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l. Abstract
Purpose:
This work proposes a new reliable Computer Aided Diagnostic (CAD) system for the diagnosis of breast cancer from Bre
Ultrasound (BUS) image§he system can be useful to reduce the number of biopsies and pathological tests, which a
invasive, costly, and often unnecessary.
Methods:
The proposed CAD system classifies breast tumors into benign and malignant classes using morphological and tex
features extracted from Breast Ultrasound (BUS) images. The images are first pre-processed to enhance the edges anc
the speckles. The tumor is then segmented semi-automatically using the watershed method. Having the tumor contour,
of 855 features including@l shape-based, 810 contour-based, and 24 textural features are extracted from each tumor. Th
a Bayesian Automatic Relevance Detection (ARD) mechanism is used for computing the discrimination power of differe
features and dimensionality reduction. Finally, a logistic regression classifier computed the posterior probabilities
malignant versus benign tumors using the reduced set of features.
Results:
A dataset of 104 BUS images$breast tumors, including 72 benign and 32 malignant tumors, was used for evaluation usin
8-fold cross-validation. The algorithm outperfadsix stateef-the-art methods for BUS image classification with large
margins by achieving 97.12% accuracy, 93.75% sensitivity, and 98.61% specificity rates.
Conclusions:
Using ARD, the proposed CAD system selects 5 new features for breast tumor classification and outperfoofrthetate-
art, making a reliable and complementary tool to help clinicians diagnose breast cancer.

Keywords: Classification, computer-aided diagnosis, logistic regression, segmentation, ultrasound images.

Il. Introduction
Breast cancer is the second fatal disease in wopaeml its early diagnosis is important for longer patient sur¢iv@reast
cancer diagnostic techniques include clinical examination, medical imaging, and biopsy. Among the imaging metho
ultrasonography is usually utilized due to its advantages such as being real-time and cost-effective, not using ioniz
radiation and showing high sensitivity in dense tissues. Despite its advantages, the noisy nature of ultrasound images
the overlapping features of benign and malignant masses lead to difficulties in diagnosis. Therefore, usually, performir
biopsy is the most accurate diagnostic method. However, since only 10 to 30 percent of the biopsies are malignant, redu
unnecessary biopsies is highly desirabfe Computer-aided diagnosis systems are a candidate for this purpose.
Using CAD systems for breast cancer has five stages: pre-processing, segmentation, feature extraction, feature seles
and classification. In Breast Ultrasound (BUS) image pre-processing, the contrast between the lesion region and the
background should be increased (image enhancement). Some specific pre-processing methods are capable of red
speckle without destroying the important features of BUS images (speckle redtsttin) esion region is separated from
the background and other tissue structures through segmeritationthe literature, tumor segmentation has been done
automatically?*>*3 semi-automatically>****or manually by the radiologi$t*’. Two main types of features are extracted
for BUS image analysis; morphological and teatdeatures. Morphological features represent local characteristics of the
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tumor lesion and are used to quantify malignancy using shape, contour or boundary characterstit$extual features
explain internal echo patterns and the composition of the encompassing tissues and are selected from the original or
processed images >®! For feature extraction, Genetic algorithfpmutual information'?, statistical test®, Relief and
FOCUS technique® have been utilized for breast ultrasound images. Breast tumor classification in ultrasound images h
been done using linear classifiers (linear discriminant analysis, logistic regression), artificial neural networks, Bayesi
neural networks, decision tree, support vector machine and template matéhifigble (1) summarizes some of the

characteristics of the techniques used in the literature in a chronological order.
Table (1): Survey of recent CAD systems

Reference BUS dataset Segmentation Best feature set Feature selection Classifier
Yousef-20168 99 53B,46 M Manual 6 Morph Wrapper method NN, KNN, NC, LDA
Abdelwahed-201%2 80 44B,36 M Semi-automatic 9 Text NA KNN, SVM, CART
Gomez 20151 641413 B, 228 N Semi-automatic 26 Morph & 1465  Mutual information & Statistical LDA
— Text tests

Lokesh-20143 50 38B,12M Semi-automatic 8 Text NA SVM
Moon-2013%* 69 48B,21M Semi-automatic 5 Morph & 1 Text Student’s t test LR
Alvarenga-2012° 246 69 B, 177 M Semi-automatic 2 Morph & 3 Text Statistical approaches LDA
Wu-20121° 210 120B,90 M Automatic 2 Morph & 3 Text Genetic Algorithms SVM
Zakeri-2012%6 80 47B,33M Automatic 4 Morph & 2 Text NA SVM
Su20118 132 67B,65M Automaic 5 Morph & 3 Text  Principle Component Analysis NN
Behnam-20167 81 47B,34M Automatic 7 Morph NA NN
Alvarenga-201G8 246 69 B, 177 M Semi-automatic 3 Morph Statistical approaches LDA
Wu-2008%° 210 120B,90 M Automatic 1 Morph & 8 Text Forward feature selection SVM
Shen-2007° 265 180 B 85 M Manual 4 Morph & 4 Text Student’s t test LR
Chang-20052 210 120B 90 M Automatic 6 Morph NA SVM
Sehgal-20047 58 38B,20M Manual 3 Morph NA LR
Chen-2003¢ 271 131 B,140 M Manual 6 Morph Statistical approaches NN
Horsch-2002° 400 306 B 94 M Automatic 2 Morph & 1 Text NA LDA

B: Benign; M: Malignant; Morph: Morphology; Text: Texture; NA: Not Applied; NN: Neural Network; KNN: K-Nearest Neighbor; NC: 1
Centroid; SVM: Support Vector Machine; CART: Classification & Regression Trees; LR: Logistic Regression; LDA: Linear Discriminant /

Morphological and textural features and their combination have been compared based on their discrimination powe
classification, without a clear conclusion. For instance, Alvarenga®tsaiidied 7 morphological and 20 texilieatures

and concluded that the combination can be useful. Using 26 morphological and 1464 teatures, Gomez et &f:
concluded that using morphological features alone results in a better classification. A wide range of morphologic
1214.17,26.21.3132taxtuial features™* or their combination§®?*have been used. Despite the broad range of existing
methods, each implementing a distinctive form of feature aetanalgamation of information of these feature groups has
not been studied. In this study, we elaborate different morphological/textural features and their derivations to evaluate tl
differentiation ability in a single framework. We also introduce a new combined category of features using information
shape and gray-level values of the boundary. Finally, we apply an automatic approach for finding an effective feature
that successfully classifies tumors into malignant and benign classes. Our method identifies the most clinically relev
features for diagnosis, which is in contrary to methods that use convolutional netivricslearn highly discriminative
features that can be extracted from the entire image area and can be hard to interpret. These methods require large da
to avoid overfitting.

We propose a reliable CAD system to identify breast tumor types. After a pre-processing and semi-automatic segmenta
the ROI is determined automatically. A pool of features containing both morphological andltedtures is calculated.
Automatic Relevance Determination (ARM)is used for feature selection that removes subjective interpretations and
provides a sound data-driven approach to study the effect of feature combination. Finally, we introduce a new sait of text
features based on morphology with a high discrimination power in tumor classification. Using the new set of features,
tumors are diagnosed in each image in a dataset of 104 breast tumor BUS images. We follow the namindpyievided
subcommittee of the Japan Association of Breast and Thyroid Sorfolagg/shown in Fig. 1, the area including contour,
margin, and the periphery of the tumor is called the boundary zone, where, the contour is the plane betweeratite tumor
the tissue around it, the margin is the peripheral part of the tumor adjacent to the contour and periphery igntimgurro
area of the tumor.
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Fig. 1. The margin, contour, periphery, and the boundary zones.

The rest of paper is organized as follows. Sections 3 and 4 present the details of the dataset and the proposed meth
Section 4, experimental results are explained. The discussion and conclusion are drawn in Sections 5 and 6, respective

[ll.  Materials and methods
The dataset used in the study includes 104 BUS images from breast tumors with 72 benign and 32 malignant tumors, w
belonged to three grades (I, II, 1ll) and were divided into these invasive types: ductal, mucinous, and tubular, lobu
carcinomas. Most cases were invasive ductal carcinoma in grade Il. To create the Confusion matrix, types iaf tumor:
images are determined based on pathological examinations or following a two-year examination schedule. The images \
taken from patients that referred to The Radiology Department of Imam Khomeini Hospital, Tehran, Iran. All subjects ga
their written informed consent to participate in the following studies that were acquired using various sonography machi
across different periods:
+ 19 February 2006 to 22 August 2008, Antares (Siemens, Germany), VBXNI8Iti-D) linear array transducer, DICOM

format, 56 ultrasonography images (34 benign and 22 malignant),
» 28 May 2013 to 15 November 2013, Zonare (General Electric, US);13Hthear array transducer, tiff format, 35

ultrasonography images (27 benign and 8 malignant), and
+ 23 June 2015 to 9 November 2015, Sonix OP (Ultrasonic, Germasly) MBHz linear array transducer, jpg format, 13

ultrasonography images (11 benign and 2 malignant).
The rest of this section explains the proposed CAD system consisting of pre-processing, segmentation, and extraction o
region of interest, feature extraction and classification of the breast US images.

1. Pre-processing
Speckles resulting from the interaction of ultrasonic waves with tissue degrade the quality of Ultrasound (US) images. F
processing US images should enhance edge information and suppress speckle efficiently whilst preserving lesion bound
and structure details. Hence, it includes two steps of contrast enhancement and speckle filtering. We used Contrast Lin
Adaptive Histogram Equalization (CLAHE) technigde for contrast enhancement and removed the speckles with
anisotropic diffusion filtering °. The parameters used for CLAHE technique and speckle filtering were the default MATLAB
values and those used in Gomez et abspectively.
2. Segmentation

Tumor contours can be delineated manually or automatically. However, the details of the contour may be eliminatec
manual delineation, particularly in malignant tumors. This information is important when morphological features al
extracted. Existing computerized segmentation algorithms cannot always provide the required accuracy, especially
complex lesion boundaries®* To address these limitations, we propose a combination of manual and computerize
approaches to improve segmentation.

We first use watershed to extract the contour of each tumor by using MATLAB software. Initially, three contours al
generated corresponding to three values of the hyper-parasheterstraint Gaussian function, which scales the contour
by 2, 2.2 and 27 and generates the most visually accurate contours using the method presented in Gofhéeat,an
expert radiologist verifies the most accurate segmentation from the set of generated contours for each tumor and man
corrects them with Didger5 softwa‘}”e(see_ Fi

@) (b)
Fig. 2. (a) A BUS image of a malignant tumor and its most appropriate computerized contour (yellow line), (b) Therestitazhtours
with Didger5 software (green), showing elimination of parts wrongly considered as a tumor.
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3. ROl extraction
In the literature, the area around the tumor is removed manually before pre-processing to reduce the computational but
However, we propose to remove these areas after determination of the tumor contour. Doing this has two benefits: first,
information in the surrounding area can help in drawing the tumor contour. Second, allR(iware extracted
automatically and are therefore more consistent.
To eliminatenontumor associated areas in the image, an external tumor contour is specified using a morphological dilati
operator by a disk structuring element withpa€els’ radius (Fig. 3b). Then a circumscribed rectangle (the smallest rectangle
containing the external contour) is obtained (Fig. 3c), and the image is cropped according to the rectangle.

e

c d

Fig. 3. Extraction of ROI; a BUS image containing( 6)1 tumor (a), the cén)tour of the tumor (green) and the associatecbaiemal
(yellow) (b), the circumscribed rectangle (c), and the extracted ROI from the primary image (d).

4. Feature extraction
Benign tumors have more regular shapes compared to malignant ones. Most of the benign tumors have round or ellip
shapes with smooth and well-defined contours and homogeneous internal echoes. Malignant tumors have heteroger
internal echoes, branch patterns, irregular and blurred boundaries, and ill-defined contours. To use the mentio
characteristics for classification of tumors, usually shapes, tumor surroundings, and internal echo patterns are mode
which are expressed as morphological and textural featérés24%In this section, we investigate these two categories
of features and extend contour-based features by introducing signatures. We also apply a novel boundary extraction me
and use morphology-based texifieatures to discriminate malignant breast tumblsrphology-based textural features,
called textural features in this paper for simplicity, employ a combination of morphology and texture to extrac
comprehensive information from the tumor boundary. Fig. 4 depicts the categorization of features used for classificatior
this study.

Features
(F1-F855)

Morphological Textural
(F1-R83) (F832F855

Shape Contour
(F1-F21) || (F22-F831)

Fig. 4. Categorization of the investigated and presented features.
In the sequel, we discuss details of the implemented features.

a) Morphological features
By morphological features in this paper, we refer to two categories: shape-based features extracted from, 2Bdmasks
contour-based features extracted from one dimensional signatures. For extraction of shape-based features, a binary i
of the tumor shape in two dimensions is used (Fig. 5b). For contour-based features, we use the tumor contour (Fig. 5¢)
represent it as a one-dimensional signal.



@ (b) (©)

Fig. 5. The BUS image of a malignant tumor (a), the binary image of tumor shape (b), and the contour of the tumor (c).

(1) Shape Features
Twenty-oneshape-based features that are most frequently used for breast tumor diagnosis are implemented (for details
Appendix A).

(2) Contour Features

Contour-based features are derived from a one-dimensional representation of the tumor contour, called a signat
Signatures based on radial distance and complex coordffidtese already implemented in the literature for tumor type
classificationt2911365%8 \We extend the use of signatures by generating seven new transformations describing the cont
in different parametric spaces, namely: polar coordindtdarthest point distancéd>*>4 farthest point anglé#, angular
function®°3%° angular radial coordinaté contour curvaturé’4952545%1 gnd triangle area functidi®*>3 We use nine
signatures in total. Spatial and frequency information (i.e. Fourier descriptors and their stiti#ities)extracted from

these signatures (see Fig. 6). The explanation of these sigratregided in Appendix B.

Contour Features

(F22-F831)
[ 1
Spatial Frequency
information information
(F23-F42) (F43-F831)

[
Fourier descriptols
(F43-F804)

1
Statistics of
Fourier descriptofs

(F805-F831)
Fig. 6. Categorization of contour features.
To extract spatial information from signatures, the values of mean, standard deviation, smoothness index, roughness ii
and zero crossing$*° are calculated for four real signatures consisting of radial distance, farthest point distance, farthe
point angle, and triangle area function. For radial distance signature, aréa'fasi@also calculated. In this step, 21 spatial
information based contour features are extracted.
Next, to study the frequency information of the contour, Discrete Fourier Transform (DFT) is used. For this purpose, t
number of points representing each signature, i.e. signature vector size, is normalized and its DFT coefficients are use
features. Since for a better performance of DFT, the sighature vector size should be a power of two, the contour points |
to be sampled before contour signature generafidret N denotethe signature vector size achieved by 8-connectivity
contour tracing proceduré$andL = 27 = 128 denote the number of desirable points after sampling. Als8, liet the
perimeter of the tumor contour. The sampled points are equidistant on the contour, so each two successivengjiits are i
distance from each other (on the contdtir)

The coefficients of DFT, called Fourier descriptors, represent the contour in the frequency domain. It can be proven f
these Fourier descriptors are invariant to translation, rotation, and scale. Proofs are included in Appendix C.
We collectively computed 762 Fourier descriptors from the nine mentioned signatures. Additionally, for éemnf of t
mean, variance and entropy are computed, leaving 27 statistical features (810 contour-based featuré3vier&dteB31
morphological features consisting of 21 shape-based and 810 contour-based features were extracted from each imags
Fig. 4).

b) Textural Features
Features based on the mean grey level differences between inside and outside of the contour have been used for stu
tumor boundaries in tumor type classificatigrt’1%26%7 However, more comprehensive textural features extracted from
the vicinity of the contour can increase the accuracy of tumor classification. For this propose, for each BUS image sucl
Fig. 7a, we construct a boundary band around the contour of the tumor in Fig. 7b. The band is then unrallesininto
image. The directional and textural information of this image is extracted by a Gabor filter bank. The entropies of filtere
images are then calculated and used as the textural features. Steps of calculations involved here are presented in a
detail in the following.
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(a) (b)
Fig. 7. (a) The BUS image of a malignant tumor and its contour (green), (b) the 20-pixel boundary around the tumor contour.
To investigate the tumdrourdary area, Sahiner et &.7° introduced the Rubber Band Straightening Transform (RBST)
that maps a band of pixels surrounding the mass onto the Cartesian plane (a rectangular region), according to the direc
of lines normal to the tumor contour. Their algorithm comprises of three main steps: 1) edge enumeration, 2) norr
computation, and 3) computation of RBST pixel values (see Fig. 8

Fig. 8. (a)A closeup view of indicator points (green), tangent lines (yellow), and normal lines (magenta) for a part of a malignant tumc
contour, (b) all the tumor contour points (green) and the normal lines of contour indicator (magenta), and (c) thérRSiltimgge.
Despite its proven effectivenesghiner’s algorithm fails to provide a uniform sampling of the boundary information for
irregular contours. This happens due to the simplistic way of finding normals to the contour, which is prone to error
irregular parts of the boundary like tumor edges (see Fig. 9a).

e
Fig. 9 Contours (green) and the corresponding normals (magenta) are shown for a benign tumor using Sahiner's alguoditine (a) a
proposed method (b). The cloge views on the right show non-uniform samplings throughout the boundaggtorer’s algorithm,
which are significantly more uniforfior the proposed method.
To overcome the limitation ofahiner’s algorithm, we propose Morphology-Based RBST (MBRBST) method that
generates the internal and external contours of the tumor (Fig. 9b), usihgixel radius disk structure element for
morphological erosion and dilation, respectively (Fig. 10a). After determining the contours, an equal number of points ¢
sampled on each (we used the number of external contour points, N, as the number of sampling points), which are
correspondingly connected by N connecting lines (Fig. 10b). Next, the image intensity is sampled at 15 equidistant locati
selected on each of the connecting lines (Fig. 10c). Since the selected locations are not exactly at the center of the pi
they are approximated by centers of pixel they are on, (see Fig. 10d). The sampled intensity levels are sorted from
innermost point (on the internal contour) to the outermost point (on the external contour) in a vector for each connect
line. The resulting N vectors are then stored in a 15N matrix that represents the comggpetatigular MBRBST image
for the tumor (Fig. 10e




Fig. 10. (a) The tumor contour (green), internal (red) and external (blue) contours 10-pixel away from tumtoain (b)A closeup

view of the main, internal and external contours and the connecting lines (magenta lines) on a pashtduthg @A closeup view

of the 15 sampled points on the connecting linesA(dlpseup view of an original connecting line, its sampled points (magenta) and
their approximated locations (cyan), (e) The resulting MBRBST from the gray level values of the approximated points.

The extracted rubber band consists of shape and texture information that help in classification oFtwmnsasnple BUS
images, including two malignant and two benign tumors, with parts of their MBRBST images, are shown in Fig. 11. It
seen that MBRBST images well delineate the irregularities of tumors and can, therefore, discriminate their malignancy.

s L ok il
r ; *‘ a i

Fig. 11. BUS images of two malignant (a), (b), and two benign (c), (d) tumors and their corresponding MBRBST images.

Gabor filters are used for the detection of directional elenfériifsn image processing, such as classification and edge
detection. In BUS images, these filters are frequently used for prepossessing and speckle tédUttidin this study,

we use 24 Gabor filters with different scales and directions (see Appendix D for details). The Gabor filter bank is appli
to each MBRBST image and the entropy of each filtered image is calculated, generating 24. féathrdse 831
morphologic features from the previous steps, the total number of 855 features are genezattihiage (see Fig. 4).

5. Feature selection and classification

To improve the classification performance and avoid overfitting, features with irrelevant information must be removed.
the literature of breast tumor classification, features are selected prior to classification. Therefore, not all features are
in the classification. In the present study, however, we rely on a joint feature selection and classification mechanis
Specifically, we use Sparse Logistic Regression (S.R)ich is a Bayesian logistic regression method, implementing
Automatic Relevance Determination (ARDYsing ARD, the SLR classifier prunes a large set of input features to a sparse
set of most discriminative features deriving the classification. The details of the sparse classifier are explained in Apper
E.

IV.  Results
1. Experimental design

We used MATLAB for pre-processing, feature extractiolassification and segmentation, and Didger5 for correcting
manual delineations. A dataset of 104 real BUS images was used and overall 855 features were extracted from each in
To evaluate the proposed algorithm, we performed an 8-fold cross validation protocol, where 91 images were used for |
feature selection and training, and the remaining 13 images were used for testing and vafigegtaimfold, leaveneout
experiments were applied on the training set to select the most relevant (discriminant). leatarsexperiment, an 855-
dimensional weight vector indicating the discrimination powers of all feature is generated by th€h&Lprocess is
repeated until all images in the training set are t&Stegenerating 91 weight vectors. Next, we find the most discriminant
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features, whose corresponding weightsremezero for at least 80% of the leasaeout experiments. We then use these
selected features for classification of the testBetensure that the selected features are not coincidental, we altered the
order of features randomly for 10 tim&¥e observed that tH8LR sekcted the same features exactly, indicating that they
are genuinely relevant to the classification.

A confusion matrix'® was generated by comparing the results of the proposed classification algorithm with the Confusic
matrix. Confusion matrix comprised: True Positives (TP), i.e. number of malignant tumors correctly recognized &
malignant; True Negatives (TN), i.e. number of benign tumors that correctly recognized as benign, False Positives (FP),
number of benign tumors that incorrectly recognized as malignant; and False Negatives (FN), i.e. number of malign

tumors that incorrectly recognized as benign.

_ TP+TN e s _ TP epe - _
Accuracy Acc = —(TP+TN+FP+FN)), sensitivity fen = —(mma))’ specificity Gpe

TP . - TN
), hegative predictive value {NPV =
(FP+TP) (FN+TN)

\/(THFP()T(';::IEV;E;KI:B(TN+FN)) criteria were used for evaluating the classification performiféé’

TN
(FP+TN)

), and Matthew's correlation coefficient MCC =

), positive predictive valuePPV =

2. Evaluation of the proposed method
Based on the corresponding weights, features F138, F180, F441 (from Fourier descriptors features) and F833, F837 fea
(from Textural features) were selected in every eight experiments of cross-validation and were therefore used for measu
classification performance. The descriptions of these features are as follows:

¢ F138: The 98 normalized Fourier descript@lFFDT%ll) of the complex coordinates signature.
1

¢ F180: The 1% normalized Fourier descript@%}l“ll) of the polar coordinates signature.
1

e F441: The 2B normalized Fourier descript@lFFDTz"ll) of the farthest point angle signature.
0

« F834: Entropy of the output of th& &abor filter (with scale = 1 and directiord = 3) for MBRBST image.

« F838: Entropy of the output of th& Gabor filter (with scale = 2 and directiord = 3) for MBRBST image.

The classification performance using the SLR algorithm applied on various categories of features are precaneed

(2). Each row in this table shows a different subset of input features and the classification performance using the feat
selected by ARD. The feature definitions are given in Appendix F.

Table (2): The performance of the proposed tumor classification method using the selected features from each input sttbset (mea
standard deviatign

Acc Sen Spe PPV NPV MCC

(%) (%) (%) (%) (%) (%) Selected Features

Feature category

97.12+ 93.75+ 98.61+ 97.50+ 97.50+ 93.58+

All features (F1-F855) 398 1157 393 707 463 888

F138, F180, F441, F833, F837

89.42+ 78.13+ 94.44+ 88.75+ 9143+ 75.81*

® Morphological (F1-F831) 572 2086 594 1217 775 1381 10.F12,F760
o Shape-Based 8042+ 71.88% 07.22¢+ 0333t 8898t 7521%
(F1-F21) 572 1602 514 1285 608 1471 12 F15FI16,F19
o Contour-Based 8942+ 71.88f 07.22¢+ 03.75t 8893t 7527t
(F22-F831) 572 1602 514 1157 570  13.46 99 F62,F166,F513, F800
= Spatial information 81.73+ 62.50+ 90.28+ 81.25+ 85.18+ 58.20+
(F22-F42) 816 2315 1101 2167 788 1928 24 F26,F33,F4l F42
= Frequency information 8558+ 75.00% 0028+ 78.75%¢ B89.72:+ 66.70+ F66, F166, F333, F676, F677, F706,
(F43-F831) 642 1890 712 1399 758 1688 F773
e Fourier descriptors 89.42+ 81.25+ 93.06+ 85.00+ 91.94+ 75.52+ F62, F66, F291, F294, F308, F333,
(F43-F804) 572 1157 575 1254 500  13.66 FA443 F676, F677, F706, F773

e Statistical features of
Fourier descriptors
(F805-F831)

82.69+ 68.75+ 88.89+ 77.71x 86.77t 60.68%

986  17.68 1188 2125 740 2204 806, F808, F809, F814, F817, F831

93.2& 8750 95.83% 91.8% 94.86- 84.8&
® Textural (F832-F856) 493 1336 575 1132 551 1147 032 F833,F834,F836, F838

According to Table (2):
e Combining textural and morphological features and using the whole 855 features gives the best performance.
¢ The performance of textural features is better than morphological features, when only one category is used.
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¢ Morphological shape-based and contour-based features have similar performances.

¢ When using only contour-based featytbe performance of frequency information is better than spatial information.

e Fourier descriptors result in a more accurate classification compared to statistical features. Also, using a combinatiol
these features results in a lower performance compared to using Fourier descriptors only.

The proposed boundary extraction algorithm (MBRBST) was also compagediter’s (RBST) and conventional ROI
extraction algorithms in termd their impact on the classification results. For each region extracted by these methods, 2
filtered images were generated by Gabor bank and their entropies were used for classification. The evaluation metrics
defined in the Experimental design subsection. As shown in Table (3), morphology-based fiextures created by
MBRBST outperform the two other methods. This indicates that the textural and morphological information embedded
the MBRBST features makes them more effective than pure textural features that are derived from coriR@igional

Table (3): The performances of features obtained WBBBST, RBST, and conventional ROI extraction methods.

E!;ek' Acc  Sen  Spe PPV NPV MCC
) ) 6 o) ) (%)

MBR 9327+ 87.50+ 95.83+ 01.87+ 94.86+ 84.88%

BST 493 1336 575 1132 551 1147

RpsT 92:31f 87.50+ 94.44+ 8958+ 94.72: 83.01:

712 1336 840 1460 566  15.67

84.62+ 65.63+ 93.06+ 83.33+ 8548+ 63.78%

712 1860 827 1782 725 18.62
We now compare the performance of the proposed algorithm with the six most related algorithms in the literature. Br
summaries of the selected classification methods and the features employed for each of them are included)in Table (4

Table (4): A summary of the specifications and presented results of the implemented withedserature.

Acc Sen Spe PPV NPV
(%) (%) (%) (%) (%)

ROI

Reference BUS dataset The proposed feature set Classifier

Normalized residual value, Contour roughness

Alvarenga-2012> 246 16797% contrast standard deviation, and angular secor LDA 85.37 83.62 89.86 9548 68.13
moment

Alvarenga-20104 246 69 B Normalized residual value, Circularity, and Contc LDA 8374 8305 8551 93.63 66.29
177 M roughness
47 B Difference area, mean, variance, skewness, kurtt NN

_ 7 ] 3 3 [}

Behnam-2016 81 34 M and entropy of variation function (MLP) 93.83 91.18 95.74 93.94 93.75

180 B Shape, Orientation, Margin, Lesion boundary, Ec
0

Shen_2007 256 85 M pattern, and Posterior shadowing LR 91.70 90.59 9222 84.62 95.40

120B Form-factor, aspect-ratio, roundness, extent, SVM
- 2 ) [l s y
Chang-20058 210 90 M convexity, and solidity (RBF) 90.95 88.89 9250 89.89 91.74

Elliptic-normalized circumference, Elliptic-normaliz

131 B skeleton, Long axis to short axis ratio, Deptkwidth

140 M ratio, Number of substantial protuberances ani
depressions, and Lobulation index

B: Benign; M: Malignant; NN: Neural Network; LDA: Linear Discriminant Analysis; LR: Logistic Regression; SVM: Support Vector Machine

Chen-2003% 271 NN 94.40 97.80 89.90 92.70 96.90

Since the imaging dataset used for evaluating the selected methods were not publicly available, we evaluated them u
our own dataset in this papdrable (5) represents the results of leane-out cross-validations for all methods. We also
calculatedhe area under the receiver operating characteristics (ROC) curve, AUC, as a common measure in the conte
CAD systemg?,

Table (5): Classification results of the proposed algorithm and selected methods applied on our dataset.
Acc Sen e PPV NPV
Method 0 o0 om0 o AYC
Proposed algorith 97.12 93.75 98.61 97.50 97.50 0.9904
Alvarenga-2012 90.00 83.33 92.86 83.33 92.86 0.9753
Alvarenga-2010 84.62 68.75 91.67 7857 86.84 0.9042
Behnam-2010 8750 75.00 93.06 82.76 89.32 0.8983

Shen-2007 83.65 68.75 90.28 75.86 86.67 0.9140
Chang-2005 81.73 68.75 8750 70.97 86.30 0.8572
Chen-2003 85.00 66.67 92.86 80.00 86.67 0.7942




As seen in Table (5), the proposed method outperforms all the selected methods of the literature. However, we remind
the differences between the performances of the methods from the literature on their original and our dataset can be d
the differences in the levels of difficulty of image databases and/or segmentation methods used.

V. Discussion
In this study, a dataset of 104 BUS images (72 benign and 32 malignant tumors) was first collected. The images were
segmented through a computerized method followed by a manual delineation carried out by a radiologist. For each tur
21 (2D) shape-based, 810 contour-based, and 24 textural features were extracted. Contour-based features are derivec
9 (7 new and 2 existing) signatures that are one dimensional contour representations. The textural features in this worl
derived by: unfolding the narrow band that surrounds the tumor boundary, applying the Gabor filter bank to thee unfold
image, and computing the entropi&ke latter depend on the morphology of the tumor as unfolding more irregular tumor
boundaries often results in more directional and complex texthiersce, the computed entropies are referred to as
morphology-based textalkfeatures in this work. An SLR classifier, incorporating ARD, was used to automatically select
the five most discriminative features for classification. Removing the irrelevant features using ARD prevents the overfittil
issue often seen in supervised learnftf). Based on Table (2), the selected features inclBidkurier descriptors from
complex, polar and farthest point angle signatures, as well as 2 entropies from the Gabor filters.
The textual features obtained from the proposed MBRBST method had a better classification performance than th
obtained from the conventional ROI extraction and RBST methods. This indicates that the proposed amalgamatior
morphological information in the textural features resulta more discriminative power. The consistent classification of
the images obtained from three different sonography machines suggests thafotmeance of the proposed textural
features can be independent from machine settings. An additional analysis to confirm this claim would involve a compari
of the results from each of the devices separately. This was, however, not possible at the time of writing this paper du
the small number of images. Moreover, it is noticeable that the proposed method is at an advantage to the other met
because this dataset was used in its development; even though cross-validation was used, this still biases performar
favor of the proposed method.
The proposed method is limited using a fixed diameter for tumor boundary band extraction, impeding applications of
MBRBST to tumors with a minimal size. A line of future work is to consider an adaptive method for tumorrpounda
extraction. Experimental results in Table (2) show that a combination of Fourier descriptors and their statistical featu
results in lower accuracies compared to using Fourier descriptors only. This is due’¢diBit&d ability to select all
relevant features when a large combination of features is being used. To alleviate this issue, incorporation of other classi
alongside ARD can be considered. In addition, larger and more balanced datasets, and employing neural networks for fe:
extraction may increase the classification accuracy.
Three of the most frequently misclassified images were investigated and discussatewjiart radiologist. Accordingly,
our false negatives have high malignancy risks and the false positive turned out to have low malignaficyoiskate
these faults and to improve our algorithm, we propose combining imaging signs with the patient meta-data (i.e., a
ethnicity, genomics, smoking habits, etc.), which can be important for diagnosis. The proposed CAD systems is
complementary tool that can only aid the radiologists to conclude their diagnosis.

VI.  Conclusion
We proposed a CAD system for classification of benign and malignant tuma@tBUS images and compared the
effectiveness of different features for classification. Tumors were delineated using a semi-supervised method to ensu
good quality in segmentation results. To classify each image, various forms of morphological and textural information we
collected. From the segmented tumor 2D masks, 21 shape-based features were constructed. Next, 810 contour based fe
were generated from seven new and two existing tumor signatures (1D contour represemfations) techniquevas
proposed to unfold tumor boundary bands into images from which, by applying Gabor filters and computing ,e2dropies
textural features were extracted (making a total of 855 features). We used a Bayesian extension of Logistic Regression
ARD mechanism for joint feature selection and classification. The selected features comprise of: 3 Fourier descriptors fr
complex, polar, and farthest point angle signatures, as well as 2 textural {eEter@soposed method achieved 97.12%
accuracy, 93.75% sensitivity, and 98.61% specificity, outperforming theofttite-art methods applied on our images.
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VIl.  Appendices
Appendix A:  Morphological Shape Based Features
Table (6): The definitiomf implemented Morphological-Shape-Based Features used for breast tumor diagnosis.
Feature name Definition Description References
4. Area
Form-factor _ . 11,12
Perimeter lArea andPerimeter are the area and perimeter of the tumor.
Compactness Perimeter? 14.2,31.55
(Circularity) Area
IAspect-ratio w ) o ) o ) 11,12,2,36
Min_diameter Max_diameter andMin_diameter are the maximal and minimal diameter|
4. Area a tumor at different projection angles.
Roundness - pro) 9 11,12,36
1. Max_diameter?
Long axis to short Major_axis Ma]or_a_ms andMl_nor_ams are the major (long) axis and minor (short) ax Jasis
. - —_—— the equivalent ellipse that has the same normalized second central mol 20
axis ratio L:S) Minor_axis

the tumor.

Convexity

Convex_perimeter
Perimeter

Solidity (Overlap-
ratio)

Area
Convex_area

Difference area

Convex_area - Area

Normalized
Residual Value
(NRV)

Convex_area — Area

Convex_perimeter

11,12,36,15,51

Convex_perimeter andConvex_area are the perimeter and the area of

11,12,14,36,15,51,

convex hull of a tumor (See Fig. Alb).

27

11,14

Length_bounding_rectangle

skeleton

the
equivalent ellipse of the lesion.

boundary points, p; and p; in Bg so d(xp)=d(xpj) =
min{d(x, px)|pk€ Br}, Whered(.) can be any preferred distance metric

H . . . 55,36
Elongation Width_bounding_rectangle Length_boul?dlng_rectangle , Wldth_l_)oundmg_rectangle ang
" Area_bounding_rectangle are the length, width and area of the min
Extent rea rectangle that including the tumor, respectively. 11,12,36,51
Area_bounding_rectangle
Morphological- Area
closing ratio Moroholosical closi Morphological_closing_area is shown in Fig. Alc 14
(Mshape) orphological_closing_area
Orientation The angle between the x-axis and the major axis of the ellipse with the same second-moments as the tul 11,20
- The ratio of the distance between the foci of the ellipse with the same second moment as the tumor, to its 26
Eccentricity
length.
the number of skeleton poilLetR andBg denote a region and the set of its boundary points. The sk
Elliptic-normalizegnormalized by the circumferencepf R, is a set of points X where for each poiek, there exist at least ty  ;,, ¢

Number of skeleton end-points

Fig. Ald).

11

Mean-variation

mean value of variation function

\Variance-variatior

\variance value of variation functig

\Variation function is the projection of the distance between the farthest

Skewness-variatid

skewness value of variation funct

of a tumor region at all angles.

Kurtosis-variation

kurtosis value of variation functio

Entropy-variation

entropy value of variation functio

27

14




(©) (d)
Fig. Al. A BUS image of a malignant tumor and its contour (green color) (a), difference of area (in grey) between the convex hull a

and the tumor area (b), difference of area (in dark grey) between the morphological closing area and the tumor area (c), ao the ske

of the tumor (white) and the skeleton end-points (blue stars) (d), see Table 6.
Appendix B:  Signatures of tumor contour

Shape signatures can be real or compiéx*’. In the following, the signatures implemented in this paper are explained.
The coordinates of contour points are denote@)dﬁy),y(t)),t =1,2,...,N, in whichN is the number of these points, and
coordinates of tumor center are denoted>hyy.).

1. Complex Coordinates (2)

Complex coordinates function is a complex representation of the coordinates of boundary points in Eqg. 1. Shift
coordinates functions is used to remove bias effécig’ 46480,
Z() = (x(D-xc) +j(y(®O-yc) 1)
2. Radial distance (R)
The value of this signature as expressed in Eq. 2, is obtained as the distance between the contour points and the tumor
(Flg A2a)51—53'47’46'48’50'5.4
R(®) = (x(0)-%)2 + ((1)-yc)? (2)
3. Polar coordinates (PC)
The combination of the radial distanké&) and the polar anglg(t) defines the polar coordinates signature as expressed in
Eq. 3 (Fig. A2by3,
PC(t) = R(t) +j0(t) (3)
4.  Farthest point distance (FPD)
For a point(x(t),y(t)), FPD is the sum of radial distance of this point and that of the farthest point to it on the contour

denoted by xg, (0), (D)) (Eq. 4, Fig. A2cf>4%5!

FPD() = V(x(D)x0)? +i(y(D-yo)? + J (xep ()" +i(yp(®)-¥e)” @
5. Farthest Point Angle (FPA)

According to Eq. 5 the angle between the radial distance of a contoutpginand the radial distance of the corresponding
farthest poini{m,) results in the value of this function (Fig. A24)
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m-,-m
FPA(t)=Tan-1( 2 1 )

1+ my Xm,
6. Angular function (¢)

The angular functiorp(t) demonstrateshe changes of angular contour directions. This signature, shown in Eq. 6, is

obtained by the tangent angle for a winde@wHowever, since the values of tangent angle are assumed to lie in a range o

length,@(t) contains discontinuities withm size. Fig. A2e shows the tangent angle of a contour point for a window size
w = § 515359

©®)

y(t)-y(t-W)> ©)

— -1
¢(0) = Tan <x(t)-x(t-w)
7. Angular radial coordinates (ARC)
This signature, expressed in Eq. 7, is the combination of the radial dig@h@nd the angular functiap(t) (similar to
the polar coordinates signaturé)
ARC(t) = R(D) +jo(t) (7
8. Contour curvature (K)
Contour curvature is defined as the differentiation of successive tangent angles calculated in awvedoessed in Eq.
8. Fig. A2f shows the successive contour angles calculated in a window of size®247:49.54.5%1
K®) = ¢(O)-9(t-1) (8)
9. Triangle area function (TAF)
The value of this function is obtained according to the area of the triangle made by two successive contour points and
tumor center in Fig. A2g'>34°

(e) | (0 (@)
Fig. A2. (a) The contour of the tumor (in green), the center of the t(tyand several representative radial distances (Mageats)
that are equal to the distance between the contour points and the tumor center. (b) A display of the polar coordinates system at a cc

point, the radial distancR(t) (Magenta line) and polar angd£t). (c) The point(x(t),y(t)) and the corresponding farthest point
(xfp(t),yfp(t)), adding the radial distances of these points (magenta lines) indicates FPD for give(m@)))iyn(t)). (d) The angle
between the radial distance of the p(ﬁn(t),y(t)) (m,) (blue color) and the radial distance of the corresponding farthest point
(xfp(t),yfp (t)) (m;) (magenta color) gives us FPA signature for p@hﬁt),y(t)). (e) The angular function is calculated for a window

sizew = 5. (f) Two successive tangent angte&) and@(t-1) that are calculated for a window with = 5. Contour curvature is
defined agp(t)-@(t-1). (g) The contour of tumor (in green) and the area of the triangle formed by the tumorQemtdit{vo successive
contour points (points on the contour are in cyan and yellow).

Appendix C:  Fourier descriptors; invariance to translation, rotation and scale

For a sample signatusét), t =0, 1, ..., L-1 after anL-point normalization, the Fourier descriptors are given in

Eq 951,47,46,50,54
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L-1
1 -j2mt
FD, = EZ s(t) exp (]T)n =01,..,L1 ©)
t=0

1. Tran_slation invariance
The FDs are translation invariant, because all the nine explained signatures are invariant under trafi<iation

2. Rotation invariance
Since phase information is ignored in our application, and only the magnitude values of the FDs are used, FDs are rote
invariant*’4¢

3. Scaleinvariance
For complex signatures such as complex coordinates, polar coordinates, and angular radial coordinatedesdiriptors
except the first one (DC component) are necessary to index the shape. Scale normalization is achieved by dividing
magnitude values of all the other descriptors by the magnitude value of the second descriptor ¥¢>%.0).

|[FD3| |FD3| [FDL 4|
f= 1
[ IFD4|” |[FD4|” ™" |FD4| ] ( 0)

Since the functions of centroid distance, farthest point distance, farthest point angle, angular function, contour curvatt
and triangle area signatures are real, @il frequencies in the Fourier transform are different, therefore just half of the
FDs are used. Scale invariance, according to Eq. 11 is obtained by dividing the magnitude values of the first half of FDs

the DC component>#749
_ IFDy| |FD3|  |FDy/
= Liengi 7 1#p1” 7 Ty | (11)

Appendix D:  Gabor filter formulation

The direction feature of Gabor wavelet makes it appropriate for several applications, including image texture analysis :
image retrieval. Gabor filters used in image processing are two-dimensional and have specific scales and direction:
complex Gabor wavelet is obtained as the production of a Gaussian kernel with a complex $inusoid

Assuming the mother wavelgtx,y) given in Eq. 12, the set of wavelets are made by Eq. 13 in Wwfjicky) is the
impulse response of Gabor filter in scalend directiond. Also,x andy are the row and column of the impulse response,
ando, andoy are their standard deviations, respectively. The entire image is the filter bank input. DefiniKaarsdaf are

given in Eq. 14 and 15, respectively.

oxy) = ZMog0y exp {- % (;—; + g—;) + ZﬁjUhX} (12)
haas) = (E—‘l‘)_ POLY) (13
X= (lljj—?)ﬁ [(x-xo) cos (i—:) + (y-y,) sin (i—:)] (14)
Y= (lljj—l]l)ﬁ [-(x-xo) sin (;—:) + (y-yo) cos (;—:)] (15)

The filter's output is complex; therefore, magnitudes of these values are used. In the overhead aguatjondy and
d =1,..,Nq are the scale and direction of wavelet paramefggsy,) is the filter origin in space, ari andU,, are the
minimum and the maximum central frequencies of the filters, respectfvely

In this study, we séf = 6, Ng = 4, U, = 0.49, andU; = 0.01.

Appendix E:  Sparse logistic regression

Logistic regression, used for solving binary classification, is a probabilistic model, parameters of which are estirgated us
the Maximum Likelihood method. The weighted feature values represents the linear discriminant function in Eq. 16 tt
splits two classes, namely ands,.
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D
f(x;w) = Z WaXq + Wy (16)

In Eq. 16,x_: (x4, ....xp)"' € RP is the input feature vector in D-dimensional spacevard(w,, wy,...,wp)'is the weight
vector including a bias term, where we sgt= 0. Using a logistic sigmoid function (Eq. 17), LR calculates the probability
thatx belongs to classes andS, (Eq. 18).

1

O'(X) = HTD(-X) (17)

p £ P(S;|x) = o(wtx) = P(S; |X) =1-p (18)
We define a binary random variablethat is0 for x € S; and1 for x € S,. HavingN iid" input-output data samples
{(x1,¥1) -, (Xn, YN) 1 the Iikelihood function is given as Eq. 19.

(19)
PYIX,W) = Py, Y[, o Xy, ) = ]_[P(yn|xn w) = ]_[p (1)

wherep, = P(y, = 1|x,,w) = o(w' xn) Therefore, the log-likelihood function becomes as Eq. 20.

l(W) - i=1[Yn10gpn + (1'Yn) log(l'pn)] (20)
The optimal value ofv is achieved by maximizingw). It can be proven that since the Hessian of this function is positive
definite for allw, a unique global maximum always exists. In this classifier, the contour between two classes is determin
by the hyper-plané(x; w) = 0. So, a test samplg.; is assigned to class, if f(x.st; W) > 0, , and assigned to claSg
if f(Xtest; W) < 0.
Automatic Relevance Detection (ARD) is an efficient algorithm for eliminating irrelevant features. It moves the weight
corresponding to less relevant features towards peai&ing the weight vector sparse. ARD uses a Gaussian prior with a
zero mean and a diagonal covariance matrix (the diagonal elements are tunable hyper-parameters) to define the po:s
range of weight parameters.
Sparse Logistic Regression (SLR) is made by combining LR and ARD. SLR, a Bayesian extension of LR, performs feat
selection and training of the model parameters for classification, simultaneously. It employs ARD to determine the releval
of each feature by estimating its corresponding weight. This procedure involves three tasks: feature selection, trainin
the classifier, and evaluation of generalization performance. With ARD algorithm, SLR assumes a prior for weight vect
as expressed in Eq. 21.

P(wglag) =N(0,ag), d=1,..,D (21)
wherew, is thed™ element inw andag is its corresponding relevance parameter. The prior distribution forweaish
assumed to be a normal distribution with a zero mean. Also, the prior distributigysfisrgiven in Eq. 22.

Py(ag) =, d=1,..,D (22)
The hyper-parametety, the relevance parameter, controls the possible range of its corresponding weight paxgnieter,
small relevance parameter results in a broadly distributed probability, leading to large values for the weight parameter (|
A3a). When the relevance parameter is large, the probability distribution of the prior knowledge has a high peak at z¢
This biases the estimated parameter towards zero (Fig. A3b).
Using ARD 8 an iterative algorithm estimates relevance parameters and the posterior distributions of the model. T
estimated relevance parameters for irrelevant features diverge to infinity resulting their corresponding weight parameter
converge to zero. This way, the irrelevant features are eliminated and not used in classification.

Small oy Large o,

& >

5 =

8 2

o o

a o

1 3

) S

= 2

€ L1~ w, o wy

(a) (b)

Fig. A3. Small values of the relevance parameter result in broad probability distributions and large values af estigtatearameter
(a) and large values of the relevance parameter result in narrow probability distributions and zero values of estimated weight paran
(b) 78_

1 independent and identically distributed
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Appendix F:  Categories of used features

Table (7): The explanation of features used based on their numbers.

Feature ID Feature Name Feature category

F1 Form-factor

F2 Aspect-ratio

F3 Long axis to short axis ratio

F4 Roundness -

F5 Convexity by

F6 Extent ':

F7 Solidity w

F8 Orientation €

F9 Eccentricity 3

F10 Elongation 8

F11 Difference area <

F12 Normalized Residual Value Q

F13 Circularity 8

F14 Mshape o

F15 Mean_Variation 8 —
F16 Variance_Variation 7} pod
F17 Skewness_Variation i
F18 Kurtosis_Variation E
F19 Entropy_Variation e
F20 Elliptic-normalized skeleton g
F21 Number of skeleton end-points ]
F22-F27 Mean, Standard deviation, Roughness index, Smoothness index, Zero crossing, and Area ratio of 'R’ =5 . N
F28-F32 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'FPD' signatur| = £ S N § K
F33-F37 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'FPA' signaturg (%g = L] 'g»
F38-F42 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'TAF' sighaturg = °
F43-F168 Fourier descriptors of 'Z' signature * '§_
F169-F294 Fourier descriptors of 'PC' signature S — §
F295-F358 Fourier descriptors of 'R’ signature 2 9 o
F359-F422 Fourier descriptors of 'FPD' signature 28 8 ﬁ
F423-FA486 Fourier descriptors of 'FPA' signature s "(v'; i N
F487-F550 Fourier descriptors ofp" signature ,Q Nl L
F551-F676 Fourier descriptors of 'ARC' signature 27 = kS
F677-F740 Fourier descriptors of 'K' signature L 2 §
F741-F804 Fourier descriptors of 'TAF' signature g L
F805-F807 Mean, Variance, and Entropy of 'Z' signature 5w § E
F808-F810 Mean, Variance, and Entropy of 'PC' sighature @ S £ 5
F811-F813 Mean, Variance, and Entropy of 'R' signature 3 = cc>>‘ ©
F814-F816 Mean, Variance, and Entropy of 'FPD' signature o § o

F817-F819 Mean, Variance, and Entropy of 'FPA' signature % ol g

F820-F822 Mean, Variance, and Entropy gf 'signature S3T| L

F823-F825 Mean, Variance, and Entropy of 'ARC' signature % g

F826-F828 Mean, Variance, and Entropy of 'K' signature w L

F829-F831 Mean, Variance, and Entropy of 'TAF' sighature

F832-F855 the entropy of filtered MBRBST images Textural Features
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