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Robustness Analysis of a Synthetic Translational Resource Allocation

Controller *

Alexander P.S. Darlington1, Jongrae Kim2 and Declan G. Bates1

Abstract—Recent research in Synthetic Biology has highlighted
the potential of translational resource allocation controllers
to improve circuit modularity by dynamically allocating finite
cellular resources in response to fluctuating circuit demands.
The design of such controllers is complicated by the significant
levels of parametric uncertainty that arise in their biological
implementations. Tools from robust control, such as µ-analysis,
can be used to determine the robustness of controller designs
to parametric uncertainty, but require further development to
allow their application to biomolecular control systems, which
are typically highly non-linear, and contain multiple uncertainties
that cannot be represented using the standard linear fractional
transformation formalism. Here, we show how an LFT (Linear
Fractional Transformation)-free formulation of the µ-analysis
problem can be used to analyse and compare the robustness of
alternative potential implementations of a translational resource
allocation controller that utilises orthogonal ‘circuit-specific’
ribosomes to translate circuit genes. Our results provide useful
guidelines for the construction of robust resource allocation
circuitry for multiple future biotechnological applications.

I. INTRODUCTION

Synthetic circuits can be created to perform complex com-

putations and information processing within cells by assem-

bling genetic modules. During the circuit design process it

is typically assumed that each module is independent (bar

the designed interactions), however, it is now well estab-

lished that additional unexpected interactions may emerge as

a consequence of the sharing of cellular resources [1]. This

breakdown in modularity may not be apparent from gene

network models or circuit diagrams during the design phase,

and can subsequently lead to loss of functionality or even

circuit failure upon implementation in host organisms.

The sharing of translational resources, in the form of free

ribosomes, has been implicated as a crucial cause of these

non-regulatory interactions [2], [3], since during exponential

growth, the pool of ribosomes needed for translation of mRNA

(messenger Ribonucleic Acid) into protein is constant [4],

and this finite pool of ribosomes is shared across all genes

requiring translation. Although similar limitations exist at the

transcriptional level, in many settings the resulting effects are

small and hence can be neglected [3].

To address the above problems, a prototype translational

allocation controller was recently designed and successfully
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Fig. 1. Genetic architecture of the translational controller. Transcription of
the mRNA for proteins p1 and p2 is activated by the inputs u1 and u2

respectively. pf inhibits the transcription of the synthetic ribosomal RNA
r. The synthetic RNA converts host-specific ribosomes Rh into circuit-
specific ribosomes R which translate all circuit mRNAs and the mRNA of
the controller gene into proteins.

implemented experimentally [5]. This controller utilises or-

thogonal ‘circuit-specific’ ribosomes which exclusively trans-

late circuit genes. By dynamically controlling the production

of such orthogonal ribosomes, the effects of resource limita-

tions on the gene circuit can be reduced, as circuit-specific

translational capacity is increased as demand increases. These

o-ribosomes are created by expressing a synthetic rRNA (ri-

bosomal RNA)-based component which displaces a core host

ribosomal component, changing the machinery’s specificity

from host genes to circuit genes [6].

The resource allocation controller regulates the production

of this synthetic ribosomal component using negative feed-

back, as shown in Figure 1. The size of the circuit-specific o-

ribosome pool is controlled by the use of a repressive transcrip-

tion factor protein. The protein acts to inhibit the production

of the synthetic ribosomal component by sequestering the

latter’s promoter (and so preventing RNA polymerase binding

and transcription). The protein is constitutively expressed and

translated by the circuit-specific pool. It therefore acts as a

sensor of translational demand; as demand increases, the level

of this protein falls and vice versa. The inhibitory action of the

protein acts to invert this demand signal as it is relayed to the

synthetic ribosomal RNA promoter; as protein concentration

falls, repression of the promoter through sequestration by the

controller protein falls and hence rRNA synthesis increases

(and vice versa). Therefore co-option of ribosomes from

the host to the circuit-specific pool follows the fluctuating

demands made by the circuit.

In [7], we developed a mathematical model of the transla-



TABLE I
CIRCUIT AND CONTROLLER PARAMETERS

Description Nominal Units

nσ Number of RNAP per gene 10
σT RNAP concentration 250 nM
nR Number of Ribosomes per mRNA 20
RT Total ribosome concentration 2500 nM
ηi Co-operativity of the input 1
µi Threshold of the input 10 nM
gi,T Gene i copy number 10 nM
kXi

Gene i promoter RNAP dissociation constant 200 nM

τi Gene i mRNA synthesis rate 320 h-1

kLi
Gene i mRNA-ribosome dissociation constant 105 nM

γi pi translation rate 240 h-1

dmi Gene i mRNA decay rate 20 h-1

dpi Gene i protein decay rate 1 h-1

gr,T Synthetic rRNA copy number 500 nM
kXr

rRNA Plac (Ptet) promoter dissociation constant 500 (350) nM

τr rRNA transcription rate 190 h-1

dr rRNA decay rate 20 h-1

̺f r:Rh association rate 0.9 (nM · h)-1

̺r R dissociation rate 24.8 h-1

gf,T pf copy number 10 nM
kXf

pf promoter RNAP dissociation constant 500 nM

τf Gene f transcription rate 320 h-1

kLf
Gene f mRNA-ribosome dissociation constant 105 nM

γf pf translation rate 240 h-1

dmf
Gene f mRNA decay rate 20 h-1

dpf pf decay rate 1 h-1

ηf lacI (tetR) co-operativity 4 (2)
µf lacI (tetR) dissociation constant 0.02 (5.6) nM

tional resource allocation controller shown in Figure 1. Due

to the underlying biological mechanisms, this model contains

many non-linear terms, and as shown below, consideration

of uncertainty arising in biological implementations leads

to a closed-loop system containing large numbers of real

uncertainties (typically kinetic rate constants) that do not enter

the linearised system dynamics as polynomial fractions. This

poses significant challenges for the application of robustness

analysis methods such as µ-analysis, which typically requires

the uncertain system to be represented as a linear fractional

transformation (LFT), and therefore no formal analysis of the

controller’s robustness was attempted in [7].

To address this issue, we here further develop an approach,

first proposed in [9], [10], based on combining a randomisation

algorithm with a geometric interpretation of the µ-analysis

problem. In this approach, the uncertainty is re-defined by

a subtraction between the uncertain system and the nominal

system. Thus the procedure does not require that the uncertain

parameters are actually decoupled from the system (as with

LFTs) but only requires the evaluation of the difference

between the nominal system and the perturbed system.

II. MODELLING UNCERTAINTY IN A TRANSLATIONAL

RESOURCE ALLOCATION CONTROL SYSTEM

Here, we describe the non-linear closed-loop system model,

derive its linearisation, and consider the way in which un-

certain parameters affect the system. Definitions and nominal

values for all parameters in the model are shown in Table

I. The non-linear model describes the dynamics of a simple

two gene circuit encoding proteins (species p1 and p2) and

the controller system (species pf , r and Rh). The controller

consists of the synthetic rRNA species (r), the host ribosomes

(Rh) and the protein pf which controls the rate of rRNA

synthesis. R represents the free orthogonal ribosome pool.

The dynamics of each circuit protein (pi) follow:

ṗi = γiRĉi − dpi
pi (1)

where ṗi is the derivative of pi with respect to time and

ĉi =
1

kLi

nRτi
dmi

(

σT x̂i

1 + x̂i

)

, x̂i =
nσgi,T
kXi

(

ui
ηi

ui
ηi + µi

)

(2)

The dynamics of the protein controlling synthetic rRNA syn-

thesis is given by:

ṗf = γfRĉf − dpf
pf

− ηf (nσgr,T − xr − κr)pf
ηf + ηfµfκr (3)

where

ĉf =
1

kLf

nRτf
dmf

(

σT x̂f

1 + x̂f

)

and x̂f =
nσgf,T
kXf

(4)

The inhibitory action of pf at the rRNA promoter is given by

xr = (x̂rσT )/(1 + x̂r) (5)

x̂r = (nσgr,T /kXr
)/[µf/(µf + pf

ηf )] (6)

κr = (nσgr,T − xr)[pf
ηf /(pf

ηf + µf )] (7)

The dynamics of the synthetic rRNA are given by:

ṙ = τrxr − drr − ̺frRh + ̺rR (8)

(Note the action of pf through xr). The dynamics of the host

ribosome pool are given by:

Ṙh = −̺frRh + ̺rR (9)

As the number of ribosomes is fixed, the total number of

orthogonal ribosomes (Ro,T ) is given by RT − Rh (total

ribosomes minus the host ribosomes). These are distributed

across all protein encoding circuit and controller genes such

that the number of free orthogonal ribosomes is:

R =
RT −Rh

1 + ĉf +ΣN
1

(

ĉi
) (10)

The non-linear model is formed by (1) (repeated once for

each circuit gene i, here we consider two circuit genes) and (3)

to (9). We can define the vector y := [p1, p2, pf , r, Rh]
T .

We define ȳ to be the solution to ẏ = 0 and linearise the

system around this point.

The linearisation is ẋ = A|y=ȳx where x = y − ȳ and A
is the Jacobian. The Jacobian of the system is:

A =












−dp1 0 0 0 −(γ1ĉ1)/K1

0 −dp2 0 0 −(γ2ĉ2)/K1

0 0 −dpf 0 −(γf ĉf )/K1

0 0 −K2 −dr − ̺f R̄h −̺f r̄ − ̺r/K1

0 0 0 −̺f R̄h −̺f r̄ − ̺r/K1













(11)

where K1 and K2 expand to:

K1 = 1 + ĉf + ĉ1 + ĉ2 (12)

K2 =
σT ηfnσgr,T kXf

µf p̄
ηf

f τf

p̄f (nσgr,Tµf + kXf
µf + kXf

p̄
ηf

f )2
(13)



Fig. 2. Simulations of the non-linear closed-loop system and its linearisation
for the lacI-based Controller 1. Only p1 is shown. Parameters are listed in
Table I. Inputs: u1 = u2 = 0 nM while t < 50 h. From t > 50 h,
u1 = 500 nM. From t > 100 h, u2 = 500 nM.

Figure 2 shows simulations confirming good agreement

between the linear and non-linear models for a biological

implementation based on the lacI repressor. Upon induction

of p2 at 100 h, the translational resource allocation controller

successfully rejects the disturbance to p1 caused by resource

mediated coupling.

In general, the Jacobian, A, includes m uncertain parame-

ters, δ, which is an element of Rm, i.e. A = A(δ). All δ can be

decoupled from the nominal system, if all the δ in the elements

of A appear as polynomial fractions, and the resulting LFT is

given by:

ẋ = A(0)x+Bw (14)

z = Cx+Dw (15)

w = ∆z (16)

where A(0) is the nominal system and stable, and ∆ is a

diagonal matrix of the uncertain parameters δ. If a system

can be represented in this form then the µ-analysis problem

becomes a search for the minimum magnitude δ which gives:

|I −M(jω)∆| = 0 (17)

where | · | is the determinant, j =
√
−1, ω = [0,∞) and

M(jω) = [jωI − A(0)]−1 and I is the identity matrix

whose dimension is the same as A. Computationally efficient

algorithms exist to find µ-bounds for these systems.

Parametric uncertainty arises in synthetic circuits due to

(i) noise in the original measurement (e.g. due to population

effects), (ii) changes in transcription/translational kinetics due

to new DNA context for genetic ‘parts’ (e.g. [8]) and (iii)

fluctuations due to growth conditions/stains (e.g. [2]).

In our model we consider all non-input parameters (i.e. all

except u1 and u2) to be uncertain, and model the variability

of a given parameter κ as (1 + δ)κ where κ is the nominal

value and δ is the perturbation. Re-considering the linearised

model with these added uncertainties shows that it cannot

be represented in the necessary form depicted in (14)-(16),

as the δ are not polynomial fractions, nor can the uncertain

parameters be presented as a diagonal matrix ∆. This is

apparent by inspection of the Jacobian in (11), substituting

the disturbances δx (where x represents the index of the value

in the uncertainty vector δ) yields:

































−(1 + δ12)dp1
0 0

...
...

0 −(1 + δ21)dp2 0
...

...

0 0 −(1 + δ34)dpf
M1 M2

0 0 −K2(δ)
...

...

0 0 0
...

...

































(18)

where M1 and M2 are the fourth and fifth columns of the

uncertain Jacobian:

M1 =







0
0
0

−(1 + δ25)dr − (1 + δ26)̺f R̄h(δ)
−(1 + δ26)̺f R̄h(δ)






(19)

M2 =







−[(1 + δ10)γ1ĉ1(δ)]/K1(δ)
−[(1 + δ19)γ2ĉ2(δ)]/K1(δ)
−[(1 + δ32)γf ĉf (δ)]/K1(δ)

−(1 + δ26)̺f r̄(δ) − [(1 + δ27)̺r]/K1(δ)
−(1 + δ26)̺f r̄ − [(1 + δ27)̺r]/K1(δ)






(20)

K1(δ) and K2(δ) take the same form as in (13) but with added
perturbations:

K1 = 1 + ĉf (δ) + ĉ1(δ) + ĉ2(δ) (21)

K2 =
K2,1K2,2p̄f (δ)

(1+δ37)ηf

p̄f (δ)[K2,3 +K2,4 + (1 + δ29)kXf
p̄f (δ)

(1+δ37)ηf ]2
(22)

where

ĉf (δ) =
1

(1 + δ31)kLf

(1 + δ4)nR(1 + δ30)τf

(1 + δ33)dmf

(1 + δ1)σT x̂f (δ)

1 + x̂f (δ)
(23)

x̂f (δ) = [(1 + δ3)nσ(1 + δ35)gf,T ]/((1 + δ29)kXf
) (24)

ĉ1(δ) =
1

(1 + δ9)kL1

(1 + δ4)nR(1 + δ8)τ1

(1 + δ11)dm1

(1 + δ1)σT x̂1(δ)

1 + x̂1(δ)
(25)

x̂1(δ) =
(1 + δ3)nσ(1 + δ13)g1,T

(1 + δ7)kX1

u1
(1+δ5)η1

u1
(1+δ5)η1 + (1 + δ6)µ1

(26)

ĉ2(δ) =
1

(1 + δ18)kL2

(1 + δ4)nR(1 + δ17)τ2

(1 + δ20)dm2

(1 + δ1)σT x̂2(δ)

1 + x̂2(δ)
(27)

x̂2(δ) =
(1 + δ3)nσ(1 + δ22)g2,T

(1 + δ16)kX2

u2
(1+δ14)η2

u2
(1+δ14)η2 + (1 + δ15)µ2

(28)

K2,1 = (1 + δ1)σT (1 + δ37)ηf (1 + δ3)nσ(1 + δ28)gr,T (29)

K2,2 = (1 + δ29)kXf
(1 + δ36)µf (1 + δ30)τf (30)

K2,3 = (1 + δ3)nσ(1 + δ28)gr,T (1 + δ36)µf (31)

K2,4 = (1 + δ29)kXf
(1 + δ36)µf (32)

We also reformulate the steady states of the species ȳ with the

uncertainties (e.g. r̄(δ) is the value of r̄ including the necessary

perturbations from the δ vector).

Since the 36 independent uncertain parameters affecting

this closed-loop system cannot be represented in the standard

LFT-based form required for µ-analysis, in the following we

describe an alternative ‘LFT-free’ approach, that will allow us

to rigorously quantify the robustness of this controller (see

also the Supplementary Material for a tutorial example).



Fig. 3. Interaction of two surfaces and the four possible sign combinations,
si for i = 1, 2, 3 and 4, in m = 2 uncertain space.

III. LFT-FREE µ-ANALYSIS

To implement the LFT-free method we first consider a new

representation for the uncertainties:

A∆(δ) := A(δ)−A(0) (33)

The original uncertain LTI system can be now expressed as

ẋ = A(0)x+A∆(δ)x (34)

Taking the Laplace transform gives:

X(s) = M(s)A∆(δ)X(s) +M(s)x(0) (35)

where X(s) is the Laplace transform x(t), M(s) = [sI −
A(0)]−1, and x(0) is the initial condition of x(t).

The robustness problem may be formulated as a search for

the δ of smallest magnitude which satisfies:

|I −M(jω)A∆(δ)| = 0 (36)

for all frequencies ω ∈ [0,∞). We can now formulate the

µ-analysis problem as follows:

Find the µ (lower bound) and µ̄ (upper bound) such that

µ ≤ µ(ω) ≤ µ̄, for ω ∈ [0,∞), where

µ(ω) =

{

0, |I −M(jω)A∆(δ)| 6= 0 for all δ,

[dmin(ω)]
−1, otherwise,

(37)

where

dmin(ω) = min{d | ∃δ ∈ R
m,

such that |I −M(jω)A∆(δ)| = 0}
The uncertainty in this problem has no general analytical

expression and so standard µ-bound estimation algorithms

cannot be applied. However, we can obtain the value for a

specific δ by evaluating (33). The singularity condition of the

determinant is then given by:

fR(δ) = ℜ|I −M(jω)A∆(δ)| = 0

fI(δ) = ℑ|I −M(jω)A∆(δ)| = 0
(38)

where ℜ(·) and ℑ(·) denote the real and imaginary parts of

a complex number, [9], [10]. These two equalities are (m −

Fig. 4. The number of sign combinations found along the edges of B1 is
three and thus the size of the box provides a µ-upper bound. On the other
hand, the number of sign combinations found along the edges of B2 is four
and thus the size of this box provides a µ-lower bound.

1)-dimensional manifolds on the m-dimensional uncertainty

space δ. The manifolds divide the uncertainty space into four

sections (Figure 3). The exact value of µ is the inverse of the

norm of the δ where the two manifolds meet at the singular

point (the point highlighted in Figure 3). Any norm could be

used in general and the infinity-norm is a frequent choice in

µ-analysis.

Note firstly that, for A∆(0) = 0, i.e. the nominal system,

I − M(jω)A∆(δ) is equal to the identity matrix and the

determinant is 1. The real part is 1 and the imaginary part is 0

at δ = 0. Therefore, under the assumption of nominal stability,

the manifold where the imaginary part is equal to zero always

passes through the origin in the uncertain space, whereas the

other manifold, where the real part is equal to zero, always

stays away from the origin with a strictly positive distance as

depicted in Figure 3. Secondly, the uncertainty space can be

divided into four sections:

s1 = {δ | fR(δ) > 0 and fI(δ) > 0}
s2 = {δ | fR(δ) > 0 and fI(δ) < 0}
s3 = {δ | fR(δ) < 0 and fI(δ) < 0}
s4 = {δ | fR(δ) > 0 and fI(δ) < 0}

(39)

with each section shown in Figure 3. Now, the number of sign

combinations found on boundary boxes of different sizes in the

uncertainty space can be counted. In Figure 4, for example,

the number of sign combinations on boxes B1 and B2 are

three and four, respectively. Once four sign combinations are

found, it can be concluded that the value of µ is inside that

box (here box B2). This leads to the following algorithms for

finding upper and lower bounds on µ (see the Supplementary

Material for formal proofs of convergence for these algorithms

and MATLAB code for a numerical example):

A. µ-upper bound algorithm

1. Check the sign of the real and imaginary parts of the

determinant, I −MA∆, for uniform random samples δ inside

a hyperbox centred at the origin in the uncertain space, e.g.



Last Step Exploration First Step Expansion Second Step Expansion Contraction

Fig. 5. µ-lower bound expansion and contraction steps.

B1 or B2 in Figure 4, until either the maximum number of

samples is reached or all four sign combinations are found.

2. If the combinations are not found, increase the size of

the hyperbox, otherwise decrease the size of the hyperbox, and

repeat. The inverse of the maximum box size which includes

samples containing only three sign combinations is the upper

bound, e.g. s1, s2 and s4 in B1 in Figure 4.

This algorithm is less conservative than the original algo-

rithm presented in [10] as it allows three rather than two sign

combinations, as shown in Figure 4.

B. µ-lower bound algorithm

1. Exploration: Check the sign of the real and imaginary

parts of the determinant, I − MA∆, for uniform random

samples δ on the faces of a hyperbox centred at the origin

in the uncertain space, until either the maximum number of

samples is reached or the four sign combinations are found.

If the combinations are not found, increase the size of the

hyperbox.

2. Expansion & Contraction: In Figure 4 the last sign

combination found in B2 from the Exploration step is most

likely to be s3 as this is the smallest area compared to the

others. Checking the sign combinations of random samples

inside the box, whose centre is δ corresponds to the sign

combination found last in the Exploration step. The initial box

size is the maximum tolerance value. If all sign combinations

are not found by the maximum sampling number, the box size

is increased. If all sign combinations are found, but the size

of the box is greater than the tolerance, move the centre of the

box to δ, which is in the middle between two δ’s whose sign

combinations were found last and second last. Repeat these

steps until some pre-defined maximum number of iterations is

reached (in which case the lower bound is zero), or all sign

combinations are found in a box centred close to the singular

point, where the box size is equal to the given tolerance (in

which case the lower bound is the inverse of the distance from

the singular point to the origin). A graphical illustration of the

procedure is given in Figure 5.

This is a modified and improved version of the µ-lower

bound algorithm originally developed in [9], which did not

exploit the use of the LFT-free formulation. Specifically,

here the expansion step (shown in Figure 5) is improved.

Previously, this involved moving the centre of the box to

the δ whose sign combination was found last, whereas in

the current algorithm the centre of the box is placed in the

middle between two δ’s whose sign combinations were found

last and second last. This avoids occasional problems with the

algorithm switching between two regions for many iterations,

and significantly improves its convergence properties.

IV. µ-ANALYSIS OF THE TRANSLATIONAL CONTROLLER

We use the above procedure to quantify and compare

the stability robustness of four different potential biological

implementations of the controller which act to modify key

controller design parameters. We analyse three controllers

based on the tightly binding LacI repressor, with varying pf
gene copy numbers and RBS strength, and one based on the

TetR repressor (Figure 6) which changes dissociation constants

and level of cooperativity. We set the uncertainty level for

all 36 circuit and controller parameters at ±40% of their

nominal values. As shown in Figure 6, our analysis indicates

that all potential controller implementations are guaranteed to

be stable for this level of uncertainty, since both µ-bounds are

less than 1 at all frequencies. Total computing time to calculate

the bounds for each controller was approx. 1 hour (with

frequencies calculated in parallel on a 4 core Intel i7 processor

with 32 GB RAM). Increasing gf,T (the copy number of the

pf gene) increases robustness, with the upper bound falling

from 0.85 to 0.76. Decreasing kLf
(i.e. increasing the strength

of the pf ribosome binding site) also increases robustness in

comparison to the original case. Changing the repressor used

to implement the controller from LacI to another common

repressor TetR (hence changing its dissociation constant and

co-operativity) also increases the robustness of the controller,

(maximum µ-upper bound of 0.76).

Figure 7 (upper) confirms that the improvements in ro-

bustness offered by the different implementations do not

come at the expense of dynamic performance. However, in

addition to response times, steady-state protein concentrations

are another important performance metric for many biotech-

nological applications, since different concentrations of the

final protein can result in different noise profiles, growth

effects, or rates of downstream chemical reactions (if the

protein is an enzyme). Figure 7 (lower) shows that, in addition

to its strong robustness properties, the tetR-based controller

has significantly higher steady-state protein output than the

lacI-based controllers, making it an attractive candidate for

experimental implementation.



Fig. 6. µ-lower and upper bounds for different potential biological implemen-
tations scaled by ± 40%. Controller 1 corresponds to the lacI-based design
whose parameters are listed in Table I. Controller 2 corresponds to an increase
in gene copy number to gf,T = 500 nM. Controller 3 corresponds to an

increase in RBS strength (i.e. a decrease in kLf
= 104 nM). Controller

4 corresponds to a tetR-based implementation which changes the following
parameters kXr

= 350 nM, µf = 5.6 nM and ηf = 2.

V. CONCLUSIONS

In this paper, we have considered the problem of formally

quantifying the robustness of resource allocation controllers to

parametric uncertainty using µ-analysis. Detailed modelling

of resource sharing mechanisms in the closed-loop system

revealed that the effects of uncertainty cannot be represented

in the form of an LFT, as required by standard µ-analysis

tools. We therefore applied an alternative approach, based

on a geometric formulation of the µ-analysis problem, that

Fig. 7. Simulations of the different biological implementations of the
controller using the non-linear model. Levels of p1 normalised by final protein
concentration are shown. Inputs: u1 = u2 = 0 nM while t < 50 h. t > 50 h,
u1 = 500 nM. t > 275 h, u2 = 500 nM. Upper, dynamics normalised by
final steady state output. Lower, steady state expression level.

allows the computation of tight bounds on µ without the need

to represent the uncertain closed-loop system in the form

of an LFT. This allowed us to evaluate and compare the

robustness of alternative potential biological implementations

of the controller, thus providing useful guidelines for the

construction of robust resource allocation circuitry for multiple

future biotechnological applications. The proposed approach

should be applicable for analysing the robustness of many

kinds of future synthetic biological control circuits.
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