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a b s t r a c t

Cardiac cell models are potentially valuable tools for applications such as quantitative safety pharma-

cology, but have many parameters. Action potentials in real cardiac cells also vary from beat to beat, and

from one cell to another. Calibrating cardiac cell models to experimental observations is difficult, because

the parameter space is large and high-dimensional. In this study we have demonstrated the use of

history matching to calibrate the maximum conductance of ion channels and exchangers in two detailed

models of the human atrial action potential against measurements of action potential biomarkers. His-

tory matching is an approach developed in other modelling communities, based on constructing fast-

running Gaussian process emulators of the model. Emulators were constructed from a small number

of model runs (around 102), and then run many times (>106) at low computational cost, each time with

a different set of model parameters. Emulator outputs were compared with experimental biomarkers

using an implausibility measure, which took into account experimental variance as well as emulator

variance. By repeating this process, the region of non-implausible parameter space was iteratively

reduced. Both cardiac cell models were successfully calibrated to experimental datasets, resulting in sets

of parameters that could be sampled to produce variable action potentials. However, model parameters

did not occupy a small range of values. Instead, the history matching process exposed inputs that can co-

vary across a wide range and still be consistent with a particular biomarker. We also found correlations

between some biomarkers, indicating a need for better descriptors of action potential shape.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cardiac cell models have become valuable research tools, un-

derpinning models of electrical excitation in cardiac tissue and

increasingly applied to drug safety testing (Colatsky et al., 2016;

Mirams et al., 2012). Cardiac cell models have become increasingly

detailed, with components representing not only ion channels,

pumps and exchangers in the cell membrane, but also Ca2þ storage

and release (Fink et al., 2011); the number of parameters has

increased correspondingly. Even the relatively simple Beeler-Reuter

model of the ventricular action potential can be considered to have

as many as 63 parameters (Dokos and Lovell, 2004).

For an ion channel model, these parameters include maximum

conductances and parameters specifying the dynamics of transi-

tions between states, such as open, closed, and inactive. During

model development these parameters are fitted to experimental

data, which may have uncertain provenance (Niederer et al., 2009).

Since action potential shape is determined by the overall balance of

many different inward and outward currents, different combina-

tions of currents can produce the same shapes. There are several

published examples of identical action potentials produced by

models with different parameter sets (Zaniboni et al., 2010; Sarkar

and Sobie, 2010).

A further problem is that fitting of model parameters to exper-

imental data on single ion channels does not usually take account of

variability in experimental measurements (Pathmanathan et al.,

2015), which is composed of natural variability and experimental

errors. Cardiac action potentials are variable, with small variations

from one beat to the next within the same cell and with larger

variations between different cells (Zaniboni et al., 2000; Krogh-

Madsen et al., 2015). This variability is important to take into ac-

count for safety-critical applications such as drug safety testing,

and can be incorporated into parameter fitting by generating

models of particular cells (Groenendaal et al., 2015).
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Various approaches to global parameter inference for cardiac

cell models have been described, and these include gradient

descent (Dokos and Lovell, 2004), genetic algorithms (Groenendaal

et al., 2015; Cairns et al., 2017), particle swarm (Loewe et al., 2015),

multivariate regression (Sarkar and Sobie, 2010), and Markov chain

Monte Carlo (Johnstone et al., 2015). Many of these approaches are

computationally intensive, requiring large numbers of model

evaluations. Another more general approach is to generate pop-

ulations of models, where ranges of parameter values are estab-

lished that produce action potential features consistent with a set of

variable experimental observations (Britton et al., 2013;

Muszkiewicz et al., 2015; Tixier et al., 2017; Lawson et al., 2018). A

population of models recognises natural variability in model pa-

rameters such as maximal conductances. These parameters repre-

sent ion channel density in the cell membrane, which is regulated

but variable (Balse and Boycott, 2017), and so is not a physical

constant. However, the number of model evaluations used in these

studies to generate an initial population of models is relatively

small (typically of the order 104), and may not be sufficient to

effectively explore the high dimensional parameter space.

An approach called history matching has been developed to

address similar problems of parameter identification in models of

galaxy formation (Vernon et al., 2010), disease transmission

(Andrianakis et al., 2015), and plant physiology (Vernon et al.,

2018). The computational model is supplemented by a fast-

running emulator (surrogate model) such as a Gaussian Process

(GP) (Rasmussen and Williams, 2006), which is built with simula-

tion data obtained from the computational model. The emulator

predicts the model output surface with an associated confidence,

and can be rapidly evaluated (typically>106 times) with different

model inputs in order to thoroughly explore parameter space.

History matching proceeds iteratively in a series of waves. For each

wave, the computational model is run using sets of inputs sampled

from the currently-known non-implausible parameter space. These

model runs are used to train a set of emulators, which in turn are

evaluated for a large number of samples of the current parameter

space. The emulator outputs are compared with experimental ob-

servations, taking into account the variance (uncertainty) on the

emulator predictions as well as experimental variability. The

parameter space consistent with experimental observations is

iteratively reduced at each wave. In this way, simulations runs are

focused in the regions more consistent with experimental obser-

vations, making the process very efficient. The aim of the present

study was to demonstrate the feasibility of history matching with

GP emulators for calibrating two models of the human atrial action

potential against previously published experimental data sets

(S�anchez et al., 2014).

2. Background

2.1. Gaussian process emulators

A cardiac cell model can be thought of as a simulator, where

outputs (either action potentials or a set of biomarkers e.g. action

potential duration) depend on model parameters or inputs (e.g.

maximum ion channel conductances). This relation can be

described as:

y ¼ fSðxÞ: (1)

The simulator fSðxÞ, for which we have no closed form expres-

sion, can be substituted with a fast running surrogate model f ðxÞ

called an emulator. Given a set of model inputs and corresponding

outputs, called design data fxi; yig, the emulator is trained to

reconstruct the output surface of the simulator, and so can make

rapid predictions for outputs y* from inputs x* that have not been

testedwith the simulator. A GP emulator, which we have previously

used to emulate cardiac cell models (Chang et al., 2015; Johnstone

et al., 2015), is a statistical model which also provides uncertainty

on predictions. For a given input x*, the emulator output y* is

composed of expected values for the outputs, as well as variances

that encode the confidence of the emulator. It is also possible to

designate the inputs x* to also be uncertain.

A common emulator configuration is a mean consisting of

explicit basis functions combined with a zero-mean GP (Rasmussen

and Williams, 2006):

f ðxÞ ¼ mðxÞ þ gðxÞ; (2)

where mðxÞ is a mean function, taken here to be linear

mðxÞ ¼ hðxÞTb; (3)

¼ b0 þ b1x1 þ…þ bPxP ; (4)

and gðxÞ a zero-mean GP
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In these expressions the input vector x ¼ ðx1; x2;… ; xPÞ denotes

P inputs, and the emulator is defined by three sets of hyper-

parameters; b and d are each vectors of length P, and s
2 is a scalar.

Therefore the correlation between outputs y and y
0

depends on the

distance between inputs x and x
0

. The hyperparameter values are

optimised given a set of design data by maximizing the log-

likelihood (Kennedy and O'Hagan, 2000). Design data are ob-

tained by running the simulator for a parameter space filling set of

inputs fxg, designed to evenly sample the range of plausible values

for each input.

Prediction of an emulator output given input vector x* takes the

form of a posterior probability distribution, given by algebraic ex-

pressions (Oakley and O'Hagan, 2004) detailed in the supplemen-

tary information to Chang et al. (2015). This probability density is

characterised by a posterior expectation E�½f ðx*Þ� and a posterior

variance Var�½f ðx*Þ� on the output (� represents quantities with

respect to the emulator). For models with more than one output

n ¼ 1::N, a separate emulator can be constructed for each output yn.

Since the emulator can be evaluated algebraically, it can be used

to perform rapid uncertainty quantification and sensitivity analysis.

Furthermore, in the case of normally distributed inputs, the mean

and variance of the emulator output can be calculated explicitly

(Oakley and O'Hagan, 2004). A variance-based sensitivity index,

defined as the proportion of output variance attributable to the

input variance, can be calculated to determine the influence that

each input has on the output. In this study, we used a linear mean

function hðxÞTb ¼ b0 þ b1x1 þ…þ bPxP since this allowed direct

calculation of sensitivity indices by our software (see 3.3).

2.2. History matching

A detailed background to the motivation and methodology of

the history matching approach is given in Andrianakis et al. (2015)

and Vernon et al. (2018). It is an iterative technique, which exploits

fast running emulators to explore model input space efficiently,

S. Coveney, R.H. Clayton / Progress in Biophysics and Molecular Biology 139 (2018) 43e5844



with the aim of identifying regions of input space that produce

outputs consistent with uncertain experimental observations. We

designate the different model outputs by n, and build an emulator

for each model output. At each iteration step, or wave, the emula-

tors are evaluated at a large number of points in the input space and

the emulator outputs compared with experimental observations

using an implausibility measure:

I2nðxÞ ¼
ðE�½fnðxÞ� � znÞ

2

Var�½fnðxÞ� þ VarðenÞ þ VarðmdÞ
: (7)

I2n is the squared implausibility measure at the input space location

x for output n, which is the ratio of the square of the difference

between the emulator mean E�½fnðxÞ� and observations zn, to the

sum of the emulator variance Var�½fnðxÞ�, observation error VarðenÞ

and model discrepancy error VarðmdÞ (representing known

discrepancy between the model and reality).

To distinguish implausible points in the input space, a threshold

Ithreshold is introduced, so that ifmax½InðxÞ�> Ithreshold (the maximum

implausibility taken across all outputs for a given test input x) then

x is considered implausible. This threshold or “cut-off” is commonly

taken as 3.0 based on Pukelsheim's 3-sigma rule (Pukelsheim,

1994). A large value of InðxÞ compared to the threshold denotes a

point in input space that is implausible because the inputs x pro-

duce an output ðE�½fnðxÞ�Þ that deviates significantly from the

experimental observation zn, even accounting for the uncertainties

expressed in the denominator. However, a small value of InðxÞ

compared to the threshold does not necessarily imply plausibility,

since the emulator variance may be large. Rather,

max½InðxÞ�< ¼ Ithreshold means that the inputs x are non-implausible.

History matching progressively reduces the region of non-

implausible input space in waves. Implausibilities are calculated

for a large number of input points x within the space currently

deemed non-implausible. We designate the input space remaining

at the end of each wave as Not-Ruled-Out-Yet (NROY) input space

(Andrianakis et al., 2015). In wave 1, the initial NROY input space is

likely to be a hypercube extending beyond all plausible values of

the inputs, determined by known constraints on the inputs or by

expert knowledge. In later waves, NROY input space is determined

by the non-implausible inputs found in the previous wave. For each

wave, the simulator is evaluated for a space-filling design in NROY

space, and these design data are used to construct the next wave of

emulators. NROY input space can then be extensively evaluated

with the emulators, and implausible input points discarded in order

to reduce NROY space. As NROY space shrinks, the simulation data

become denser in input space and so the emulators become more

accurate and confident. Hence re-evaluation of NROY with the

updated emulators will cause more points to be discarded. In this

way, history matching can gradually refine regions of non-

implausible input space using a limited number of simulation runs.

3. Methods

3.1. Cell models and model inputs

For the present study, we chose to investigate models of human

atrial cells developed by Courtemanche et al. (1998) and Maleckar

et al. (2009). Both models aim to simulate the human atrial action

potential and represent a similar set of ion channel, pump and

exchanger currents, but each model was developed using slightly

different sets of experimental data and as a result the action po-

tentials have different shapes (Wilhelms et al., 2012; Krogh-

Madsen et al., 2015).

A simulator for each model was implemented using Matlab

(Mathworks Inc.) with code automatically generated from CellML

(www.cellml.org). The model ordinary differential equations were

solved using the Matlab ode15s adaptive solver for stiff systems,

with relative tolerance set to 10�5, absolute tolerance set to 10�3

and maximum time step set to 1ms. In the Courtemanche model

the intracellular concentrations of Naþ and Kþ were held constant

to avoid drift of intracellular ion concentrations arising from an

imbalance of currents (Wilhelms et al., 2012). In the Courtemanche

model, a new parameter fGKur was introduced. This input had a

default value of 1.0, and was used to scale the IK;ur current.

A subset of model inputs were selected based on sensitivity

analysis performed using emulators fitted to a larger set of design

data, to identify inputs with a sensitivity index greater than 0.05.

These eight inputs were then identified as most active. The default

values for each input are listed in Table 1 and are discussed further

below. All other model inputs were set to the default values as

specified in the original model publications.

3.2. GP emulator design data

For each wave of history matching, a set of design data were

generated by running the cell model simulators using a set of inputs

sampled from NROY space within the ranges specified in Table 1.

For the first wave, the inputs were selected with Latin Hypercube

(LHC) sampling using the Matlab function lhsdesign, set to max-

imimse the minimum distances between points over 1000 itera-

tions. We selected LHC sampling to obtain good coverage of the

input space, although other approaches such as orthogonal sam-

pling may offer more efficient coverage (Bingham et al., 2009).

Subsequent waves sampled inputs from the NROY region for design

data inputs, and details of this procedure are given below. The

number of design data required for a GP emulator is generally

considered to be at least 10� the number of inputs (Loeppky et al.,

2009). We therefore chose to use 120 simulator runs for each wave

of history matching, so that we could discard any runs that pro-

duced abnormal action potentials, described in more detail below.

The range for each input was initially set at 10% to 200% of the

default value (i.e. 0:1� to 2:0� default), in order to bracket all likely

variation of these parameters for the purposes of history matching.

However the ranges for GNa, GK1, GKur , and Gb;Ca were reduced in

both models in order to reduce the number of simulator runs that

resulted in pacemaking activity or a failure of the model to repo-

larise. Each simulator run comprised 40 beats at a cycle length of

1000ms. For each simulator run, seven outputs were calculated

from the final action potential, which correspond to the biomarkers

used by S�anchez et al. (2014):

� dV=dtmax e Maximum slope of the action potential upstroke.

� Vamp e Amplitude of the action potential, measured as the dif-

ference between peak voltage and resting membrane potential.

� V20 e Membrane voltage measured at 20% of APD90.

� APD20, APD50, and APD90 e Action potential duration (APD) at

20%, 50%, and 90% of repolarisation.

� RMP e Resting membrane potential, calculated as the average

membrane voltage over a 10ms period, 100ms prior to the ac-

tion potential upstroke.

Fig. 1 shows the final action potential from the initial set of 120

simulator runs for each cell model. Superimposed on these traces is

the final action potential from a simulator runwith the inputs set to

their default values. A wide range of action potential shapes are

produced by simulator, and for the Maleckar model some simulator

runs resulted in abnormal action potentials.

Simulator runs with spontaneous pacemaking activity or failure

to repolarise indicated by RMP > � 50mV and/or APD90 >600ms,

S. Coveney, R.H. Clayton / Progress in Biophysics and Molecular Biology 139 (2018) 43e58 45



or APD alternans defined as a difference in APD90 of successive

beats of more than 5%, were classed as abnormal action potentials

and were excluded from the design data used to train the emula-

tors. The number of abnormal simulator runs was less than 12 in all

waves of history matching, except for wave 2 with the Maleckar

model where it was 25.

3.3. GP emulator fitting procedure

Fitting of the GP emulators, sensitivity analysis, and history

matching were all done using “maGPy”, a Python package available

with a GPL 3.0 license (https://github.com/samcoveney/maGPy).

A separate GP emulator was fitted to each of the eight model

outputs identified above, with all of the model inputs considered to

be ‘active’ (each model input corresponds to an index p in equation

(6)). The emulator hyperparameters were optimised bymaximising

log-likelihood given the design data (Kennedy and O'Hagan, 2000),

using the Python routine scipy.optimize.minimize with

method¼ L-BFGS-B implemented in the SciPy library. The optimi-

sation was repeated 20 times with a different initial guess, and the

solution with greatest log-likelihood was selected. Most repeats

converged to the same log-likelihood, indicating that the most

optimal solution had been found.

The quality of emulator fit was assessed by calculating variance-

based sensitivity indices for all input-output combinations, and

these indices are supplied as supplementary data. If the sum of

sensitivity indices for a single output was close to 1, then this can

indicate that output variability has been captured by the input

variability assuming no interaction between inputs, which in-

dicates goodness of fit. It is noteworthy that the emulator fits show

improvement as history matching proceeds in each wave, because

the training data becomes more dense in input space and because

the output surface varies less across a smaller input space.

Table 1

Default values of each input, and the range used to sample inputs for emulator design data.

Courtemanche model

Input Default value Range Percentage of default Units

GNa 7.8 3.90e11.70 (50� 150%) nS/pF

GK1 0.09 0.0675e0.1800 (75� 200%) nS/pF

Gto 0.1652 0.0165e0.3330 (10� 200%) nS/pF

fGKur 1.0 0.3e2.0 (30� 200%) none

GKr 0.0294 0.0029e0.0588 (10� 200%) nS/pF

GCa;L 0.1237 0.0124e0.2475 (10� 200%) nS/pF

Gb;Ca 0.0011 0.0001e0.0012 (10� 110%) nS/pF

iNaK;Max 0.5993 0.0599e1.1987 (10� 200%) pA/pF

Maleckar model

Input Central value Range Units

PNa 0.0018 0.0009e0.0027 (50� 150%) nL/s

GK1 3.1 1.550e4.6500 (50� 150%) nS

Gt 8.250 0.825e16.500 (10� 200%) nS

GKur 2.250 0.675e4.500 (30� 200%) nS

GKr 0.5 0.05e1.00 (10� 200%) nS

GCa;L 6.750 0.675e13.500 (10� 200%) nS

Gb;Ca 0.0786 0.0079e0.0865 (10� 110%) nS

iNaK;Max 68.55 6.855e137.100 (10� 200%) pA

Fig. 1. Initial set of design data for (a) Courtemanche and (b) Maleckar models. Each panel shows the final action potential in a sequence of 40, with pacing at a cycle length of

1000ms. Bold lines indicate the model behaviour for baseline values of the inputs, grey lines show design data.

S. Coveney, R.H. Clayton / Progress in Biophysics and Molecular Biology 139 (2018) 43e5846



3.4. Experimental data

We used experimental datasets published by S�anchez et al.

(2014), which comprise measurements made in cells obtained

from patients with normal hearts in sinus rhythm (SR), and from

patients with hearts that have undergone remodelling due to

chronic atrial fibrillation (cAF). For each action potential biomarker

in these datasets, the median was used as the observed output zn
for history matching, and the square of the median absolute devi-

ation (MAD) as the experimental error variance VarðenÞ. We

selected these measures because the datasets were not well

described using the mean and standard deviations, due to outliers

and long tails in the distributions which allowed apparent

‘matches’ which clearly did not represent the population data in

any meaningful way. These median-based measures provide a

much stricter and representative description of the population

data. We set the model discrepancy term (VarðmdÞ in equation (7))

to zero, since we had no knowledge of how each cell model may

systematically deviate from ‘real world’ outputs.

3.5. History matching procedure

Our history matching procedure was as follows:

1. If wave 1, select 120 simulator inputs with (maximin optimized)

Latin Hypercube (LHC) sampling in the range described in

Table 1. If wave > 1, sample the previous wave NROY space to

obtain 120 simulator inputs (see below for details).

2. Run simulator at each set of inputs and obtain corresponding

outputs, discarding any abnormal action potentials. The

remaining inputs and outputs were the design data for the

current wave.

3. Fit emulators to the new design data, one emulator for each

output. Design data for up to 4 previous waves were also

included, in order to retain accurate predictions at the edges of

NROY space.

4. If wave 1, run each emulator at each of 3,000,000 points in the

input space, obtained from LHC in same ranges used for wave 1

design data. If wave > 1, run emulator for all input points in the

previous wave NROY space.

5. Calculate corresponding In for each output, and apply cut-off

threshold to the highest maximum In to determine if input

point lies in NROY space for current wave. If less than 100,000

points remain in this NROY space, then generate more non-

implausible points (see below).

6. If wave <11, return to step 1

To generate additional points in NROY input space, we used an

iterative ‘cloud’ method: for every point in NROY space, we

generated new points by sampling from a multi-normal distribu-

tion centered on that point and scaled into the current range of the

known NROYpoints, and then further scaled by a factor so that only

about 20% of the new points were non-implausible (ensuring new

points are sufficiently far from the generating points). We added

these points to the NROY space and repeated the process until we

had at least 100,000 points in NROY space.

The method of choosing a new space filling design in NROY

space to use for more simulations for the next wave is a difficult and

open problem.We used the python package diversipy (https://pypi.

python.org/pypi/diversipy) for this, using the greedy_minmax

routine for approximately 25% of selected points and psa_select for

75% of selected points, which balances filling the space against

obtaining enough points around the edges.

The cut-off for implausibility used to designate regions of non-

implausible space was gradually reduced with each wave

(Andrianakis et al., 2015; Vernon et al., 2018). The minimum

threshold is usually considered to be 3.0, based on Pukelsheim's 3-

sigma rule (Pukelsheim, 1994), and so we used this cutoff as our

targeted ‘final’ NROY space. By starting with cutoff 4.0 and gradu-

ally reducing the cutoff with each wave (see Table 2), emulator

inaccuracies in earlier waves were unlikely to result in regions of

‘true’ final NROY space (defined by cutoff 3.0) being discarded

initially. Furthermore, this method allowed us to better focus

simulation efforts in the region of interest, since large volumes

input space can be deemed implausible evenwith cutoff 4.0 despite

the relative sparsity of simulation data across input space in early

waves.

A indication of when to stop history matching is that the

emulator variance has fallen below the other variances, such that

further waves do not significantly reduce NROY space. In our case,

the experimental variance was the population variance (squared

median absolute deviation) and was relatively large, so this crite-

rion was not useful. We stopped history matching when NROY

space had approximately converged.

4. Results

In the case of the Maleckar model, it was not possible to match

Vamp to the median-based measures of either population, although

we found it was possible to match to mean and variance based

measures of Vamp. However, it was clear that matches to the mean

and variance were only possible due to a very large variance caused

by the spread of the population, and that these matches nonethe-

less failed to reproduce the population observations in any mean-

ingful way. For this reason, Vamp was excluded from the history

matching for the Maleckar model, and we conceded that it was not

possible to match this output.

Table 2 shows the progressive reduction of the non-implausible

region of NROY input space with each wave of history matching.

TheMaleckar model showed a rapid reduction of NROY space in the

early waves. In both cell models for both data sets, there was a

cumulative reduction of NROY by � 0:1% between waves 9 and 10,

indicating that 10 waves were sufficient.

Fig. 2 shows plots of minimum implausibility projected onto the

Gb;Ca � INaK;Max input plane for the Courtemanche and Maleckar

models during fitting to the SR dataset. The maximum implausi-

bility across outputs was calculated for all input points as described

above. The minimum of these values taken across all inputs falling

within each 2D-pixel (hexagon) was then used to color the pixel

(see colorbars). Grey regions indicate where no points have been

tested in the current wave, since no points remained in NROY after

the previous wave.

In the examples shown in Fig. 2, history matching indicates that

the experimental observations were consistent with a correlation

between Gb;Ca and INaK;Max. For the Courtemanche model, all non-

implausible INaK;Max values fell below a threshold that was linear

in Gb;Ca, such that for high Gb;Ca values all INaK;Max values were non-

implausible, and low Gb;Ca could only be paired with low values of

INaK;Max. For the Maleckar model (Fig. 2a) the association is some-

what different, with low (high) values of Gb;Ca consistent with low

(high) values of INaK;Max, and higher values of INaK;Max consistent

with Gb;Ca compared to the Courtemanche model. It is important to

highlight that as history matching progresses, these plots did not

show a convergence towards particular individual values of the

outputs, but rather to broad regions of coupled INaK;Max � Gb;Ca

input space. We discuss this observation in more detail below.

As the NROY space was progressively reduced in size by both

restricting the cutoff and reduction in emulator variance as simu-

lator data became more densely located in input space, the set of

simulator outputs obtained using inputs sampled from the NROY
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space was gradually constrained. Fig. 3 shows the sets of 120 model

outputs obtained from design data inputs for each wave in the

Courtemanche model during history matching to the SR dataset, as

well as the experimental data from S�anchez et al. (2014). A similar

plot for the Maleckar model is given in (Fig. 4). The data for wave 1

indicate the initial set of design data, and the data indicated by

Table 2

Implausibility cut-off threshold and size of NROY space at each wave of history matching. Numbers in brackets show cumulative reduction of NROY space.

Courtemanche model

Wave cutoff SR NROY SR (%) NROY cAF (%)

1 4.0 23.24 (23.24) 29.55 (29.55)

2 4.0 87.35 (20.30) 85.06 (25.14)

3 3.8 76.96 (15.62) 69.14 (17.38)

4 3.6 71.02 (11.09) 62.94 (10.94)

5 3.4 66.95 (7.43) 58.03 (6.35)

6 3.2 61.59 (4.58) 49.03 (3.11)

7 3.0 57.50 (2.63) 46.44 (1.45)

8 3.0 88.76 (2.34) 81.74 (1.18)

9 3.0 94.32 (2.20) 72.81 (0.86)

10 3.0 96.55 (2.13) 87.83 (0.76)

Maleckar model

Wave cutoff NROY SR (%) NROY cAF (%)

1 4.0 2.19 (2.19) 17.87 (17.87)

2 4.0 57.63 (1.26) 73.26 (13.09)

3 3.8 64.12 (0.80) 76.10 (9.96)

4 3.6 66.52 (0.53) 79.04 (7.87)

5 3.4 61.11 (0.32) 82.98 (6.53)

6 3.2 59.74 (0.19) 74.33 (4.86)

7 3.0 53.84 (0.10) 74.51 (3.62)

8 3.0 90.49 (0.09) 95.64 (3.46)

9 3.0 93.94 (0.08) 96.24 (3.33)

10 3.0 95.15 (0.08) 97.44 (3.25)

Fig. 2. : Implausibility measures for each cell model at waves 1, 4, 7, and 10, for SR dataset. Each plot pixel shows the minimum, across all tested points for the combination of

INaK;Max and Gb;Ca in that pixel, of the maximum implausibility across all output. The maximum of the colourscale in each panel is the implausibility cut-off shown in table 2. Regions

in grey contained no points to test for that wave of history matching, since all points in that region were discarded in previous waves. Each axis spans the initial range of each input.
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wave 11 show the final set of design data obtained from sampling

the NROY space produced from wave 10 of the history matching

procedure. As expected there is a progressive reduction in the range

of each output, and the action potentials produced by the simulator

using as inputs the design data obtained from sampling the NROY

space produced from wave 10 (bottom right in each figure) show

convergence towards an action potential shape with spike and

dome morphology and an APD90 of around 300ms. However, the

spread of action potential shapes and durations is greater for the

Courtemanche compared to the Maleckar model, and a small

number of the Maleckar model solutions in the final wave show

some depolarisation just prior to the action potential upstroke.

The history matching procedure resulted in compression of

simulation data from each wave into the ranges defined by the

median and MAD of the population. A priori a trend towards the

median of each observation is not expected, because the outputs

from the models co-varied. Nonetheless, the Courtemanche model

outputs mostly seemed to converge towards the median of the

experimental observations, while for the Maleckar model dV=dtmax

and V20 deviated quite significantly away from the experimental

Fig. 3. Changes in design data outputs for each wave of history matching in the Courtemanche model. Experimental data are shown as a green filled box, model outputs are shown

as red open boxes. Solid horizontal lines indicate the medians, and boxes denote first and third quartiles. Whiskers indicate either 1.5 � the interquartile range, or the data point

with the greatest deviation from the median, whichever is the smallest. The plot in the bottom right shows action potentials in the original design data (grey lines), and for the final

wave design data (red lines). Superimposed in black is the action potential obtained using the default mode inputs.
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median. For the Maleckar model, Vamp remained much higher than

the experimental median throughout history matching, which was

why it was excluded. Therefore, with our chosen set of inputs, the

Maleckar model was not able to reproduce all of the biomarkers in

the SR dataset.

The trend in design data inputs is shown in Figs. 5 and 6 for

history matching to the SR dataset. Some of the inputs converged

towards a reduced range. In the Courtemanche model (Fig. 5) me-

dian GNa, GK1, and Gb;Ca trended towards their default values, while

median INaK;Max trended below its default value. In the Maleckar

model (Fig. 6), median PNa, GK1 and GKur trended below their

default values, while median Gto and GCaL trended above their

default values. However, although the other inputs continued to be

spread over a wide range, the shape of NROY space confines the

way that these inputs covary (Fig. 7).

Some of the trends identified in Figs. 5 and 6 can be interpreted

mechanistically in terms of themodel. For example, in theMaleckar

model there was a trend towards higher values of Gt and GCaL

compared to the default settings for these inputs when history

matched to the SR dataset. Increased Gto results in a greater

Fig. 4. Changes in design data outputs for each wave of history matching in the Maleckar model. Experimental data are shown as green filled box, model outputs are shown as blue

open boxes. Solid horizontal lines indicate the medians, and boxes denote first and third quartiles. Whiskers indicate either 1.5 � the interquartile range, or the data point with the

greatest deviation from the median, whichever is the smallest. The plot in the bottom right shows action potentials in the original design data (grey lines), and for the final wave

design data (blue lines). Superimposed in black is the action potential obtained using the default mode inputs.
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transient outward current immediately following the action po-

tential upstroke, and produces a more pronounced notch in the

history matched action potentials (Fig. 4) compared to the default

model (Fig. 1b). An increased GCaL results in more inward current

during the plateau phase of the action potential, leading to a longer

plateau phase and increased APD90. These trends cause the Mal-

eckar model action potential shape to align more with the popu-

lation observations.

The example implausibility plots shown in Fig. 2 indicate that

history matching might expose pairs of inputs that co-vary to match

the desired outputs. The design data inputs shown in Figs. 5 and 6 are

therefore plotted again in Fig. 7, where the projection of the 8-

dimensional input space onto each pair of inputs are shown for

historymatching at wave 1 (open circles) and wave 11 (filled circles).

These plots are not the same as the history matching plots in Fig. 2,

because they show only the set of 120 design data (from simulation)

sampled from NROY space rather than the extensive and dense

sampling of the input space used for history matching. They serve to

emphasise the point that history matching reduced the size of non-

implausible input space, and did not necessarily identify particular

values for the model inputs. Rather, complex configurations in high

dimensional input space are revealed. It is therefore important to

sample the high dimensional NROY space shown in Fig. 7 rather than

the marginal spread of inputs shown in Figs. 5 and 6.

Fig. 5. Changes in each input during history matching of the Courtemanche model to data from normal atrial cells (SR). Solid horizontal lines extending across the plot indicate the

default value of each input. Solid horizontal lines in each box indicate the medians, and boxes denote first and third quartiles. Whiskers indicate either 1.5 � the interquartile range,

or the data point with the greatest deviation from the median, whichever is the smallest.
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In Fig. 8 the most implausible output during each wave of his-

torymatching to the SR dataset is shown for eachmodel. APD20 was

rarely the most implausible output, and so contributed little to the

history matching process in each model. In the Courtemanche

model, RMP was an important output at each wave. For the Mal-

eckar model, Vamp was excluded throughout, and V20 and APD50

appeared to be the most important outputs for constraining NROY

space, except inwave 1where V20 was fairly negligible compared to

the other outputs.

The most implausible outputs for history matching to the cAF

dataset are shown in Fig. 9a for the Courtemanche model and

Fig. 9c for theMaleckar model. For the cAF dataset, dV=dtmax played

a bigger role in fitting the Maleckar model. Action potentials pro-

duced by the simulator using the final set of design data obtained

following history matching to the cAF dataset as inputs are shown

in Fig. 9b for the Courtemanche model and Fig. 9d for the Maleckar

model. Both sets of action potentials have a shorter APD90

compared to those resulting from history matching to SR data and

shown in Figs. 3 and 4. However, the greater Vamp in the Maleckar

model results in a much larger spike compared to the Courte-

manche model, even though the V20 is fitted well to the experi-

mental data.

Fig. 6. Changes in each input during history matching of the Maleckar model to data from normal atrial cells (SR). Solid horizontal lines extending across the plot indicate the

default value of each input. Solid horizontal lines in each box indicate the medians, and boxes denote first and third quartiles. Whiskers indicate either 1.5 � the interquartile range,

or the data point with the greatest deviation from the median, whichever is the smallest.
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Fig. 7. Projections of the NROY space onto each pair of inputs in (a) the Courtemanche model (red), and (b) the Maleckar model (blue) arising from simulator runs in wave 1 and

wave 11 of history matching to the SR dataset. Each point shows one pair of inputs in the design data; points from wave 1 are shown as open circles and points from wave 11 are

shown as filled circles.
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Fig. 8. Most implausible outputs at each wave for the Courtemanche model (a) and Maleckar model (b) during history matching to the SR dataset. Note that Vamp was not included

in history matching for the Maleckar model.

Fig. 9. (a) Most implausible outputs at each wave for the Courtemanche model during history matching to data from cells that have been remodelled in response to chronic AF. (b)

Initial design data and action potentials fromwave 10. (c) Most implausible outputs at each wave for the Maleckar model during history matching to data from cells that have been

remodelled in response to chronic AF. Note that Vamp was not included in history matching for the Maleckar model. (d) Initial design data and action potentials from wave 10.
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The focus of this study was on the application of history

matching to cardiac cell models. However, by history matching to

the SR and cAF datasets we were able to compare the range of in-

puts in each model consistent with normal and remodelled cardiac

cells, and these are shown in Fig. 10. We stress that each set of

points shown are projections of the NROY regions, and so the plots

do not show the co-variation of inputs represented by the complex

shape of NROY in input space that are required tomatch the desired

outputs. Because we are not confident that each input was inde-

pendent, we did not do any statistical tests. However, it is clear from

Fig. 10a that for the Courtemanche model GK1 tended to be smaller

and Gto tended to be larger and less constrained with fitting to the

SR dataset compared to cAF. Fig. 10b shows that in the Maleckar

model a similar trend for GK1 was observed, although for both the

SR and cAF datasets the selected range for Gt may not have been

large enough.

5. Discussion and conclusions

In this paper we report on the application of Bayesian history

matching to the problem of selecting a set of inputs for two cardiac

cell models that produce outputs consistent with experimental

observations. This approach has successfully identified regions of

input space that can be sampled to produce sets of inputs that

generate model runs consistent with experimental observations.

However, this study has raised several new questions and identified

limitations. As cardiac cell models are increasingly used for appli-

cations such as quantitative safety pharmacology, these new

questions are likely to have implications for future work in this

area.

5.1. Comparison with previous work

In the present study we used experimental data described by

S�anchez et al. (2014), which has been previously used to identify

populations of both the Courtemanche and Maleckar models

consistent with the SR and cAF datasets (S�anchez et al., 2014;

Lawson et al., 2018). Although we examined a slightly different set

of model inputs, the overall differences in maximal conductances

between the SR and cAF datasets are broadly comparable. Earlier

studies have examined simulated remodelling in the Courte-

manche and Maleckar models, as well as the predecessor of the

Maleckar model (Wilhelms et al., 2012; Cherry and Fenton, 2008),

taking into account other features of the cell models including their

dynamic behaviour and Ca2þ handling. We did not take these

features into account, but recognise their importance because dif-

ferences in simulated intracellular Ca2þ can discriminate between

models that produce identical action potentials (Sarkar and Sobie,

2010), and dynamic model properties such as restitution can also

be used to improve identifiability (Groenendaal et al., 2015).

In this study we fixed the intracellular concentrations of Naþ

and Kþ in the Courtemanche model in line with previous work

(Wilhelms et al., 2012). Other approaches to stability in this model

have been proposed Van Oosterom and Jacquemet (2009), and

could be deployed in future work.

5.2. Insights into models

Historymatching has yielded some insights into themodels that

we examined. The plots shown in Fig. 7 indicate that the NROY

region in the 8-dimensional input space appears to be contiguous.

With the default set of inputs, the Courtemanche model produces a

prominent spike and dome action potential shape, with an APD of

around 300ms while in contrast theMaleckar action potential with

default inputs is more triangular. It is possible to modify the inputs

to the Courtemanche model so that it produces a more triangular

action potential, and this approach has been used to simulate the

effects of remodelling resulting from chronic atrial fibrillation

(Cherry and Fenton, 2008). In the present study, history matching

to the SR dataset identified a set of inputs that produced a promi-

nent spike and dome configuration in the Maleckar model by

increasing It . This finding demonstrates the flexibility of cardiac cell

models. However, fitting to the cAF dataset did not have the

opposite effect of amore triangular action potential in eithermodel,

although this may be because of the choice of action potential

biomarkers we used, and this is discussed further below.

In order to describe the population observations and to provide

a more restrictive test of the usefulness of history matching, we

used the median and squared median absolute deviation as mea-

sures of the experimental data as opposed to the mean and vari-

ance. Median based measures are more robust as they are less

susceptible to influence by outliers. Using median based measures,

we found that it was not possible to match the Maleckar model to

the Vamp biomarker, since the model consistently produced Vamp

values far above the range of observed Vamp values. This could be a

limitation of the model, or a consequence of gating kinetics that

Fig. 10. Comparison of inputs in wave 10 for the Courtemanche (a) and Maleckar (b) models when history matched to data from normal atrial cells (SR, blue) and cells that have

been remodelled in response to chronic AF (cAF, red). Horizontal lines indicate the default values of each input.
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Fig. 11. : Correlations between each pair of design data outputs in (a) the Courtemanche model, and (b) the Maleckar model arising from simulator runs in wave 1 and wave 11 of

history matching to the SR dataset. Each point shows one pair of outputs from the design data; points from wave 1 are shown in blue, and points from wave 11 in red.
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were not varied in the present study. Matches to the mean and

variance were possible, but only because an inflated variance

allowed matches far outside any actual observations in the

population.

It should be noted that our approach described here did not aim

to find the probability distribution of inputs which reproduce an

observed probability distribution on the model outputs. However,

given an appropriate sampling technique in the identified input

space, this would be possible to do efficiently by using emulators in

place of simulators. We observed a complex configuration of inputs

in the NROY space, and this is illustrated in the projections of

sampled points shown in Fig. 7. Some of the samples lie close to the

upper or lower bound, in particular the lower bound of GKur and the

upper bound of GCa;L in the Maleckar model. However, reducing

GKur below the lower bound, and increasing GCa;L above the upper

bound tended to result in abnormal action potentials.

The potential set of inputs for cardiac cell models that could be

investigated using a history matching approach is very large. In this

study we chose a subset of model inputs that have a physiological

interpretation, since maximum conductances reflect the density of

ion channels in the membrane. History matching other model in-

puts, such as dynamic gating parameters (Pathmanathan et al.,

2015) or Ca2þ handling parameters (Cherry and Fenton, 2008)

would of course be possible, but suitable outputs to match against

would need to be chosen.

5.3. Experimental data and action potential biomarkers

Our study made use of experimental datasets, using a set of

biomarkers designed to capture the action potential shape

(S�anchez et al., 2014). While these biomarkers provide a useful

starting point, the experimental variability was large with a coef-

ficient of variation of up to 30%, which is larger than in some less

comprehensive datasets for similar cells (Wilhelms et al., 2012).

Another limitation of the experimental data is the extent of cor-

relations among the biomarkers, illustrated by plotting pairs of

design data outputs in Fig. 11. It is likely that the biomarkers used in

the present study are not an optimal description of action potential

shape, and more robust descriptors may be needed.

5.4. Future directions and open questions

In this study we have demonstrated that history matching can

be used to identify sets of cardiac model inputs that can reproduce a

set of uncertain experimental observations. We have not been able

to identify distributions of parameter values because of compen-

sation mechanisms within the models as well as degeneracy.

Nevertheless, despite history matching to population statistics, in

which correlation between observed outputs in individuals will be

blurred out, we have still managed to cut-down the plausible space

significantly. Further work could attempt to specify correlations in

the observed outputs and use a multivariate form of the implau-

sibility criterion to reduce the non-implausible space further. This

may assist in the degeneracy problem as the correlations between

outputs would place stricter conditions on which inputs are non-

implausible.

Model discrepancy aims to quantify the difference between a

model and the real world system that it represents. It is a crucial

missing ingredient for model calibration, but at present it is not

clear how model discrepancy should be expressed or even boun-

ded. Progress in this area is important, because understanding the

systematic mismatch between a model and the real system will

enable experimental data to be properly used in model calibration.

The history matching approach allows plausible inputs to be

captured even in the case of model discrepancy, provided this is

defined well. With careful use of suitable biomarkers it may be

possible to learn the model discrepancy by adjusting it to ensure

that we can match to known inputs. In the case of Vamp for the

Maleckar model in this study, it was clear that there was significant

model discrepancy present since a match to the population was

simply not possible.

If progress can bemade in these areas, thenwe can expect to see

a new generation of cardiac cell models (or improved parameter-

isation of existing models), which take into account the variability

of real cardiac cells, and can be matched with known confidence to

specific datasets. This type of model can not only be expected to

provide new insights into physiological mechanisms, but also to

provide robust and reliable tools for quantitative safety

pharmacology.

Acknowledgements

We are very grateful to Ian Vernon and Michael Goldstein at the

University of Durham, as well as Richard Wilkinson and Jeremy

Oakley at the University of Sheffield, for valuable discussions about

history matching and Gaussian processes. This work was funded by

EPSRC grant EP/K037145/1.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

https://doi.org/10.1016/j.pbiomolbio.2018.08.001.

References

Andrianakis, I., Vernon, I.R., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.N.,
Goldstein, M., White, R.G., 2015. Bayesian history matching of complex infec-
tious disease models using emulation: a tutorial and a case study on HIV in
Uganda. PLoS Comput. Biol. 11 (1), e1003968.

Balse, E., Boycott, H.E., 2017. Ion channel trafficking: control of ion channel density
as a target for arrhythmias? Front. Physiol. 8 (OCT), 1e6.

Bingham, D., Sitter, R.R., Tang, B., 2009. Orthogonal and nearly orthogonal designs
for computer experiments. Biometrika 96 (1), 51e65.

Britton, O.J., Bueno-Orovio, A., Van Ammel, K., Lu, H.R., Towart, R., Gallacher, D.J.,
Rodríguez, B., may, 2013. Experimentally calibrated population of models pre-
dicts and explains intersubject variability in cardiac cellular electrophysiology.
Proc. Natl. Acad. Sci. U.S.A. 110 (23), E2098eE2105. http://www.ncbi.nlm.nih.
gov/pubmed/23690584.

Cairns, D.I., Fenton, F.H., Cherry, E.M., 2017. Efficient parameterization of cardiac
action potential models using a genetic algorithm. Chaos: An Interdisciplinary
Journal of Nonlinear Science 27 (9), 093922. http://aip.scitation.org/doi/10.
1063/1.5000354.

Chang, E.T.Y., Strong, M., Clayton, R., 2015. Bayesian sensitivity analysis of a cardiac
cell model using a Gaussian process emulator. PLoS One 10 (6), e0130252.
http://journals.plos.org/plosone/article?id¼10.1371/journal.pone.0130252.

Cherry, E.M., Fenton, F.H., 2008. Visualization of spiral and scroll waves in simulated
and experimental cardiac tissue. N. J. Phys. 10, 125016.

Colatsky, T., Fermini, B., Gintant, G., Pierson, J.B., Sager, P., Sekino, Y., Strauss, D.G.,
Stockbridge, N., 2016. The comprehensive in vitro proarrhythmia assay (CiPA)
initiative update on progress. J. Pharmacol. Toxicol. Meth. 81, 15e20. https://doi.
org/10.1016/j.vascn.2016.06.002.

Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying
human atrial action potential properties: insights from a mathematical model.
AJP (Am. J. Physiol.) 275, H301eH321.

Dokos, S., Lovell, N.H., 2004. Parameter estimation in cardiac ionic models. Prog.
Biophys. Mol. Biol. 85 (2e3), 407e431. http://www.ncbi.nlm.nih.gov/pubmed/
15142755.

Fink, M., Niederer, S.A., Cherry, E.M., Fenton, F.H., Koivumaki, J.T., Seemann, G.,
Thul, R., Zhang, H., Sachse, F.B., Crampin, E.J., Smith, N.P., 2011. Cardiac cell
modelling: observations from the heart of the cardiac physiome project. Prog.
Biophys. Mol. Biol. 104, 2e21.

Groenendaal, W., Ortega, F.A., Kherlopian, A.R., Zygmunt, A.C., Krogh-Madsen, T.,
Christini, D.J., 2015. Cell-specific cardiac electrophysiology models. PLoS Com-
put. Biol. 11 (4), 1e22.

Johnstone, R.H., Chang, E.T.Y., Bardenet, R., de Boer, T.P., Gavaghan, D.J.,
Pathmanathan, P., Clayton, R., Mirams, G.R., 2015. Uncertainty and variability in
models of the cardiac action potential: canwe build trustworthy models? J. Mol.
Cell. Cardiol. 96, 49e62. https://doi.org/10.1016/j.yjmcc.2015.11.018.

Kennedy, M.C., O'Hagan, A., 2000. Predicting the output from a complex computer
code when fast approximations are available. Biometrika 87, 1e13.

S. Coveney, R.H. Clayton / Progress in Biophysics and Molecular Biology 139 (2018) 43e58 57



Krogh-Madsen, T., Sobie, E.A., Christini, D.J., 2015. Improving cardiomyocyte model
fidelity and utility via dynamic electrophysiology protocols and optimization
algorithms. J. Physiol. 00, 1e12. http://www.ncbi.nlm.nih.gov/pubmed/
26661516.

Lawson, B.A.J., Drovandi, C.C., Cusimano, N., Burrage, P., Rodriguez, B., Burrage, K.,
2018. Unlocking datasets by calibrating populations of models to data density: a
study in atrial electrophysiology. Science Advances 4 (January), e1701676.
http://arxiv.org/abs/1706.06763.

Loeppky, J.L., Sacks, J., Welch, W.J., 2009. Choosing the sample size of a computer
experiment: a practical guide. Technometrics 51 (4), 366e376.

Loewe, A., Wilhelms, M., Schmid, J., Krause, M.J., Fischer, F., Thomas, D., Scholz, E.P.,
D€ossel, O., Seemann, G., jan, 2015. Parameter estimation of ion current for-
mulations requires hybrid optimization approach to Be both accurate and
reliable. Frontiers in Bioengineering and Biotechnology 3, 209. http://journal.
frontiersin.org/Article/10.3389/fbioe.2015.00209/abstract. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid¼4710757{&}tool¼pmcentrez
{&}rendertype¼abstract.

Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N. a., 2009. Kþ current
changes account for the rate dependence of the action potential in the human
atrial myocyte. Am. J. Physiol. Heart Circ. Physiol. 297 (4), H1398eH1410.

Mirams, G.R., Davies, M.R., Cui, Y., Kohl, P., Noble, D., nov, 2012. Application of
cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br. J.
Pharmacol. 167 (5), 932e945. http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid¼3492977{%26}tool¼pmcentrez{%26}
rendertype¼abstract.

Muszkiewicz, A., Britton, O.J., Gemmell, P., Passini, E., Carlos, S., Zhou, X., Carusi, A.,
Quinn, T.A., Burrage, K., Bueno-orovio, A., Rodriguez, B., 2015. Variability in
cardiac electrophysiology: using experimentally- calibrated populations of
models to move beyond the single virtual physiological human paradigm. Prog.
Biophys. Mol. Biol. 120 (2016), 115e127.

Niederer, S.A., Fink, M., Noble, D., Smith, N.P., may, 2009. A meta-analysis of cardiac
electrophysiology computational models. Exp. Physiol. 94 (5), 486e495. http://
www.ncbi.nlm.nih.gov/pubmed/19139063.

Oakley, J.E., O'Hagan, A., aug 2004. Probabilistic sensitivity analysis of complex
models: a Bayesian approach. J. Roy. Stat. Soc. B 66 (3), 751e769. http://doi.
wiley.com/10.1111/j.1467-9868.2004.05304.x.

Pathmanathan, P., Shotwell, M.S., Gavaghan, D.J., Cordeiro, J.M., Gray, R. a., 2015.
Uncertainty quantification of fast sodium current steady-state inactivation for

multi-scale models of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 117
(1), 1e15. http://linkinghub.elsevier.com/retrieve/pii/S0079610715000097.

Pukelsheim, F., 1994. The three sigma rule. Am. Statistician 48 (2), 88e91.
Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning,

first ed. MIT press, Cambridge.
S�anchez, C., Bueno-Orovio, A., Wettwer, E., Loose, S., Simon, J., Ravens, U., Pueyo, E.,

Rodriguez, B., 2014. Inter-subject variability in human atrial action potential in
sinus rhythm versus chronic atrial fibrillation. PLoS One 9 (8), e105897. http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid¼4144914{&}
tool¼pmcentrez{&}drendertype¼abstract.

Sarkar, A.X., Sobie, E. a., jan 2010. Regression analysis for constraining free pa-
rameters in electrophysiological models of cardiac cells. PLoS Comput. Biol. 6
(9), e1000914. http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid¼2932676{&}tool¼pmcentrez{&}rendertype¼abstract.

Tixier, E., Lombardi, D., Rodriguez, B., Gerbeau, J.-F., 2017. Modelling variability in
cardiac electrophysiology: a moment-matching approach. J. R. Soc. Interface 14
(133), 20170238. http://www.ncbi.nlm.nih.gov/pubmed/28835541{\%}0Ahttp://
rsif.royalsocietypublishing.org/lookup/doi/10.1098/rsif.2017.0238.

Van Oosterom, A., Jacquemet, V., 2009. Ensuring stability in models of atrial ki-
netics. Comput. Cardiol. 36, 69e72.

Vernon, I., Goldstein, M., Bower, R.G., dec 2010. Galaxy formation: a Bayesian un-
certainty analysis. Bayesian Analysis 5 (4), 619e669. http://projecteuclid.org/
euclid.ba/1340110846.

Vernon, I., Liu, J., Goldstein, M., Rowe, J., Topping, J., Lindsey, K., 2018. Bayesian
uncertainty analysis for complex systems biology models: emulation, global
parameter searches and evaluation of gene functions. BMC Syst. Biol. 12 (1),
1e29. https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-017-
0484-3.

Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivum€aki, J.T., D€ossel, O.,
Seemann, G., jan, 2012. Benchmarking electrophysiological models of human
atrial myocytes. Front. Physiol. 3, 487. http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid¼3539682{&}tool¼pmcentrez{&}rendertype¼abstract.

Zaniboni, M., Pollard, a. E., Yang, L., Spitzer, K.W., 2000. Beat-to-beat repolarization
variability in ventricular myocytes and its suppression by electrical coupling.
Am. J. Physiol. Heart Circ. Physiol. 278 (3), H677eH687.

Zaniboni, M., Riva, I., Cacciani, F., Groppi, M., nov, 2010. How different two almost
identical action potentials can be: a model study on cardiac repolarization.
Math. Biosci. 228 (1), 56e70. http://www.ncbi.nlm.nih.gov/pubmed/20801131.

S. Coveney, R.H. Clayton / Progress in Biophysics and Molecular Biology 139 (2018) 43e5858


	Fitting two human atrial cell models to experimental data using Bayesian history matching
	1. Introduction
	2. Background
	2.1. Gaussian process emulators
	2.2. History matching

	3. Methods
	3.1. Cell models and model inputs
	3.2. GP emulator design data
	3.3. GP emulator fitting procedure
	3.4. Experimental data
	3.5. History matching procedure

	4. Results
	5. Discussion and conclusions
	5.1. Comparison with previous work
	5.2. Insights into models
	5.3. Experimental data and action potential biomarkers
	5.4. Future directions and open questions

	Acknowledgements
	Appendix A. Supplementary data
	References


