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Segmented double-stranded (ds)RNA viruses share

remarkable similarities in their replication strategy and capsid

structure. During virus replication, positive-sense single-

stranded (+)RNAs are packaged into procapsids, where they

serve as templates for dsRNA synthesis, forming progeny

particles containing a complete equimolar set of genome

segments. How the +RNAs are recognized and

stoichiometrically packaged remains uncertain. Whereas

bacteriophages of the Cystoviridae family rely on specific RNA–

protein interactions to select appropriate +RNAs for packaging,

viruses of the Reoviridae instead rely on specific inter-

molecular interactions between +RNAs that guide multi-

segmented genome assembly. While these families use distinct

mechanisms to direct +RNA packaging, both yield progeny

particles with a complete set of genomic dsRNAs.
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Introduction
For viruses with segmented double-stranded (ds)RNA

genomes, genome encapsidation requires recognition and

packaging of a set of positive-sense (+) single-stranded

(ss)RNAs in an environment rich in heterologous RNAs.

Packaging may proceed by the sequential translocation of

multiple +RNAs into pre-assembled procapsids

[1,2��,3,4��], or, alternatively, by the cooperative assem-

bly of a capsid shell around assorted RNA–RNA and

RNA–protein complexes [5,6�]. For segmented dsRNA

bacteriophages of the Cystoviridae family, packaging

occurs via the helicase-driven insertion of three distinct
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+RNAs into preformed procapsids. By contrast, for

viruses of the Reoviridae family, packaging likely begins

with assortment of viral + RNAs to form an ordered com-

plex that serves as the centerpiece for assembly of a

surrounding capsid shell. Formation of the centerpiece

appears to be driven by specific RNA–RNA interactions

in a process chaperoned by viral non-structural RNA-

binding proteins. Regardless of the packaging mecha-

nism, viral + RNAs are only converted to dsRNAs by

RNA polymerases located within procapsids, assuring

coordination between RNA replication and capsid

assembly.

Cystoviridae RNA recognition and packaging
Members of the Cystoviridae share structural similarities

with those of the Reoviridae [3]. Viruses of both families

possess a T = 1 inner core that contains multiple copies of

a viral RNA-dependent RNA polymerase (RdRP) [3,7].

Viral + RNAs packaged into these cores serve as tem-

plates for synthesis of dsRNA genome segments. The

dsRNAs remain encased within the cores and, later in the

viral lifecycle, are transcribed by core RdRPs to produce

+RNAs [8–10]. The Cystoviridae are the only dsRNA

viruses known to package +RNAs by translocation into

pre-assembled cores [11]. The best studied member of

the Cystoviridae is Pseudomonas virus w6, whose assembly

mechanisms have been examined using in vitro and in
vivo systems [2��,4��,8,12��,13��]. The w6 genome con-

sists of three dsRNA segments: Large (L), Medium (M)

and Small (S). Key to w6 assembly is the formation of an

empty, dodecahedron structure, termed a procapsid (Fig-

ure 1) [3,7]. The procapsid scaffold is a dodecahedral

cage formed by 60 dimers of the core protein P1.

Mounted on vertices of the procapsid is the hexameric

RNA helicase P4 and bound to the interior face are the

viral RdRP P2 and assembly factor P7 [2��,14]. The

number of protein components in the w6 procapsid vary,

with particles containing 8–12 copies of P2, 5–6 copies of

P4, and 30–60 copies of P7, suggesting a non-directed

incorporation during assembly [15–17]. The role of the

w6 RdRP in packaging is limited, as viral + RNAs are

translocated into procapsids that lack P2 [18]. Likewise,

procapsids formed with the P4 S250Q mutant contain

only �10% of the normal amount of the P4 helicase, yet

package as efficiently as wild type procapsids, indicating

that only a few copies of the helicase are necessary for

+RNA translocation [19]. Remarkably though, procapsids

with a single P4 helicase display altered packaging spec-

ificity, preferentially incorporating +RNAs of segments L

and M, but not S [20].
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Assembly and pre-genome packaging in members of the Cystoviridae family. (1) Newly transcribed l+, m+, and s+RNAs are extruded from the

procapsid. (2) Viral proteins P1 (core protein, purple), P2 (RdRP, red), P4 (RNA helicase/packaging motor, green), and P7 (assembly co-factor,

yellow) co-assemble (3) forming new empty procapsids. (4) Assembled procapsids sequentially recruit RNAs, which are translocated inside the

core by a hexameric packaging motor P4 in the order s+, m+, and l+. RNA packaging results in expansion of the procapsid. (5) After packaging,

multiple + RNAs are replicated inside the procapsid by P2, forming dsRNAs.

Source: Adapted from Ref. [2��].
w6 packaging signals
w6 +RNAs (referred to as s+, m+, and l+ for segments S, M

and L, respectively) are packaged sequentially into pro-

capsids in order of size, beginning with the smallest.

Critical to the process are segment-specific packaging

( pac) signals present at the 50 ends of w6 +RNAs. Each

pac signal resolves into two regions: a 50 stretch of

18 nucleotides conserved among all three +RNAs and

an adjoining downstream stretch of �200 nucleotides that

folds to form a unique secondary structure [21,22]. w6
packaging initiates with specific binding of the pac signal

of the s+ RNA to a recognition site located on the vertices

of the procapsid [18,23]. The P4 helicase destabilizes

secondary structures on the s+ RNA, facilitating its 50 > 30

translocation into the procapsid [11,12��]. Insertion of the

s+ RNA causes partial procapsid expansion, triggering

conformational changes that generate a recognition site

on the procapsid for the m+ pac signal [12��]. As a result,

the m+ RNA is bound, and combined with the action of

the P4 helicase, translocated into the particle. Packaging

of the s+ and m+ RNAs results in additional procapsid

expansion and conformational changes that expose a

binding site for the l+ pac signal, leading to insertion of

the l+ RNA (Figure 1). As a result of the sequential

packaging of the s+, m+, and l+ RNAs, the procapsid

becomes fully expanded, triggering the activation of

procapsid RdRPs and the synthesis of S, M, and L

dsRNAs [2��,24]. In summary, the specificity of w6
RNA packaging is dependent not just on the presence

of the P1 protein, but the conformational status of the P1

protein in context of the dodecahedral procapsid [3,4��,7].

Existing data indicate that w6 utilizes a ‘headful’ mecha-

nism of RNA packaging, as both the type and amount of
www.sciencedirect.com 
+RNA inserted into the procapsid are critical for display

of pac recognition sites. For example, experiments per-

formed using truncated s+ RNAs have shown that multi-

ple copies of the RNA must be packaged into the pro-

capsid to induce conformation changes sufficient for

display of m+ pac site [12��,25]. Similarly, w6 phage have

been formed in vivo that contain two copies each of either

M or L dsRNAs when provided with mutant m+ or l+

RNAs of half their normal size. Thus, these phage have

genomes consisting of four dsRNA segments [25].

Remarkably, w6 phage with a non-segmented genome

can be formed by concatenating s+, m+, and l+ RNAs and

including a 50-terminal s+ pac signal [13��].

Despite this rather comprehensive understanding of the

Cystoviridae packaging mechanism, many questions

remain, including the nature of pac recognition sites on

the procapsid and how their structure and activities are

affected by RNA translocation. Auxiliary packaging

mechanisms may exist, given the observation that some

+RNAs lacking pac signals remain able to be packaged by

w6 and its close relative, w8 [26]. Substitution of the pac
signal on +RNA with a heterologous pac signal of another

segment can result in the restoration of homologous pac
sites in both segments through RNA recombination [26],

indicating that additional mechanisms of selective RNA

recruitment play a role in the packaging of these viruses.

Reoviridae RNA recognition and packaging
Unlike Cystoviridae, members of Reoviridae carry out RNA

packaging and replication in cytoplasmic inclusion bod-

ies, termed viroplasms or viral factories [27–30]. The

components of viroplasms include structural and non-

structural proteins essential for incorporation of complete
Current Opinion in Virology 2018, 33:106–112
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sets of +RNAs into progeny cores. Although the w6
packaging model reveals a mechanism by which seg-

mented dsRNA viruses can acquire their genome, it is

not compatible with the current knowledge of how Reo-
viridae progeny derive their 9–12 dsRNA genome seg-

ments. In order for the w6 model to apply to the Reovir-
idae, up to 12 distinct conformational changes would have

to occur to a preformed core structure during sequential

packaging of +RNAs [12��]. However, no significant

structural differences have been observed between Reo-
viridae empty and RNA-filled cores [31,32]. Indeed,

studies with bluetongue virus (BTV, ten genome seg-

ments), mammalian orthoreovirus (MRV, ten), cyto-

plasmic polyhedrosis virus (CPV, ten), and rotavirus

(eleven) suggest that, among the Reoviridae, viral + RNAs

undergo assortment to form ordered complexes that

nucleate the formation of a surrounding core protein

(CP) layer. The cores of BTV and rotavirus are nearly

indistinguishable, with copies of the viral RdRP and RNA

capping enzyme (CAP) anchored to the interior core face

near 5-fold vertices. By contrast, while MRV and CPV

cores have similarly positioned RdRP molecules, their

CAP components form turrets that extend through the

core protein layer at 5-fold vertices.

BTV and MRV RNA packaging
The only cell-free reconstitution system available to

study the Reoviridae packaging mechanism was estab-

lished for BTV [33��]. Results obtained using the recon-

stitution system [34] and a companion reverse genetics

system indicate that BTV + RNAs assemble into larger

RNA-rich complexes, possibly resulting from RNA

assortment, prior to incorporation into core structures.

In these experiments, efficient core assembly required

all 10 BTV + RNAs and the presence of both, viral RdRP

and CAP [33��]. Regions of BTV + RNAs important for

segment-specific RNA packaging have been defined by

reverse genetics. Such analysis revealed that packaging of

BTV segment 9 +RNA requires up to 276 50-terminal

nucleotides and 393 30-terminal nucleotides, suggesting

that the 50 and 30 untranslated regions (UTRs) and parts of

adjacent segment-specific coding regions contribute to

the process [35]. Recent studies using oligonucleotides

complementary to regions of BTV RNAs have also sug-

gested that the 30 UTRs and, to a lesser extent, the 50

UTRs may be involved in inter-segment RNA–RNA

interactions [36�].

Studies performed using MRV reverse genetics systems

indicate that the 50-terminal 125–200 nucleotides and 30-
terminal 180–285 nucleotides of MRV + RNAs are essen-

tial for RNA assortment and packaging [37��]. Because

these sequences are substantially longer than the lengths

of the UTRs of MRV + RNAs, packaging signals likely

consist of both UTR and adjacent open reading frame

(ORF) sequences, as was also observed with BTV +

RNAs. Thus, unlike the findings for w6 +RNAs, both
Current Opinion in Virology 2018, 33:106–112 
ends of Reoviridae +RNAs are important for RNA

packaging.

Assembly of the rotavirus core
Studies on the rotavirus packaging mechanism have been

challenging due to the lack of an in vitro packaging system

and, until recently, the lack of a robust reverse genetics

system. Nevertheless, substantial progress has been made

in understanding various aspects of rotavirus RNA repli-

cation and particle assembly through structural and bio-

chemical studies. Rotaviruses are triple-layered particles

(TLPs), consisting of core, intermediate, and outer pro-

tein layers [9,38,39]. During cell entry, the outer capsid

protein layer is lost, yielding double-layered particles

(DLPs) that synthesize +RNAs [40,41]. Analysis of early

replication intermediates isolated from rotavirus-infected

cells [38] suggested that the viral + RNAs bind viral RdRP

and probably CAP, forming complexes that are subse-

quently encased by CP [42]. Consistent with this model

are the high-affinity, sequence-specific and the non-spe-

cific binding activities, respectively, of RdRP and CAP for

rotavirus + RNAs. Assembly of a CP shell around RdRP/

CAP/+RNAs complexes may be initiated by the binding

of the RdRP to the inner surface of the core, through

interactions with disordered N-terminal extensions pro-

truding from the CP protein. Homotypic CP–CP contacts

are likely to be enhanced and stabilized through addi-

tional high-affinity interactions of the CP N-terminal

extensions with +RNAs, resulting in the cooperative

assembly of the inner core [43�].

Single-molecule imaging of transcribing rotavirus DLPs

has revealed that each genome segment is associated with

a dedicated polymerase complex, responsible for synthe-

sis and extrusion of a single type of +RNA from 5-fold

channels of the particle [44��]. A similar arrangement of

genome segments may exist for BTV, with each of its

dsRNAs interacting with a specific polymerase complex

positioned at a 5-fold vertex within the core [45].

Although details on the arrangement of dsRNA genome

segments within the rotavirus and BTV particles are

lacking, cryo-electron microscopy has provided consider-

able insight into the in situ organization of CPV genome

segments. Its 10 segments are organized within the core

in a non-symmetrical, non-spooled manner, with each

interacting with a polymerase complex anchored on the

inner surface near a 5-fold vertex. Two of the 12 vertices

of the CPV core lack polymerase complexes, but are

occupied with dsRNA emanating from genomic segments

linked to polymerases bound to neighboring vertices

[46�,47�].

For rotaviruses, specific intermolecular interactions

between distinct types of viral + RNAs may guide the

assembly of an RNA assortment complex, prior to core

encapsidation and RNA replication (Figure 2)

[10,48,49��]. Unlike the w6 RdRP, which alone can
www.sciencedirect.com
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Figure 2
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The proposed model of genome assortment and packaging in rotaviruses. (1) Within viroplasms, rotaviruses + RNAs bind viral RdRP (VP1, shown

in red), and RNA capping enzyme (VP3, in blue), forming +RNA/VP1/VP3 complexes. (2) Binding of the octameric RNA-binding NSP2 (teal), causes

structural remodeling of the viral + RNAs, exposing otherwise sequestered complementary sequences (sequences shown in red, blue and green).

The complementary sequences promote base pairing between the different types of rotavirus + RNAs, a process representing RNA assortment. (3)

The assorted RNA complex containing NSP2, VP1 and VP3, is predicted to nucleate VP2 core assembly (4). In this model, core assembly results

in the displacement of +RNA-bound NSP2. RdRPs within new formed cores direct dsRNA synthesis, using +RNAs as templates (not shown).

Source: Adapted from Ref. [49��].
catalyse dsRNA synthesis from +RNA in vitro [14], the

rotavirus RdRP lacks catalytic activity by itself. Instead,

rotavirus RdRP is only active in the presence of CP, a

phenomenon that allows rotavirus dsRNA synthesis to be

tied to the packaging of +RNAs into newly formed cores

[40,50]. Moreover, the mechanisms used to incorporate

the rotavirus and w6 RdRPs into cores are different.

Notably, the rotavirus RdRP appears to be incorporated

through its binding to +RNAs that are subsequently

packaged in cores, while the w6 RdRP is incorporated

during procapsid assembly due to its affinity for the P1

core shell protein [15,16]. As a result, the number of

rotavirus RdRP molecules in the core can be expected

to equal the number of genome segments, while the

number of the w6 RdRP molecules can range from a

few up to the number of vertices.

Assortment of rotavirus +RNAs
The rotavirus nonstructural proteins NSP2 and NSP5 are

non-specific RNA binding proteins that accumulate to

high levels in viroplasms [28,51–56]. NSP2 exists in

infected cells as doughnut-shaped octamers that possess

helix-destabilizing activity, while NSP5 is a serine-threo-

nine rich phosphoprotein with a poorly understood multi-

meric status. NSP2 and NSP5 have affinities for core

structural proteins, perhaps reflecting a role for NSP2 and

NSP5 in recruiting core proteins to viroplasms or

chaperoning the function of core proteins during RNA

assortment, packaging and/or replication. Notably, NSP2

is a component of replication intermediates engaged in

dsRNA synthesis [51].

Current models favor the idea that rotavirus assortment is

driven by intermolecular interactions occurring between

the 11 species of viral + RNAs [9,10,48,49��,57��]. For

BTV, recent in vitro studies and reverse genetics
www.sciencedirect.com 
experiments strongly support such a model [36�,58].
For rotaviruses, inter-segment RNA–RNA interactions

have also been detected in vitro. Using two-color fluores-

cence correlation spectroscopy (FCCS)-based RNA–

RNA interaction assays, NSP2 was found to promote de
novo formation of sequence-specific inter-molecular con-

tacts among the 11 rotavirus + RNAs [49��] (Figure 2).

Inter-segment RNA hybridization was dependent on

NSP2-mediated structural reorganization of +RNAs

under conditions requiring a large molar excess of

NSP2 [49��], which is likely achieved in viroplasms

during infection. The study also suggested that although

all 11 +RNAs could bind multiple copies of NSP2, only

certain RNA subsets form stable, sequence-specific inter-

molecular contacts. The redundancy of RNA–RNA inter-

action sites detected within the coding regions of indi-

vidual +RNAs may explain how genetically diverse

strains of rotaviruses maintain the potential to undergo

reassortment [59], while retaining packaging selectivity

due to the conservation of packaging signals located

within the UTRs. The recently developed plasmid-

only-based rotavirus reverse genetics system [60��] will

be an important tool for testing predictions made about

the assortment process using FCCS-based RNA–RNA

interaction assays.

It remains unclear how rotavirus + RNAs are selected for

packaging into cores. Studies with pre-formed core par-

ticles failed to provide evidence of preferential packaging

of viral + RNAs in vitro [61], suggesting that other factors

likely contribute to packaging specificity. One possibility

is that the only +RNAs packaged into cores are those

bound to the viral RdRP, a protein with high affinity for

the 30-terminus of rotavirus + RNAs. In this scenario, the

inability of the RdRP to bind cellular mRNAs would

preclude packaging of non-viral RNAs into cores.
Current Opinion in Virology 2018, 33:106–112
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Moreover, the RdRP requirement would prevent the

packaging of viral + RNAs that lack the necessary bound

polymerase to drive RNA replication within the core [40].

Although signals that promote packaging into cores have

not been identified in rotavirus + RNAs, it is interesting to

note that rotavirus genome segments containing

sequence duplications are preferentially packaged into

progeny viruses relative to wild-type segments [62]. This

observation suggests that duplicated sequences may con-

tain an increased number of specific packaging signals,

thus increasing their packaging efficiency.

It has also been suggested that global features of RNA

genomes, for example, their relative compactness and

overall size and shape, could be important for efficient

encapsidation. By extrapolation, it may be that only

assortment complexes containing the complete set of

11 rotavirus (+)RNAs may have the global features

enabling packaging within a viral core [6�,63]. Binding

of multiple copies of NSP2 to the 11 +RNAs could

modulate core assembly, thus precluding uncontrolled

core nucleation [64], and/or prepare the RNA assortment

complex for encapsidation. It has been shown that NSP2

may play a role in preventing premature initiation of

replication of the packaged +RNAs [65]. Although

NSP2 can promote strand-annealing reactions between

non-cognate complementary sequences [66], it appears

that the RNA assortment in rotaviruses may be primarily

attained via sequence-specific RNA–RNA interactions

[49��,67��]. Importantly, non-cognate RNAs are outcom-

peted by cognate rotavirus RNA transcripts in RNA–

RNA in vitro interaction assays in the presence of

NSP2 [49��]. Accordingly, no rotaviruses containing host

RNAs or lacking one of the gene segments have ever

been reported to date. Exploring whether viroplasms can

exclude non-cognate RNA, so that only RV + RNAs are

retained inside for efficient interaction with each other,

will provide clues about the high selectivity of genome

packaging in these viruses. Numerous RNA-binding pro-

teins have been shown to phase-separate in the presence

of RNA to form liquid droplets, consisting of ribonucleo-

protein granules containing multiple RNAs [68�,69,70].
Given the highly dynamic nature of viroplasms and their

high protein and RNA content, it is possible that similar

mechanisms may be involved in their formation and

function in rotavirus-infected cells.

Concluding remarks
The multi-segmented dsRNA viruses of the Reoviridae
family employ mechanisms of RNA selection and pack-

aging that are distinct from those utilized by members of

the tri-segmented Cystoviridae. Such differences can be

attributed to the different complexities of selecting and

packaging 9–12 versus 3 +RNAs into progeny cores. In

the case of Reoviridae, RNA selection and packaging take

place in viroplasms, sites where +RNA and protein com-

ponents are concentrated, including chaperone proteins
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that can act to facilitate and modulate such processes.

The NSP2 octamer — an RNA-binding protein with a

helix-destabilizing activity — is key for RNA selection

and packaging in the case of the rotavirus. Notably,

nonstructural proteins similar to NSP2 are produced by

other members of the Reoviridae, suggesting a conserved

essential role for NSP2-like proteins in the replication

and packaging of all viruses in the family. Increasing

evidence suggests that Reoviridae assortment is driven

by interactions involving multiple regions of +RNAs,

including those positioned within UTRs and even ORFs.

Interestingly, RNA–RNA interactions that give rise to

assortment are dependent on NSP2, and as a result appear

likely to occur preferentially in viroplasms. Thus, free

+RNAs in the cytosol may be precluded from interacting

with each other, preventing the formation of RNA–RNA

complexes that may interfere with translation or stimulate

RNA-dependent innate immune responses. With the

recent development of a completely plasmid-based rota-

virus reverse genetics system it will become possible to

identify sequences in +RNAs that direct the RNA–RNA

interactions leading to complete assortment of all

11 viral + RNAs. From this should come information

helping to explain how RNA assortment influences the

maintenance of preferred genome constellations, a char-

acteristic common for rotavirus strains isolated from dif-

ferent hosts and a factor influencing rotavirus evolution

and genetic diversity.
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