers 72.3% - 87.8% 77.6% - 90.1% 80.1% - 96.0% 86.2% - 100% 79.3% - 89.6%
WCI Spe Observers 91.1% - 97.1% 88.0% - 95.7% 90.6% - 96.4% 95.5% - 99.0% -

WCI Sen Proposed method 71.9% - 95.0% 72.2% - 93.3% 60.8% - 94.2% 67.6% - 100% 78.2% - 93.9%
WCI Spe Proposed method 84.8% - 97.0% 77.8% - 94.2% 91.9% - 99.4% 96.2% - 100.0% -

Table 4 Accuracy of the classification, by measuring the specificity (spe) and sensitivity (sen) ± 2 standard deviations and the
Wilson confidence interval (WCI) assuming the prior information as an uniform distribution. The ground truth was selected
as the most voted value of each disc among the three experts manual labelling. The accuracy of these experts is shown in the
observers rows. The automatic method required a training set of 140 IVDs and the result was assessed with a testing set of
100 IVDs.

Degeneration Grade I & II III IV V Global

Sen/Spe F1 & F8 68/91% 81/72% 75/93% 75/100% 75/90%
Sen/Spe F2 & F8 0/100% 17/92% 25/93% 100/100% 50/75%

Sen/Spe F3 & F8 81/87% 77/79% 63/95% 100/100% 78/92%

Sen/Spe F4 & F8 0/100% 14/84% 25/80%% 50/96% 43/69%
Sen/Spe F5 & F8 36/73% 65/51% 75/90% 50/100% 55/78%

Sen/Spe F6 & F8 0/100% 84/100% 38/71% 0/100% 41/68%

Sen/Spe F7 & F8 72/81% 70/73% 50/95% 75/100% 70/88%

Table 5 Comparison of the classification power of each individual feature together with the eight feature.

Furthermore, the proposed features are robust against

different type of MRI machines and resolutions. T2 MR

images provide information about the water content

in the structures. Thus, in general the relative differ-

ence between the intensities in the nucleus and annulus
will be similar. The proposed method extracts the re-
gion of an IVD and normalizes the intensities to remove
the difference in contrast. In addition, the features are

statistics and ratios that are robust against local in-

tensity changes and resolutions produced by different

machines. Since, we did not have images from different

machines, we only evaluated the robustness against the
image resolution. The in-plane pixel size of the testing
set was reduced to 1.5mm×1.5mm and all the experi-

ments were performed again. Observe that the training

set images were not changed, thus, the classifier was not

re-trained. Although the segmentation slightly changed

(Fig. 4), the classification results remained exactly the

same. This difference in the segmentation results also
proves the reliability of the proposed features with re-
spect to the segmentation accuracy.

A valid and reliable method to automatically clas-
sify the disc degeneration may help in large-scale pop-

ulation studies and also in the automation of patient-

specific techniques used in personalized medicine. More-

over, the proposed automatic IVD segmentation method

provides numerical information about the biological and

biomechanical features of the tissue even when these

(a) (b) 

Fig. 4 Comparison of the Snake segmentation with Low (a)
and normal resolution (b).

correlations with the MR signals are not fully under-

stood. Furthermore, The use of fuzzy clustering to ex-
tract the features allows the method to be straightfor-
wardly extended to different MRI sequences.

4.1 Limitations

The proposed method requires from the user to select
the centre of the IVD that is going to be analysed. Al-
though this step is rather simple, it may be automated

using the algorithms from the literature [25,26,27,28].

In addition, the current method has only been tested

with images from one type of scanner. Thus, there ex-

ists the possibility that the method has to be retrained,

or requires an extra factor to accommodate the varia-

tion given by different imaging equipments. However,
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the nature of the features should be robust enough to

palliate or completely mitigate this issue.
Another limitation is the low number of cases, which

implied large confidence intervals. Although, this issue

hinders the evaluation of the method, the minimum val-

ues of the confidence intervals were not extremely low

(above 60%). As a future work, we aim at increasing

the number of cases.
Another limitation of the method is the type of

grading system that was selected. Pfirrmann degen-

eration grading has been extensively used in research

and requires the standard T2-weighted MR image. The

main drawback is the selection of a gold standard for

evaluating the classification methods, which are com-

monly subjective because of the vague definition of the

different degrees of degeneration. In order to solve this

drawback, we collected a manual classification from 3

experts and selected the gold standard as the most

voted value. However, there exist new grading systems

that define the degrees in a different manner in an at-

tempt to be more objective and they could be a choice

for future research work [10,9].

The last limitation is the image modality. Although,

there exist correlation between other type of image modal-

ities, such as T1-ρ or T2*, and the Pfirrman’s grad-

ing system [29,30], we decided to employ the standard
T2-weighted because of its direct relationship since the

Pfirrmann’s grading system was inspired from this modal-
ity. In addition, T2-weighted is still the standard modal-
ity in many hospitals.
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